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Abstract The impact of the landscape matrix on

patterns of animal movement and population dynam-

ics has been widely recognized by ecologists.

However, few tools are available to model the

matrix’s influence on the length, relative quality,

and redundancy of dispersal routes connecting habitat

patches. Many GIS software packages can use land

use/land cover maps to identify the route of least

resistance between two points—the least-cost path.

The limitation of this type of analysis is that only a

single path is identified, even though alternative paths

with comparable costs might exist. In this paper, we

implemented two graph theory methods that extend

the least-cost path approach: the Conditional Mini-

mum Transit Cost (CMTC) tool and the Multiple

Shortest Paths (MSPs) tool. Both methods enable the

visualization of multiple dispersal routes that,

together, are assumed to form a corridor. We show

that corridors containing alternative dispersal routes

emerge when favorable habitat is randomly distrib-

uted in space. As clusters of favorable habitat start

forming, corridors become less redundant and

dispersal bottlenecks become visible. Our approach

is illustrated using data from a real landscape in the

Brazilian Atlantic forest. We explored the effect of

small, localized disturbance on dispersal routes

linking conservation units. Simulated habitat destruc-

tion caused the appearance of alternative dispersal

routes, or caused existing corridors to become

narrower. These changes were observed even in the

absence of significant differences in the length or cost

of least-cost paths. Last, we discuss applications to

animal movement studies and conservation

initiatives.
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Introduction

Animal movement can occur at a range of temporal

scales, influencing foraging, migration, and gene flow

(Crooks and Sanjayan 2006). The dispersal routes

associated with these processes can be strongly

constrained by the landscape matrix. Thus models

specifying the effect of matrix heterogeneity on

movement rates can more successfully predict patch

occupancy (Ricketts 2001; Verbeylen et al. 2003),

metapopulation dynamics (Vandermeer and Carvajal
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2001), genetic structure (Stevens et al. 2006), and

persistence in fragmented landscapes (Laurance et al.

2002). The role of behavior and natural history in

shaping species’ responses to the matrix has recently

motivated the concept of functional connectivity

(Calabrese and Fagan 2004). While many connecti-

vity studies have described the influence of different

land cover types in channeling or repelling movement

of particular species (e.g., Burel 1996; Lees and Peres

2008), few tools are available to integrate data on

matrix heterogeneity and species’ habitat preferences

to model dispersal routes.

A challenge in modeling animal dispersal routes is

that individuals rarely use a single optimum route

(e.g., Driezen et al. 2007), and connectivity measures

focusing on optimum routes fail to incorporate

variation in individual behavior (Belisle 2005). In

this paper, we model the location of multiple

dispersal routes across a heterogeneous matrix. We

employ a movement model that assumes successfully

dispersing organisms are more likely to use the route

of least resistance when moving between two points,

or the least-cost path. Despite its simplifying assump-

tions, the least-cost path has been successfully used to

predict patch occupancy (Chardon et al. 2003;

Verbeylen et al. 2003) and inter-patch movement

rates (Sutcliffe et al. 2003). The least-cost path is

identified using a graph theory algorithm, Dijkstra’s

breadth-first search (Cormen et al. 2001). Many GIS

software packages have functions to locate the least-

cost path between two points. Although only one path

is obtained, Dijkstra’s algorithm can be easily

modified to output multiple paths with similar costs.

We describe this modification and its two outputs, the

Conditional Minimum Transit Cost (CMTC) and the

Multiple Shortest Paths (MSPs).

We propose that corridors are heterogeneous

structures that may contain multiple dispersal routes.

However, we do not advocate a method for designing

corridors (including few or many dispersal routes),

neither do we attempt to quantify corridors’ role in

conserving biodiversity. Rather, our goal is to

integrate information on species’ habitat preferences

into regional-scale depictions of habitat connectivity.

This paper has three parts. First, we applied our

method to artificial landscapes in order to illustrate

the effect of matrix heterogeneity on the cost and

spatial distribution of dispersal routes. Second, we

studied the effect of small, localized disturbance on

large-scale dispersal routes. This was performed

using data from the highly fragmented Brazilian

Atlantic forest (Morellato and Haddad 2000). Last,

we discussed how the approach proposed here can be

refined and incorporated in animal movement studies

and conservation initiatives.

Methods

The landscape graph

In this section, we describe the approach routinely

employed to perform any type of distance calcula-

tions on grids. Most GIS software packages use

graphs (Urban and Keitt 2001) to represent grid

maps. Graphs are composed of vertices (V) placed on

cell centers, and edges (E) that connect each vertex to

its eight nearest neighbors (Fig. 1). Using this

representation, we define two cost grids:

(a) Relative cost grid (Figs. 2a, 3a), also referred to

as a friction layer (Verbeylen et al. 2003). Each

vertex contains the relative cost to cross it in any

direction.

(b) Cumulative cost grid (Figs. 2b, 3b). Consider a

source (S) composed of one or more vertices.

Each vertex in the cumulative cost grid contains

the minimum cumulative cost to reach S. This is

calculated in two steps: first, the cost to move

between pairs of vertices is stored as edge

weights. The weight W for an edge connecting

vertices V1 and V2 is calculated as:

V

E

Fig. 1 The landscape graph. In most software packages, grid

maps are internally represented as a graph. Vertices (V) are

located in cell centers. Each vertex is connected to its eight

nearest neighbors by an edge (E). Edge weights (not shown)

hold information on the cost to move between pairs of vertices
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W ¼ ½Relative Cost ðV1Þ þ Relative Cost ðV2Þ�=2

ð1Þ

For diagonal edges, edge weights W0 are calculated

as:

W 0 ¼ W �
ffiffiffi

2
p

ð2Þ
Second, Dijkstra’s breadth-first search algorithm

(Cormen et al. 2001) is used to calculate the least-

cost path between S and each vertex in the graph. The

minimum cumulative cost between S and a given

vertex (V) is the sum of all edge weights in the

least-cost path connecting S and V. To calculate the

least-cost path between two habitat patches P1 and P2

we define all vertices in P1 as sources and all vertices

in P2 as targets. The least-cost path between patches

P1 and P2 will most likely link the two patches’ most

external vertices.

In the next two sections, we build on the above

representation and describe two methods that extend

Dijkstra’s breadth-first search algorithm.

Fig. 2 Illustration of the procedure for calculating the CMTC.

a Relative cost grid. b The cumulative cost grid for the target

(left) and the source (right). Lighter shades indicate lower

cumulative cost. c The two grids from (b) are added to produce

the CMTC grid

Fig. 3 Illustration of the procedure for locating MSPs. a
Relative cost grid, b cumulative cost grid for the source.

Lighter shades indicate lower cumulative cost. This was

calculated after rebuilding the graph that represents the

landscape, c with the cumulative cost grid, we trace the

least-cost path between source and target, b and c are repeated

100 times to produce 100 least-cost paths

Landscape Ecol (2009) 24:253–266 255

123



Conditional minimum transit cost (CMTC)

Consider a vertex (V) located between groups of

source vertices (S) and target vertices (T). The

Conditional Minimum Transit Cost (CMTC) for V

is the cost-weighted distance to move from S to T,

conditional on the route forming the shortest passage

between S and T while passing through V. It is

calculated as (Fig. 2):

CMTCðV; S;TÞ ¼ Cumulative costðV; SÞ
þ Cumulative costðV;TÞ ð3Þ

The final CMTC grid was obtained by masking out

all cells with CMTC values larger than the minimum

CMTC value plus 10% (Fig. 2c). The remaining

values were then divided by the grid’s maximum

CMTC. According to Forman (1995), a corridor is ‘‘a

narrow strip of land that differs from the matrix on

either side’’. We assume that areas within the 10%

threshold form corridors, but emphasize that our

choice of corridor width was arbitrary.

Our analysis generates corridors that are highly

heterogeneous. Visually inspecting the CMTC grid

(Fig. 2c) enables identification of contiguous cells

with low CMTC value. We refer to these cell groups

as ‘‘dispersal routes’’, while recognizing that distinc-

tion between routes that are close together is

arbitrary. The least-cost path is invariably located

within one dispersal route.

In practice, obtaining a CMTC grid is straightfor-

ward with modules such as spatial analyst within

ArcGIS (Esri, California). Some conservation biolo-

gists strongly advocate the CMTC approach for

designing wildlife corridors (Majka et al. 2007). But

to our knowledge, the relationship between matrix

heterogeneity and the distribution of dispersal routes

as predicted by the CMTC has not yet been explored.

Multiple shortest paths (MSPs)

We developed a stochastic version of Dijkstra’s

algorithm (Fig. 3) that outputs multiple realizations

of the least-cost path, or Multiple Shortest Paths

(MSPs). As described above, the least-cost path is

obtained from a relative cost grid. Dijkstra’s breadth-

first search algorithm (Cormen et al. 2001) proceeds

by iteratively marking vertices in the order of their

cumulative distance from the source. At each step,

the algorithm must identify the set of neighbors

associated with the marked vertices. Standard algo-

rithms use a static definition of the neighborhood,

typically the nearest eight cells on a rectangular grid

(Fig. 1). Our approach is to redefine the neighbor-

hood as a stochastic function such that adjacency is

non-deterministic and is instead determined randomly

in proportion to edge weights. The algorithm pro-

ceeds as follows (Fig. 3):

1. Draw a number (U) between 0 and 1 from a

random uniform distribution.

2. Delete edges in the graph. An edge with weight

W connecting two adjacent vertices V1 and V2 is

deleted if W [ U. That is, connections with

lower costs are more likely to be maintained.

A program implementing Dijktra’s algorithm (with

the above modification) was run 100 times in order to

produce 100 MSPs for each study case (Fig. 3c

shows one path). The cumulative cost associated

with each path is a measure of effective distance and

is calculated by adding the weights of all edges in the

path. The programs used to obtain both CMTCs and

MSPs were written in the Java programing language.

Applications to artificial landscapes

We generated artificial landscapes with different

degrees of spatial autocorrelation using the method

of wavelet synthesis (Keitt 2000). We started with a

grid containing values between 0 and 1, drawn from a

random uniform distribution. Using this grid, each

landscape was created in four steps: (a) apply the

discrete Haar wavelet transform; (b) obtain wavelet

coefficients; (c) multiply coefficients by 2 ^ (L 9 b),

where L is the coefficient level (higher levels repre-

senting low-frequency variation); (d) apply the inverse

Haar wavelet transform on the modified coefficients;

(e) map results to a random uniform distribution

(min = 0; max = 1). The last step is taken to ensure

that the distribution of quality values is consistent

across all landscapes. The values of the parameter b
were 0, 0.25, 0.50, 0.75, and 1. A b value of zero

generates a white noise landscape with no spatial

autocorrelation. Increasing b produces autocorrelated

landscapes, where clusters of favorable habitat can be

identified. Each artificial landscape represents one

relative cost grid that served as input in calculations of

CMTC and MSPs (Fig. 4a). We used ANOVA to

test for differences among landscapes, in terms of
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cumulative costs associated with MSPs and mean

CMTC. The generation of artificial landscapes and

ANOVA tests were performed using the R programing

language (R Core Development Team 2008).

Applications to real landscapes

We studied a real landscape (Fig. 5) that covers

111 km2 of the Brazilian state of São Paulo (upper

Fig. 4 Relative cost grids

generated with the use of

wavelet transforms (a), and

the values of CMTC (b) and

location of MSPs (c) for

each landscape. A b value

of 0 is a landscape with no

spatial autocorrelation in

habitat quality values, and

landscapes become

‘‘patchier’’ as b values

increase
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left coordinates: 23.60S, 49.00W; lower right coor-

dinates: 25.40S, 46.20W). Remaining forests are part

of the Atlantic forest biome (for a description, see

Oliveira-Filho and Fontes 2000). Despite its location

in highly industrialized São Paulo state, the study

area still contains large forest tracts and rural

properties. A recent vegetation map (Eva et al.

2002) estimates that 11.1% of the study area is

devoted to intensive agriculture, 7% contains a mix of

agriculture and degraded vegetation, 23% is a mix of

agriculture and degraded forest, and 46% is covered

with forest. Excluding São Paulo’s metropolitan area,

human populations per municipality range in

size from 3,403 to 412,243 (mean = 60,410; IBGE

1991). Five conservation units are considered

here: Pedro de Toledo Nucleus within Serra do Mar

State Park (868 km2), Juréia-Itatins Ecological

Reserve (801 km2), Jurupara State Park (259 km2),

Fig. 5 Study site in the

Brazilian Atlantic forest,

showing conservation units

in Sao Paulo State. a
Relative cost values for

scenario C1. b Relative cost

values for scenario C2 (after

deletion of small forest

fragments)
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Jacupiranga State Park (1,552 km2), and the contig-

uous units Intervales State Park, Carlos Botelho State

Park, Ecological Station Xitué, and Alto do Ribeira

Touristic State Park (1,282 km2), referred together

here as ‘‘Paranapiacaba’’ due to their location along

the Paranapiacaba Valley.

Our analyses consisted of modeling dispersal

routes between all pairs of conservation units. We

have built a relative cost map in an attempt to capture

the habitat preferences of species that move in

forested areas and suffer higher mortality when

crossing disturbed habitat. In the discussion, we

describe how more detailed models can be built and

refined to reflect the habitat preferences of a partic-

ular species. Three land use/land cover maps were the

main input for our analyses (Table 1).

1. The Modis continous fields, (Hansen et al. 2003)

contains estimates of percent tree cover. Values

were manipulated (Table 1) in order to obtain a

grid with values ranging between 0 (=100% tree

cover) and 1 (=no tree cover).

2. The human footprint map (Sanderson et al. 2002)

is a global dataset with estimates of anthropo-

genic impact ranging from 0 (pristine land) to

100 (most disturbed land), normalized per eco-

system. These estimates were based on patterns

of human population density, land use, and

transportation networks. We divided original

values by 100 (Table 1) to obtain a grid with

values ranging from 0 (=pristine land) to 1

(=most disturbed land).

3. The South American vegetation map (SAVM;

Eva et al. 2002) contains information on forest

distribution, degree of forest disturbance, and

mixture with agricultural lands. We assigned

each class in the SAVM grid (Table 1) a relative

cost value ranging from 0 (=closed or dense

forest) to 1 (intensive land use or non-forested

ecosystems).

The Footprint and SAVM grids were rescaled so as

to bring their spatial resolution to 500 m. The first

relative cost map (C1; Fig. 5a) was obtained by

averaging the values in the three grids described

above (Table 1). As a result, we obtained a grid where

cell values ranged from 0.057 (minimum relative cost

to cross) to 1 (maximum relative cost to cross).

The second cost map (C2; Fig. 5b) simulated the

removal of small forest fragments from C1, which

could result from clear cutting, selective logging, or

road construction. Results do not necessarily reflect

actual land cover changes taking place in the Atlantic

forest, but they enable us to explore the effect of

small, localized disturbance on regional connectivity

patterns. The C2 map was built in three steps. First,

we produced a binary map with areas classified as

‘‘forest’’ or ‘‘non-forest’’ based on the SAVM map.

This binary map was eroded and dilated (Serra 1982)

by 0.5 pixel, resulting on the deletion of fragments

with area\5 ha and linear elements (such as riparian

corridors) \500 m wide. Last, C2 was obtained by

assigning the maximum relative cost (1) to the

deleted cells. All other cells contained the same

values as C1, and the range of relative cost values for

the entire grid remained unchanged (0.057–1). It was

assumed that individuals could not move through

water, thus a cost value of positive infinity was

assigned to cells representing water bodies in both C1

and C2 scenarios. Finally, we calculated the CMTC

and MSPs for both C1 and C2 scenarios. All GIS

layers were processed using programs written in Java

Table 1 Grids used to construct the relative cost maps used in the present study, their original spatial resolution (pixel size), period

of data collection, and operations performed on original grid values

Layer Resolution (m) Years Operations performed on the original raster values

South America vegetation map 1,000 1995–2000 0 = closed, dense, transitional forest

0.25 = open forest

0.5 = mosaic agriculture/degraded forest

0.75 = shrubland, savannah, grassland

1 = intensive agriculture, mosaic agriculture/

degraded vegetation, desert, urban

Human footprint 1,000 1960–2001 Final value = (original value)/100

Modis continuous fields, % tree 500 2000–2001 Final value = (100 - original value)/100
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programing language, and illustrations were produced

in ArcMap (Esri, California).

Results

Artificial landscapes

The two graph theory approaches proposed here

outlined the influence of matrix heterogeneity on

dispersal routes. We detected a significant difference

in mean cumulative costs associated with Multiple

Shortest Paths (MSPs) among the five artificial

landscapes (ANOVA, F = 6,934.5; P \ 0.001).

MSPs with lowest costs were observed when

landscapes had intermediate patchiness (Fig. 6a;

Tukey multiple comparisons of means, 95% family-

wise confidence level, P \ 0.001). We also observed

significant differences in mean Conditional Minimum

Transit Cost (CMTC) values (ANOVA, F = 474,104;

P \ 0.001). The most autocorrelated landscapes pro-

duced the lowest CMTC values (Fig. 6b; Tukey

multiple comparisons of means, 95% family-wise

confidence level; P \ 0.001). In addition, we observed

differences in the spatial distribution of dispersal

routes. Landscapes with little autocorrelation in rela-

tive habitat quality produced redundant corridors with

more alternative dispersal routes (Fig. 4; b closer to 0).

As clusters of favorable habitat started to form,

corridors became restricted to fewer routes (Fig. 4; b
closer to 1). This was evidenced in the outputs of both

the CMTC and MSPs calculations.

Real landscapes

We tested the influence of small, localized distur-

bance on corridors connecting five conservation units

in the Brazilian Atlantic forest (Fig. 5). There were

no significant differences in mean cumulative path

costs calculated from MSPs, or in mean CMTC

values (t-test, P [ 0.05) between scenarios C1 and

C2. But in most cases, simulated fragment removal

influenced the spatial distribution of dispersal routes.

Since small fragments were not homogeneously

distributed in the study area, corridors obtained under

scenario C1 were differentially affected by simulated

fragment removal in scenario C2 (Table 2).

Fig. 6 The distribution of values of a Multiple Shortest Paths

b and Conditional Minimum Transit Costs. A b value of 0 is a

landscape with no spatial autocorrelation in habitat quality

values, and landscapes become ‘‘patchier’’ as b values increase Table 2 Conservation units included in the present study

Jacupiranga Jurupará Serra do

Mar

Paranapiacaba

Juréia 72.321 35.391 6.905 3.993

5 3.6 10.4 5.5

Jacupiranga 115.502 104.800 7.868

4.0 5.0 21.0

Jurupará 7.263 43.739

2.0 1.2

Serra do Mar 51.183

2.3

Each unit in a pair can serve as a source or a target for

dispersing organisms. The first line contains the straight-line

distance between units (in kilometers), and the second line

shows the percentage of 500-m2 cells deleted from the corridor

as a result of simulating fragment removal
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In most cases, the CMTC grid displayed more than

one alternative route between conservation units, one

of them being the least-cost path (Fig. 7a–h). When

conservation units were close, the distance between

them was small with respect to the variation in their

shape. In this case, the CMTC grid produced narrow

corridors, coinciding with the links representing the

shortest Euclidian distance (Fig. 7b, i, j). When

corridors contained alternative routes, these were

rarely disjoint (Fig. 7a, b). The constriction zones

where dispersal routes merged represented potential

dispersal bottlenecks (Fig. 7c–h). In most cases, the

location of the least-cost path did not change

substantially as a result of small fragment removal

(Fig. 7a–c; e–g; i, j). But in two cases, the least-cost

path for scenario C2 was displaced to an alternative

route located a few kilometers away from the least-

cost path for scenario C1 (Fig. 7d, h).

We also identified the MSPs between pairs of

conservation units. Compared to the CMTC calcula-

tion, this tool provided a better assessment of the

impact of fragment removal on corridor redundancy.

Examining the MSPs produced for the scenarios C1

and C2, we observed two trends. In some cases,

Fig. 7 CMTC grids for the

corridor connecting

conservation units in São

Paulo, Brazil. The pairs are:

a Jurupará–Juréia, b Juréia–

Serra do Mar, c Juréia–

Paranapiacaba, d
Jacupiranga–Jurupará, e
Jacupiranga–Serra do Mar,

f Paranapiacaba–Serra do

Mar, g Paranapiacaba–

Jurupará, h Juréia–

Jacupiranga, i Serra do

Mar–Jurupará, j
Paranapiacaba–Jacupiranga.

Gray lines show the least-

cost path. Solid lines
represent least-cost paths

obtained for scenarios C1

and C2, whereas interrupted
lines represent sections of

the least-cost path obtained

for scenario C2 only.

Arrows indicate potential

dispersal bottlenecks
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fragment removal led to the disappearance of external

dispersal routes; corridors became narrower and less

redundant (Fig. 8). In other cases, new, more external

routes emerged after fragment removal (Fig. 9).

Discussion

Analyses of artificial landscapes show the influence

of matrix heterogeneity on landscape connectivity.

Redundant corridors with multiple alternative

dispersal routes emerged in white noise land-

scapes, where favorable habitat is randomly

distributed (Fig. 4, b closer to 0). As patches of

favorable habitat started forming, corridors became

narrower and less redundant (Fig. 4, b closer to 1).

The cumulative cost of MSPs was on average

lower in landscapes with intermediate degree of

autocorrelation (Fig. 6a). This is because paths in

white noise landscapes will often cross areas of high

cost, whereas the presence of contiguous habitat

patches in autocorrelated landscapes can lead to

longer, more tortuous paths (Fig. 4c). The CMTC

was on average lower in autocorrelated landscapes

(Fig. 6b). This follows from our choice of CMTC

value used to delimit corridors—under a 10%

threshold, white noise landscapes produced wider

corridors with higher CMTC values.

In addition to studying artificial landscapes, we

illustrated our methods using data from a real

landscape in the Brazilian Atlantic forest. In this

region, a complex landscape matrix produced dis-

persal routes that were not apparent in land use/land

cover maps (Fig. 7a–f, h–j), with the exception of the

pair Paranapiacaba–Jurupará that is separated by an

artificial dam (Fig. 7g). CMTC maps revealed highly

Fig. 8 Location of the first

100 least-cost paths

connecting conservation

units in São Paulo, Brazil.

a Jacupiranga–Serra do

Mar, scenario C1;

b Jacupiranga–Serra do

Mar, scenario C2;

c Juréia–Paranapiacaba,

scenario C1; d Juréia–

Paranapiacaba,

scenario C2; e Serra do

Mar–Paranapiacaba,

scenario C1; f Serra do

Mar–Paranapiacaba,

scenario C2
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heterogeneous corridors displaying bottlenecks to

animal movement (indicated by arrows in Fig. 7c–h).

Removing small fragments did not produce a signif-

icant increase in the mean cumulative cost of MSPs

but led to changes in their spatial distribution

(Figs. 8, 9). Our work illustrates two possible large-

scale effects of small, localized disturbance on the

landscape matrix. Narrower corridors were produced

(Fig. 8), and the importance of external dispersal

routes increased (Fig. 9). The latter case included the

two pairs of conservation units with the largest

amount of deleted habitat in the scenario C2

(Table 2; Fig. 9c–f).

Results of least-cost path analyses are strongly

dependent on the selection of relative cost grids

(Adriaensen et al. 2003; Rae et al. 2007). Our choice

of relative cost grids (Table 1) was made as an

attempt to approximate the habitat preferences of a

forest specialist. Relative cost grids can be further

refined and validated for a particular species using

patch occupancy data (Verbeylen et al. 2003) or from

ecological niche modeling and tools such as the

Mahalonobis distance (Farber and Kadmon 2003). In

addition to habitat preference estimates, an important

issue is the time scale over which individuals are

expected to disperse. Here, we were not concerned

with the time interval or number of generations that

individuals (or populations) took to move between

source and target fragments (conservation units).

More realistic models can be obtained by adjusting

the maximum Euclidian distance allowed between

source and target fragments so as to match the

maximum distance that can be crossed by a species

given a particular time interval (Keitt et al. 1997).

The issue of time scale is related to the question of

whether corridors should function as habitat or as

Fig. 9 Location of the first

100 least-cost paths

connecting conservation

units in São Paulo, Brazil. a
Serra do Mar–Jurupara,

scenario C1; b Serra do

Mar–Jurupará, scenario C2;

c Paranapiacaba–

Jacupiranga, scenario C1; d
Paranapiacaba–Jacupiranga,

scenario C2; e Juréia–Serra

do Mar, scenario C1; f
Juréia–Serra do Mar,

scenario C2
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conduits (Hess and Fischer 2001)—i.e., individuals

are expected to spend more time in habitat corridors.

Corridor width can be adjusted by increasing the

CMTC threshold to ensure that corridors contain

minimum habitat requirements.

The ability to identify multiple dispersal routes can

be desirable in conservation studies, for three main

reasons. First, least-cost paths have been employed in

the design of linked reserve systems (Hoctor et al.

2000; Schadt et al. 2002; Larkin et al. 2004). This

approach, however, can lead to very narrow linkages

(Alagador and Cerdeira 2007) that might not be

located in land tracts available for purchase. Second,

dispersal routes that appear similar may differ in

terms of their conservation value. For example, field

studies in Canada (Clevenger et al. 2001) show that

drainage culverts can act as habitat linkages for

several mammal species, but culverts near roads with

higher traffic volume and noise levels are less

commonly used. Third, the approach shown here

enable the visualization of functionally unique land-

scape structures (Manning et al. 2006): narrow

corridors or dispersal bottlenecks within corridors

(e.g., Fig. 7).

Considerable attention has been given to quanti-

fying the role played by agroecosystems in

conservation (i.e., Bestelmeyer and Wiens 1996;

Reitsma et al. 2001; Mas and Dietsch 2003). Agri-

cultural lands can help support wild populations by

providing critical habitat (Moguel and Toledo 1999)

and influencing neighboring fragments, in which case

potential outcomes depend on the spatial configura-

tion and degree of mixture with pristine habitat

(Perfecto and Vandermeer 2002; Perfecto et al. 2003;

Tscharntke et al. 2005). Our study of the Brazilian

Atlantic forest shows that private lands can collec-

tively influence ecological processes occurring at

large spatial scales and supports the assertion that

small fragments can potentially shape regional pat-

terns of gene flow (Bodin et al. 2005). This raises the

necessity to view agricultural lands’ contribution to

biodiversity in a larger context.

Movement behavior is a key aspect in functional

connectivity studies, but detailed data on animal

movement remains hard to collect, especially for

large spatial scales. In fact, the ability to produce

accurate movement models has long been recognized

as one of the main challenges of population biology

studies (Turchin 1998). There is no consensus on the

amount of biological detail that should be used in

functional connectivity studies. It has been suggested

that movement models ought to increase in complex-

ity in order to capture the behavior of particular

species (Goodwin 2003). At the same time, conser-

vation biologists have raised the need for rigorous

methods that predict the location of dispersal routes

for many species (Boitani et al. 2007). Clearly a

compromise is needed, which requires determining

how much simplification can be made before losing

predictive power (Baguette and Van Dyck 2007).

Least-cost path predictions can be derived for many

species, given the ever growing maps of habitat

quality produced by ecological niche modeling. Also,

rigorous protocols already exist to compare least-cost

predictions with field data (Driezen et al. 2007).

Conclusions

In the present paper, we extended the graph theory

algorithm that serves as the basis for least-cost path

calculations. The two outputs are the Conditional

Minimum Transit Cost (CMTC) and the Multiple

Shortest Paths (MSPs). Our goal was to integrate

information on habitat preferences to model dispersal

patterns across a heterogeneous matrix. In addition to

the path of least resistance between two points, the

methods presented here outlined additional paths with

similar length and relative cost. Results from artificial

landscapes show that the location and relative cost of

dispersal routes are strongly influenced by the spatial

distribution of favorable habitat in the matrix. In

addition, study of a real landscape shows that small,

localized disturbance such as removal of small

fragments can affect large-scale dispersal routes.

Models producing multiple dispersal routes present a

practical advantage over models assuming optimum

behavior. Although the choice of number of dispersal

routes or their location is application specific (and

beyond the scope of this paper), our results suggest

that the least-cost path is a flexible approach with a

wide range of applications.
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