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a b s t r a c t

We introduce the first analytical model of asymmetric community dynamics to yield Hubbell’s neutral

theory in the limit of functional equivalence among all species. Our focus centers on an asymmetric

extension of Hubbell’s local community dynamics, while an analogous extension of Hubbell’s meta-

community dynamics is deferred to an appendix. We find that mass-effects may facilitate coexistence in

asymmetric local communities and generate unimodal species abundance distributions indistinguishable

from those of symmetric communities. Multiple modes, however, only arise from asymmetric processes

and provide a strong indication of non-neutral dynamics. Although the exact stationary distributions of

fully asymmetric communities must be calculated numerically, we derive approximate sampling

distributions for the general case and for nearly neutral communities where symmetry is broken by a

single species distinct from all others in ecological fitness and dispersal ability. In the latter case, our

approximate distributions are fully normalized, and novel asymptotic expansions of the required

hypergeometric functions are provided to make evaluations tractable for large communities. Employing

these results in a Bayesian analysis may provide a novel statistical test to assess the consistency of species

abundance data with the neutral hypothesis.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The ecological symmetry of trophically similar species forms the
central assumption in Hubbell’s unified neutral theory of biodi-
versity and biogeography (Hubbell, 2001). In the absence of stable
coexistence mechanisms, local communities evolve under zero-
sum ecological drift—a stochastic process of density-dependent
birth, death, and migration that maintains a fixed community size
(Hubbell, 2001). Despite a homogeneous environment, migration
inhibits the dominance of any single species and fosters high levels
of diversity. The symmetry assumption has allowed for consider-
able analytical developments that draw on the mathematics of
neutral population genetics (Fisher, 1930; Wright, 1931) to derive
exact predictions for emergent, macro-ecological patterns (Chave,
2004; Etienne and Alonso, 2007; McKane et al., 2000, 2004; Vallade
and Houchmandzadeh, 2003; Volkov et al., 2003, 2005, 2007;
Etienne and Olff, 2004; Pigolotti et al., 2004; He, 2005; Hu et al.,
2007; Babak and He, 2008, 2009). Among the most significant
contributions are calculations of multivariate sampling distribu-
tions that relate local abundances to those in the regional meta-
community (Alonso and McKane, 2004; Etienne and Alonso, 2005;
ll rights reserved.

Noble),

(W.F. Fagan),
Etienne, 2005, 2007). Hubbell (2001) first emphasized the utility of
sampling theories for testing neutral theory against observed
species abundance distributions (SADs). Since then, Etienne and
Olff (2004, 2005) have incorporated sampling distributions as
conditional likelihoods in Bayesian analyses (Etienne, 2007,
2009). Recent work has shown that the sampling distributions of
neutral theory remain invariant when the restriction of zero-sum
dynamics is lifted (Etienne et al., 2007; Haegeman and Etienne,
2008; Conlisk et al., 2010) and when the assumption of strict
symmetry is relaxed to a requirement of ecological equivalence
(Etienne et al., 2007; Haegeman and Etienne, 2008; Allouche and
Kadmon, 2009a,b; Lin et al., 2009).

The success of neutral theory in fitting empirical patterns of
biodiversity (Hubbell, 2001; Volkov et al., 2003, 2005; He, 2005;
Chave et al., 2006) has generated a heated debate among ecologists,
as there is strong evidence for species asymmetry in the field (Harper,
1977; Goldberg and Barton, 1992; Chase and Leibold, 2003; Wootton,
2009; Levine and HilleRisLambers, 2009). Echoing previous work on
the difficulty of resolving competitive dynamics from the essentially
static observations of co-occurrence data (Hastings, 1987), recent
studies indicate that interspecific tradeoffs may generate unimodal
SADs indistinguishable from the expectations of neutral theory
(Chave et al., 2002; Mouquet and Loreau, 2003; Chase, 2005; He,
2005; Purves and Pacala, 2005; Walker, 2007; Doncaster, 2009).
These results underscore the compatibility of asymmetries and
coexistence. The pioneering work of Hutchinson (1951), has inspired
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a large literature on asymmetries in dispersal ability that permit
the coexistence of ‘‘fugitive species’’ with dominant competitors. In
particular, Shmida and Wilson (1985) extended the work of Brown
and Kodric-Brown (1977) by introducing the paradigm of ‘‘mass-
effects’’, where immigration facilitates the establishment of species
in sites where they would otherwise be competitively excluded.
Numerous attempts have been made to reconcile such determi-
nistic approaches to the coexistence of asymmetric species with
the stochastic model of ecological drift in symmetric neutral theory
(Zhang and Lin, 1997; Tilman, 2004; Chase, 2005; Alonso et al.,
2006, 2008; Gravel et al., 2006; Pueyo et al., 2007; Walker, 2007;
Ernest et al., 2008; Zhou and Zhang, 2008). Many of these attempts
build on insights from the concluding chapter of Hubbell’s
(2001) book.

Nevertheless, the need remains for a fully asymmetric, analytical,
sampling theory that contains Hubbell’s model as a limiting case
(Alonso et al., 2006). In this article, we develop such a theory for local,
dispersal-limited communities in the main text and defer an
analogous treatment of metacommunities to Appendix A. Hubbell’s
assumption of zero-sum dynamics is preserved, but the requirement
of per capita ecological equivalence among all species is eliminated.
Asymmetries are introduced by allowing for the variations in
ecological fitness and dispersal ability that may arise in a hetero-
geneous environment (Leibold et al., 2004; Holyoak et al., 2005). Our
work expands on the numerical simulations of Zhou and Zhang
(2008), where variations in ecological fitness alone were considered.
Coexistence emerges from mass-effects as well as ecological equiva-
lence, and both mechanisms generate unimodal SADs that may be
indistinguishable. For local communities and metacommunities, we
derive approximate sampling distributions for both the general case
and the nearly neutral case, where symmetry is broken by a single
species unique in ecological function. These approximations yield the
sampling distributions of Hubbell’s neutral model in the limit of
functional equivalence among all species.
2. A general sampling theory for local communities

For a local community of JL individuals and S possible species, we
model community dynamics as a stochastic process, ~NðtÞ, over the
labelled community abundance vectors ~n ¼ ðn1, . . . ,nSÞ. Consistent
with zero-sum dynamics, we require all accessible states to contain
JL total individuals:

PS
i ¼ 1 ni ¼ JL and 0rnir JL. The number of

accessible states is A¼
PJL

n1 ¼ 0 . . .
PJL

nS ¼ 0 dðJL�n1� � � � �nSÞ.
Allowed transitions first remove an individual from species i and

then add an individual to species j. Removals are due to death or
emigration and occur with the density-dependent probability ni/JL.
Additions are due either to an immigration event, with probability
mj, or a birth event, with probability 1�mj. We will refer to the mj as
dispersal abilities. If immigration occurs, we assume that meta-
community relative abundance, xj, determines the proportional
representation of species j in the propagule rain and that the
probability of establishment is weighted by ecological fitness, wj,
where high values correspond to a local competitive advantage or a
superior adaptation to the local environment. Therefore, species j

recruits with probability

wjxjPS
k ¼ 1 wkxk

, ð1Þ

where xjAð0,1Þ, wjAð0,1Þ, and
PS

k ¼ 1 xk ¼ 1. If immigration does
not occur, we assume that local relative abundance, nj/JL, governs
propagule rain composition such that species j recruits with
probability

wjnjPS
k ¼ 1 wknk�wi

: ð2Þ
In numerical simulations of an asymmetric community, Zhou and
Zhang (2008) employed a similar probability for recruitment in the
absence of immigration. Here, a factor of wi is subtracted in the
denominator because species i loses an individual prior to the birth
event for species j. An analogous subtraction is absent from Eq. (1)
because we assume an infinite metacommunity where the xj are
invariant to fluctuations in the finite, local community populations.

In sum, the nonzero transition probabilities are stationary and
given by

Tij~n ¼ lim
Dt-0

Prf~NðtþDtÞ ¼~n�~eiþ~ejj
~NðtÞ ¼~ng

Dt

¼
ni

JL
ð1�mjÞ

wjnjPS
k ¼ 1 wknk�wi

þmj

wjxjPS
k ¼ 1 wkxk

 !
, ð3Þ

where~ei is an S-dimensional unit vector along the i th-direction, the
wk must be sufficiently large such that

PS
k ¼ 1 wknk�wi40, and the

time, t, is dimensionless with a scale set by the overall transition
rate. The probability of state occupancy, P~n , evolves according to
the master equation

dP~n
dt
¼
XS

i ¼ 1

XS

j ¼ 1,ja i

ðTij~nþ~ei�~ej
P~nþ~ei�~ej

�Tji~n P~n ÞYij, ð4Þ

where

Yij ¼YðJL�ðniþ1ÞÞYðnj�1Þ, ð5Þ

and we define the step-function YðxÞ to be zero for xo0 and one
otherwise. Eq. (4) can be recast in terms of a transition probability
matrix W

dPa

dt ¼
XA

b ¼ 1

PbWba, ð6Þ

where a,bAð1, . . . ,AÞ enumerate accessible states with components
(a1,y,aS), (b1,y,bS). The left eigenvector of W with zero eigenvalue
yields the stationary distribution for community composition,
P�a � limt-1PaðtÞ. Marginal distributions yield the equilibrium
abundance probabilities for each species i

PðiÞ�n ¼
XA

a ¼ 1

dai ,nP�a : ð7Þ

From here, we calculate the stationary SAD by following the general
treatment of asymmetric communities in Alonso et al. (2008):

S�n ¼
XS

i ¼ 1

PðiÞ�n : ð8Þ

The expected species richness is

S� ¼
XS

n ¼ 1

S�noS: ð9Þ

Given that the local community, with abundances ni, is defined as a
sample of the metacommunity, with relative abundances xi, we
have established the framework for a general sampling theory of
local communities.

This sampling theory incorporates aspects of the mass-effects
paradigm (Brown and Kodric-Brown, 1977; Shmida and Wilson,
1985; Holt, 1993; Leibold et al., 2004; Holyoak et al., 2005). Local
asymmetries in ecological fitness imply environmental heteroge-
neity across the metacommunity such that competitive ability
peaks in the local communities where biotic and abiotic factors
most closely match niche requirements (Tilman, 1982; Leibold,
1998; Chase and Leibold, 2003). Where species experience a
competitive disadvantage, the mass-effects of immigration allow
for persistence. Indeed, the master equation given by Eq. (4), when
applied to open communities where mj40 for all j, admits no



Fig. 1. Equilibrium abundance probabilities and corresponding SADs for an asymmetric community of JL¼75 individuals and S¼5 species. Non-neutral dynamics generate

local deviations from the relative metacommunity abundance, xi¼0.20, common to all species. (a) Dominance by the species with highest ecological fitness given competitive

asymmetries in a community of uniform dispersal abilities (the mi¼0.10 for all i). (b) The resulting bimodal SAD provides a strong indicator of non-neutral dynamics.

(c) Coexistence arising from mass-effects (the mi¼0.90 for all i). (d) The resulting unimodal SAD closely resembles the SAD for a symmetric community of JL¼75 individuals

and S¼5 species where the mi¼0.35 and the xi¼0.20.
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absorbing states and ensures that every species has a nonzero
probability of being present under equilibrium conditions. By
contrast, when Eq. (4) is applied to closed communities where
mj¼0 for all j, the eventual dominance of a single species is
guaranteed.

Mass-effects allow for a soft breaking of the symmetry of neutral
theory and provide a mechanism for multi-species coexistence. In
Fig. 1, we present numerical results for the marginal equilibrium
distributions of an asymmetric local community subsidized by a
potentially neutral metacommunity, where the five species share a
common relative abundance, xj¼0.2. Although a single species may
dominate due to a locally superior competitive ability (see Fig. 1a),
multi-species coexistence may arise, despite significant competi-
tive asymmetries, due to high levels of immigration that tend to
align local relative abundances with those in the metacommunity
(see Fig. 1c). Despite the underlying asymmetric process, coex-
istence via mass-effects generates unimodal SADs that, given
sampling errors in field data, may be indistinguishable from SADs
due to neutral dynamics, as shown in Fig. 1d. This reinforces
previous conclusions that the static, aggregate data in unimodal
SADs cannot resolve the individual-level rules of engagement
governing the origin and maintenance of biodiversity (Chave
et al., 2002; Mouquet and Loreau, 2003; Purves and Pacala,
2005; He, 2005; Chase, 2005; Walker, 2007; Doncaster, 2009).
However, SADs with multiple modes are not uncommon in nature
(Dornelas and Connolly, 2008; Gray et al., 2005) and provide a
strong indicator of non-neutral dynamics (Alonso et al., 2008).
Fig. 1b presents a bimodal SAD for an asymmetric local community
with low levels of immigration.

Each plot in Fig. 1 displays results for a relatively small
community of JL¼75 individuals and S¼5 possible species. Sparse
matrix methods were used to calculate the left eigenvector with
zero eigenvalue for transition matrices of rank � 1:5M. Obtaining
stationary distributions for larger, more realistic communities
poses a formidable numerical challenge. This motivates a search
for analytically tractable approximations to sampling distributions
of the general theory.
3. An approximation to the sampling distribution

The distribution P�~n is stationary under Eq. (4) if it satisfies the
condition of detailed balance

Tij~nþ~ei�~ej
P�~nþ~ei�~ej

¼ Tji~n P�~n , ð10Þ

for all i and j such that ia j and Yija0. For general (g) large-JL

communities where S,wk5
PS

l ¼ 1 wlnl for all k, we will show that
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detailed balance is approximately satisfied by

Pg�
~n
¼ Z�1

g

JL

n1, . . . ,nS

 ! YS

k ¼ 1

wnk

k ð1�mkÞ
nk ðfk~n xkÞnk

, ð11Þ

where

fk~n ¼ Ik
ð
PS

l ¼ 1 wlnl�wkÞ=ðJL�1ÞPS
l ¼ 1 wlxl

, ð12Þ

where ðaÞn ¼GðaþnÞ=GðaÞ is the Pochhammer symbol, Zg
�1 is a

normalization constant, and Ik¼mk(JL�1)/(1�mk) is a general-
ization of the ‘‘fundamental dispersal number’’ (Etienne and
Alonso, 2005). From the definition of Tij~n in Eq. (3), we have

Tij~nþ~ei�~ej

Tji~n

¼
niþ1

nj

wj

wi

1�mj

1�mi

nj�1þfj~n xj

niþfi~n xi 1þ
wi�wjPS

l ¼ 1 wlnl�wi

 ! , ð13Þ

and assuming the form of Pg�
~n

in Eq. (11), we find

Pg�
~n

Pg�
~nþ~ei�~ej

¼
niþ1

nj

wj

wi

1�mj

1�mi

YS

k ¼ 1

ðfk~n xkÞnk

fk~n xk 1þ
wi�wjPS

l ¼ 1 wlnl�wk

 ! !
nkþdik�djk

:

ð14Þ

Now, for large-JL communities where wk5
PS

l ¼ 1 wlnl for all k, the
ratio eijk � ðwi�wjÞ=ð

PS
l ¼ 1 wlnl�wkÞ is a small number. Given

ðað1þeÞÞn � ðaÞnþOðeÞ, we expand the right-hand side of Eq. (14)
to obtain

Pg�
~n

Pg�
~nþ~ei�~ej

¼
Tij~nþ~ei�~ej

Tji~n
þ
XS

k ¼ 1

OðeijkÞ, ð15Þ

which validates our assertion that Eq. (11) is an approximate
sampling distribution of the general theory when S5

PS
l ¼ 1 wlnl.

For communities of species that are symmetric (s) in ecological
fitness but asymmetric in dispersal ability, Eq. (11) reduces to an
exact sampling distribution

Ps�
~n ¼ Z�1

s

JL

n1, . . . ,nS

 ! YS

k ¼ 1

ð1�mkÞ
nk ðIkxkÞnk

, ð16Þ

that satisfies detailed balance without approximation. Analogous
distributions for general and fitness-symmetric metacommunities
are provided in Appendix A. However, in all of these results, the
normalization constants must be calculated numerically. This
limits the utility of our sampling distributions in statistical
analyses. Can we find a non-neutral scenario that admits an
approximate sampling distribution with an analytical expression
for the normalization?
4. Sampling nearly neutral communities

As the species abundance vector evolves under Eq. (4), consider
the dynamics of marginal abundance probabilities for a single focal
species that deviates in ecological function from the surrounding,
otherwise symmetric, community. In particular, let the first ele-
ment of ~NðtÞ be the marginal process, NðtÞ, over states nAð0, . . . ,JLÞ,
for the abundance of an asymmetric focal species with dispersal
ability m, ecological fitness w, and relative metacommunity
abundance x. If all other species share a common dispersal ability
mo and ecological fitness wo, then the focal species gains an
individual with probability

gn �
XS

i ¼ 2

Ti1ðn,n2 ,...,nSÞ

¼
JL�n

JL
ð1�mÞ

wn

wnþwoðJL�n�1Þ
þm

wx

wxþwoð1�xÞ

� �
, ð17Þ
and loses an individual with probability

rn �
XS

i ¼ 2

T1iðn,n2 ,...,nSÞ

¼
n

JL
ð1�moÞ

woðJL�nÞ

wðn�1ÞþwoðJL�nÞ
þmo

woð1�xÞ

wxþwoð1�xÞ

� �
, ð18Þ

where we have used
PS

k ¼ 1 xk ¼ 1. These marginal transition
probabilities do not depend separately on w and wo, but only on
their ratio. Without loss of generality, we redefine w�w=wo to be
the focal species’ local advantage in ecological fitness. Eqs. (17) and
(18), which are independent of the abundances (n2,y,nS), suggest a
univariate birth–death process for the marginal dynamics of the
asymmetric species governed by the master equation

dPn

dt ¼ gn�1Yðn�1ÞPn�1þrnþ1YðJL�ðnþ1ÞÞPnþ1

�ðgnYðJL�ðnþ1ÞÞþrnYðn�1ÞÞPn, ð19Þ

and we formally derive this result from Eq. (4) in Appendix B. Given
the well-known stationary distribution of Eq. (19)

P�n ¼ P�0
Yn�1

i ¼ 0

gi

riþ1
, ð20Þ

we find an exact result for the stationary abundance probabilities of
the focal species in a nearly neutral (nn) community

Pnn�
n ¼ Z

JL

n

� �
Zn Bðlþn,x�nÞ

Bðl,xÞ
, ð21Þ

where Bða,bÞ ¼GðaÞGðbÞ=GðaþbÞ is the beta-function

Z�1 ¼ 2F1ð�JL,l;1�x;ZÞ, ð22Þ

and

Z¼w
1�mþxðw�1Þ

1�mowþxðw�1Þ
,

l¼
ðJL�1Þmx

1�mþxðw�1Þ
,

x¼ 1þ
ðJL�1Þð1�xwmoþxðw�1ÞÞ

1�wmoþxðw�1Þ
: ð23Þ

For the asymmetric focal species, this is an exact result of the
general model, Eq. (4), that holds for nearly neutral local commu-
nities with any number of additional species. Eq. (21) may be
classified broadly as a generalized hypergeometric distribution or
more specifically as an exponentially weighted Pólya distribution
(Kemp, 1968; Johnson et al., 1992).

In the absence of dispersal limitation, Eq. (21) becomes

lim
m,mo-1

Pnn�
n ¼

1

1þxðw�1Þ

� �JL JL

n

� �
ðwxÞnð1�xÞJL�n, ð24Þ

where the identity Bða,bÞBðaþb,1�bÞ ¼ p=ðasinðpbÞÞ has been used.
This is a weighted binomial distribution with expected abundance
wxJL/(1+x(w�1)) and variance wx(1�x)JL/(1+x(w�1))2. In the
neutral, or symmetric, limit where w¼1, Eq. (24) reduces to a
binomial sampling of the metacommunity, sensu Etienne and
Alonso (2005).

In the presence of dispersal limitation, we evaluate SJL

n ¼ 1nPnn�
n

to obtain the expected abundance

E½N�� ¼ Z @

@Z
logZ ¼

JLlZ
x�1

2F1ð1�JL,1þl;2�x;ZÞ
2F1ð�JL,l;1�x;ZÞ

, ð25Þ
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where N� � limt-1NðtÞ. The variance of the stationary distribution
is given by

Var½N�� ¼ Z @

@ZZ
@

@Z logZ ¼ E½N�2��E½N��2, ð26Þ

and we evaluate
PJL

n ¼ 1 n2Pnn�
n to obtain

E½N�2� ¼
JLlZ
x�1

3F2ð1�JL,1þl,2;2�x,1;ZÞ
2F1ð�JL,l;1�x;ZÞ

: ð27Þ

In Eqs. (25) and (26), the normalization of Eq. (22) generates central
moments for the abundance distribution and plays a role analogous
to the grand partition function of statistical physics. Recent studies
have demonstrated the utility of partition functions in extensions
of Hubbell’s neutral theory (O’Dwyer et al., 2009; O’Dwyer and
Green, 2010).

For large-JL communities, evaluation of the hypergeometric
functions in Eqs. (21), (25), and (27) is computationally expensive.
To remove this barrier, one of us (N.M.T.) has derived novel
asymptotic expansions (see Appendix C). We use these expansions
to plot the stationary abundance probabilities for JL¼1M. In Fig. 2a,
small local advantages in ecological fitness generate substantial
increases in expected abundance over the neutral prediction.
Hubbell (2001) found evidence for these discrepancies in Manu
forest data and referred to them as ‘‘ecological dominance devia-
tions’’. Hubbell (2001) also anticipated that dispersal effects would
mitigate advantages in ecological fitness. The right panel of Fig. 2
demonstrates, once again, that enhanced mass-effects due to
increased dispersal ability may inhibit the dominance of a locally
superior competitor by compelling relative local abundance to
align with relative metacommunity abundance.

An approximation to the multivariate sampling distribution of
nearly neutral local communities is constructed in Appendix B

Pnn�
~n ¼ Z

JL

n,n2, . . . ,nS

 !
Zn Bðlþn,x�nÞ

Bðl,xÞ
1

ðð1�xÞfonÞJL�n

YS

i ¼ 2

ðfonxiÞni
,

ð28Þ

where

fon ¼ Io
1þnðw�1Þ=ðJL�1Þ

1þxðw�1Þ
: ð29Þ

A related approximation for the sampling distribution of nearly
neutral metacommunities is derived in Appendix A. In the absence
Fig. 2. Novel asymptotic expansions of hypergeometric functions have been used to plot m

relative metacommunity abundance x¼0.01, in a nearly neutral local community of JL¼1M

for each curve. Here, all species are symmetric in their dispersal ability (m¼mo¼0.10). (b

focal species. All other species share a common dispersal ability of mo¼0.10.
of dispersal limitation, Eq. (28) becomes

lim
m,mo-1

Pnn�
~n ¼

1

1þxðw�1Þ

� �JL JL

n,n2, . . . ,nS

 !
ðwxÞn

YS

i ¼ 2

xni

i , ð30Þ

where we have used ðaÞn � anþOðan�1Þ for large a. Finally, in the
symmetric limit, Eq. (30) reduces to a simple multinomial sampling
of the metacommunity, as expected.

To illustrate the impacts of an asymmetric species on the
diversity of an otherwise symmetric local community, Fig. 3 plots
Shannon’s Index of diversity

H¼�
E½N��

JL
log

E½N��

JL
�
XS

i ¼ 2

E½N�i �

JL
log

E½N�i �

JL
, ð31Þ

for various values of the ecological fitness advantage, w, and
dispersal ability, m, in a nearly neutral community of S¼5 species
and JL¼75 individuals. All five species share a common relative
metacommunity abundance, x¼xi¼0.2, so given the exact result
for E[Nn] in Eq. (25), we know immediately that E[Ni

n]¼(JL�E[Nn])/
(S�1) for the remaining symmetric species. Note that H is
maximized where all abundances are equivalent, such that
E[Nn]/JL¼E[Ni

n]/JL¼xi. As can be seen from the next section, this
relation holds in the neutral limit where w¼1 and m¼mo¼0.1, but
small asymmetries in dispersal ability have a negligible impact on
diversity when all species are symmetric in ecological fitness.
Therefore, each curve in Fig. 3 peaks near w¼1 at approximately
the same value of H. Away from w¼1, the declines in diversity are
regulated by mass-effects, with more gradual declines at higher
values of m.
5. Recovering the sampling distribution of neutral theory

In a perfectly symmetric local community, the stochastic
dynamics for each species differ solely due to variations in relative
metacommunity abundances, the xi. In particular, if mj¼m and
wj¼1 for all j in Eq. (3), we recover the multivariate transition
probabilities for a neutral sampling theory of local communities, as
suggested on p. 287 of Hubbell’s book (Hubbell, 2001). Similarly, in
the symmetric limit of Eq. (19) where m¼mo and w¼1, we recover
the marginal dynamics for neutral (n) local communities with
arginal equilibrium abundance probabilities for the asymmetric focal species, with

individuals. (a) Dominance with rising advantage in ecological fitness, as indicated

) Dispersal mitigates the advantage in ecological fitness (w¼1.08) of the asymmetric



Fig. 3. Plots of the information-theoretic diversity metric, H, for a nearly neutral

local community of JL¼75 individuals and S¼5 species over various values of the

ecological fitness advantage, w, and dispersal ability, m. The symmetric species

share a common dispersal ability of mo¼0.1, and all species share a common relative

metacommunity abundance such that x¼xi¼0.2. Diversity peaks where expected

local abundances are equivalent, and this occurs in the symmetric limit, given by

w¼1 and m¼mo. The asymmetries in dispersal ability shown here have a negligible

impact on diversity when all species are symmetric in ecological fitness, so each

curve in this figure peaks at approximately the same value of H near w¼1. Away

from the peak, declines in diversity are regulated by mass-effects, with more gradual

declines at higher values of m.
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stationary distribution (McKane et al., 2000)

Pn�
n ¼

JL

n

� �
BðIxþn,JLþ Ið1�xÞ�nÞ

BðIx,Ið1�xÞÞ
, ð32Þ

where I¼m(JL�1)/(1�m). This result follows from the symmetric
limit of Eq. (21) after applying the identity GðaÞGð1�aÞ ¼ p=sinðpaÞ.
The expected abundance and variance are obtained from the
symmetric limits of Eqs. (25) and (26), respectively, after applying
the identities in Eqs. (C.1.0.1) and (C.2.2.2)

E½N�� ¼ xJL, ð33Þ

Var½N�� ¼ xð1�xÞJL
JLþ I

1þ I
: ð34Þ

Finally, the symmetric limits of Eqs. (11), (16), and (28) all yield the
stationary sampling distribution for a neutral local community
(Etienne and Alonso, 2005; Etienne et al., 2007)

Pn�
~n ¼

JL

n1, . . . ,nS

 !
1

ðIÞJL

YS

i ¼ 1

ðIxiÞni
: ð35Þ

In the special case of complete neutrality, Eq. (35) is an exact result
of the general model, Eq. (4). This sampling distribution continues
to hold when the assumptions of zero-sum dynamics and statio-
narity are relaxed (Etienne et al., 2007; Haegeman and Etienne,
2008).
6. Discussion

We have developed a general sampling theory that extends
Hubbell’s neutral theory of local communities and metacommu-
nities to include asymmetries in ecological fitness and dispersal
ability. We anticipate that a parameterization of additional biolo-
gical complexity, such as asymmetries in survivorship probabilities
or differences between the establishment probabilities of local
reproduction and immigration, may be incorporated without
significant changes to the structure of our analytical results.
Although the machinery is significantly more complicated for
asymmetric theories than their symmetric counterparts, some
analytical calculations remain tractable. We find approximate
sampling distributions for general and nearly neutral communities
that yield Hubbell’s theory in the symmetric limit. Our fully
normalized approximation in the nearly neutral case may provide
a valuable statistical tool for determining the degree to which an
observed SAD is consistent with the assumption of complete
neutrality. To facilitate a Bayesian analysis, we have enabled rapid
computation of the required hypergeometric functions by deriving
previously unknown asymptotic expansions.
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Appendix A. Sampling asymmetric metacommunities

The analytical insights of Etienne et al. (2007) suggest a clear
prescription for translating local community dynamics into meta-
communities dynamics in the context of Hubbell’s (2001) unified
neutral theory of biodiversity and biogeography: replace probabil-
ities of immigration, mj, with probabilities of speciation, nj; assume
xj � 1=STþOð1=S2

T Þ for all j, where ST is the total number of species
that could possibly appear through speciation events; and consider
asymptotics as ST becomes large.

Following this recipe, we translate the transition probabilities
for asymmetric local communities, Eq. (3), into the transition
probabilities for asymmetric metacommunities (M)

TM
ij~n ¼

ni

JM
ð1�njÞ

wjnjPST

k ¼ 1 wknk�wi

þnj

wjPST

k ¼ 1 wk

þO 1

ST

� � !
, ðA:1Þ

where JM is the number of individuals in the metacommunity,
wj=

PST

k ¼ 1 wk is the probability that an individual of species j

establishes following a speciation event, and

YM
ij ¼YðJM�ðniþ1ÞÞYðnj�1Þ: ðA:2Þ

Metacommunity dynamics are governed by the master equation

dPM
~n

dt ¼
XST

i ¼ 1

XST

j ¼ 1,ja i

ðTM
ij~nþ~ei�~ej

PM
~nþ~ei�~ej

�TM
ji~n PM

~n ÞY
M
ij : ðA:3Þ

If nj40 for all j, there are no absorbing states, so for large-ST, there is
a nonzero probability that any given species j exists. Analogous
develops to those in Section 3 show that detailed balance in the
general theory is approximated by

Pg,M�
~n
¼ Z�1

g,M

JM

n1, . . . ,nST

 ! YST

k ¼ 1

wnk

k ð1�nkÞ
nk ðfM

k~n Þnk
, ðA:4Þ

where

fM
k~n ¼ yk

ð
PST

l ¼ 1 wlnl�wkÞ=ðJM�1ÞPST

l ¼ 1 wl

, ðA:5Þ
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and yk ¼ nkðJM�1Þ=ð1�nkÞ is the generalization of Hubbell’s ‘‘funda-
mental biodiversity number’’ (Hubbell, 2001). The fitness-sym-
metric (s) distribution

Ps,M�
~n
¼ Z�1

s,M

JM

n1, . . . ,nST

 ! YST

k ¼ 1

ð1�nkÞ
nk ðyk=ST Þnk

, ðA:6Þ

satisfies detailed balance up to Oð1=ST Þ.
For the special case of nearly neutral metacommunities, we

translate the marginal dynamics for an asymmetric species in an
otherwise symmetric local community into the marginal dynamics
for an asymmetric species in an otherwise symmetric metacom-
munity. The transition probabilities are

gM
n ¼

JM�n

JM
ð1�nÞ wn

JMþnðw�1Þ�1
þn w

ST
þO 1

ST

� �� �
,

rM
n ¼

n

JM
ð1�noÞ

JM�n

JMþnðw�1Þ�w
þno 1�

w

ST

� �
þO 1

ST

� �� �
, ðA:7Þ

where the asymmetric focal species has speciation probability n
and enjoys an ecological fitness advantage, w, over all other species,
which share a common probability of speciation no. If n¼0 is an
accessible state, then as ST becomes large and w remains finite, the
equilibrium probability of observing the asymmetric species
approaches zero. However, if we assume that the asymmetric
species is identified and known to exist at nonzero abundance
levels, the stationary distribution is

Pnn,M�
n ¼ ZM

JM

n

� �
Zn

M

BðlMþn,xM�nÞ

BðlM ,xMÞ
, ðA:8Þ

with

Z�1
M ¼ 2F1ð�JM ,lM;1�xM;ZMÞ�1, ðA:9Þ

and

ZM ¼w
ðJM�1ÞðJMþyo�1Þ

ðJM�yoðw�1Þ�1ÞðJMþy�1Þ
þO 1

ST

� �
,

lM ¼
y
ST
þO 1

S2
T

 !
,

xM ¼ 1þ
ðJM�1ÞðJMþyo�1Þ

JM�yoðw�1Þ�1
þO 1

ST

� �
, ðA:10Þ

where y¼ ðJM�1Þn=ð1�nÞ and yo ¼ ðJM�1Þno=ð1�noÞ are Hubbell’s
‘‘fundamental biodiversity numbers’’ for the asymmetric species
and all other species, respectively.

An approximate multivariate stationary distribution is obtained
in an identical manner to the derivation of Eq. (28)

Pnn,M�
~n

¼ ZM

JM

n,n2, . . . ,nST

 !
Zn

M

BðlMþn,xM�nÞ

BðlM ,xMÞ

�
1

ðð1�1=ST Þfn,MÞJM�n

YST

i ¼ 2

ðfn,M=ST Þni
, ðA:11Þ

where

fn,M ¼ yo 1þ
nðw�1Þ

JM�1

� �
þO 1

ST

� �
: ðA:12Þ

We now propose a modest extension to the prescription in
Etienne et al. (2007) for converting multivariate distributions over
labelled abundance vectors to distributions over unlabelled abun-
dance vectors. Because the asymmetric focal species has been
identified and is known to exist with abundance n40, this species
must be labelled, while all other species are equivalent and may be
unlabelled. Therefore, we aim to transform Eq. (A.11) into a
multivariate distribution over the ‘‘mostly unlabelled’’ states
~̂n ¼ ðn,n̂2, . . . ,n̂SÞ, where S is the number of species observed in
a sample and each ðn̂2, . . . ,n̂SÞ is an integer partition of JM�n.
(To provide an example, if JM¼3, four distinct states are accessible:
(3) with S¼1, (2,1) with S¼2, (1,2) with S¼2, and (1,1,1) with S¼3.)
The conversion is given by

Pnn,M�

~̂n
¼
ðST�1Þ!QJM�n

i ¼ 0 F̂ i!
Pnn,M�
~n

, ðA:13Þ

where F̂i is the number of elements in ðn̂2, . . . ,n̂SÞ equal to i. Note
that F̂0 ¼ ST�1�ðS�1Þ. Taking the leading behavior for large-ST, we
obtain a modification of the Ewens (1972) sampling distribution
appropriate to nearly neutral metacommunities

lim
ST-1

P~̂n
nn,M�

¼ lim
ST-1

ðST�1Þ!

ðST�SÞ!

JM !

n
QS

i ¼ 2 n̂i

QJM�n
i ¼ 1 F̂ i!

�
Zn

Mðy=ST ÞnðxMÞ�n

ðn�1Þ!ð2F1ð�JM ,y=ST ;1�xM ;ZMÞ�1Þ

�
1

ðð1�1=ST Þfn,MÞJM�n

YS

i ¼ 2

ðfn,M=ST Þn̂ i

ðn̂i�1Þ!

¼ lim
ST-1

ðST�1Þ!

ðST�SÞ!

1

ST

� �S�1 JM!

n
QS

i ¼ 2 n̂i

QJM�n
i ¼ 1 F̂i!

�
y=ST

2F1ð�JM ,y=ST ;1�xM;ZMÞ�1
Zn

MðxMÞ�n

fS�1
n,M

ðfn,MÞJM�n

¼ ẐM
JM!

nðJM�nÞ!
Zn

MðxMÞ�n

ðJM�nÞ!QS
i ¼ 2 n̂i

QJM�n
i ¼ 1 F̂i!

fS�1
n,M

ðfn,MÞJM�n

,

ðA:14Þ

where (a)0¼1 allows us to take a product over the observed species,
S, rather than the total number of possible species, ST, in the first
expression; ðzÞn=ðn�1Þ!� zþOðz2Þ as z approaches 0 for n40 has
been used to obtain the second expression; l’Hôpital’s rule along
with limb-0@2F1ða,b; c; zÞ=@b¼ az3F2ðaþ1,1,1; cþ1,2; zÞ=c has been
used to obtain the third expression; and

Ẑ
�1

M ¼
JMZM

xM�1 3F2ð1�JM ,1,1;2�xM ,2;ZMÞ, ðA:15Þ

with asymptotics of the hypergeometric function provided in
Appendices C.3 and C.4. In the neutral limit, we obtain a modifica-
tion to the Ewens sampling distribution for the scenario where a
single species is labelled and guaranteed to exist

lim
ST-1

P~̂n
n,M�
¼

XJM

i ¼ 1

y
yþ i
þ

JM

yþ JM

 !�1
JM!

n
QS

i ¼ 2 n̂i

QJM�n
i ¼ 1 F̂i!

yS

ðyÞJM

:

ðA:16Þ

Converting this result to a distribution over the ‘‘fully unlabelled’’
states

^̂
~n ¼ ð ^̂n 1, . . . , ^̂n SÞ, we multiply by

XJM

i ¼ 1

y
yþ i
þ

JM

yþ JM

 !QJM�n
i ¼ 1 F̂i!QJM

i ¼ 1
^̂F i

!, ðA:17Þ

and recover the Ewens sampling distribution (Ewens, 1972), which
is also the sampling distribution for Hubbell’s metacommunity
theory (Hubbell, 2001).
Appendix B. Marginal dynamics for the local community

We first demonstrate that the marginal dynamics of the
asymmetric species in Eq. (19) can be derived from the multivariate
dynamics of Eq. (4). Let

XJL�n

d�
XJL�n

n2 ¼ 0

. . .
XJL�n

nS ¼ 0

dðJL�n�n2� � � ��nSÞ, ðB:1Þ
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so that the marginal distribution for the asymmetric species is
given by

Pn ¼
XJL�n

dP~n : ðB:2Þ

Applying Eq. (B.1) to both sides of Eq. (4), we obtain

dPn

dt ¼
XJL�n

d
XS

i ¼ 1

XS

j ¼ 1,ja i

ðTij~nþ~ei�~ej
P~nþ~ei�~ej

�Tji~n P~n ÞYij

¼
XJL�n

d
XS

i ¼ 2

XS

j ¼ 2,ja i

ðTij~nþ~ei�~ej
P~nþ~ei�~ej

�Tji~n P~n ÞYij

þ
XJL�n

d
XS

j ¼ 2

ðT1j~nþ~e1�~ej
P~nþ~e1�~ej

�Tj1~n P~n ÞY1j

þ
XJL�n

d
XS

i ¼ 2

ðTi1~nþ~ei�~e1
P~nþ~ei�~e1

�T1i~n P~n ÞYi1: ðB:3Þ

By inspection, the first term is identically zero and the remaining
terms generate the right-hand side of Eq. (19), namely

XJL�n

d
XS

j ¼ 2

T1j~nþ~e1�~ej
P~nþ~e1�~ej

Y1j ¼ rnþ1YðJL�ðnþ1ÞÞPnþ1,

XJL�n

d
XS

j ¼ 2

Tj1~n P~nY1j ¼ gnYðJL�ðnþ1ÞÞPn,

XJL�n

d
XS

i ¼ 2

Ti1~nþ~ei�~e1
P~nþ~ei�~e1

Yi1 ¼ gn�1Yðn�1ÞPn�1,

XJL�n

d
XS

i ¼ 2

T1i~n P~nYi1 ¼ rnYðn�1ÞPn: ðB:4Þ

To provide an illustration, let JL¼4, S¼3, and n¼1. Then

XJL�n

d
XS

j ¼ 2,ja i

T1j~nþ~e1�~ej
P~nþ~e1�~ej

Y1j

¼ ðPð2,0,2ÞðT12ð2,0,2Þ þT13ð2,0,2ÞÞþPð2,1,1ÞðT12ð2,1,1Þ þT13ð2,1,1ÞÞ

þPð2,2,0ÞðT12ð2,2,0Þ þT13ð2,2,0ÞÞÞYðJL�ðnþ1ÞÞ

¼ rnþ1YðJL�ðnþ1ÞÞðPð2,0,2Þ þPð2,1,1Þ þPð2,2,0ÞÞ

¼ rnþ1YðJL�ðnþ1ÞÞPnþ1, ðB:5Þ

where we have used the definitions of Yij from Eq. (5), rn from
Eq. (18), and Pn from Eq. (B.2).

We construct an approximation to the multivariate sampling
distribution of a nearly neutral community, Pnn�

~n
, by following the

subsample approach of Etienne and Alonso (2005) and Etienne et al.
(2007) that centers on the identity

Pnn�
~n ¼ Pnn�

n

YS�1

f ¼ 2

Pnn�
nf jn,n2 ,...,nf�1

: ðB:6Þ

Assuming that Pn, Pn2jn, . . . ,Pnf�1jn,n2 ,...,nf�2
are nonzero and station-

ary, we argue that conditional marginal dynamics for Pnf jn,n2 ,...,nf�1

are approximated by the master equation

dPnf jn,n2 ,...,nf�1

dt ¼ gnf�1jn,n2 ,...,nf�1
Yðnf�1ÞPnf�1jn,n2 ,...,nf�1

þrnf þ1jn,n2 ,...,nf�1
YðJL�ðnf þ1ÞÞPnf þ1jn,n2 ,...,nf�1

�ðgnf jn,n2 ,...,nf�1
YðJL�ðnf þ1ÞÞ

þrnf jn,n2 ,...,nf�1
Yðnf�1ÞÞPnf jn,n2 ,...,nf�1

, ðB:7Þ
where

gnf jn,n2 ,...,nf�1
�

XS

i ¼ f þ1

Tif ðn,n2 ,...,nf ,...,nSÞ

¼
JL� ~nf

JL
ð1�moÞ

nf

JLþnðw�1Þ�1
þmo

xf

1þxðw�1Þ

� �
,

rnf jn,n2 ,...,nf�1
�

XS

i ¼ f þ1

Tfiðn,n2 ,...,nf ,...,nSÞ

¼
nf

JL
ð1�moÞ

JL� ~nf

JLþnðw�1Þ�1
þmo

1� ~xf

1þxðw�1Þ

� �
, ðB:8Þ

and

~nf ¼ nþ
Xf

k ¼ 2

nk,

~xf ¼ xþ
Xf

k ¼ 2

xk: ðB:9Þ

Eq. (B.7) can be derived from the multivariate dynamics of Eq. (4)
under the approximation that stochastic variables ðNðtÞ,N2ðtÞ, . . . ,
Nf�1ðtÞÞ ¼ ðn,n2, . . . ,nf�1Þ are fixed in time such that Tij~n ¼ 0 for
i,jo f . In this scenario, the summations on the right-hand side of
Eq. (4) may begin at f

dP~n
dt
¼
XS

i ¼ f

XS

j ¼ f ,ja i
Tij~nþ~ei�~ej

P~nþ~ei�~ej
�Tji~n P~n

� �
Yij: ðB:10Þ

Given the identity

P~n ¼ PnPn2 jn � � � Pnf�1jn,n2 ,...,nf�2
Pnf ,...,nS jn,n2 ,...,nf�1

, ðB:11Þ

the stationary factor PnPn2jn � � � Pnf�1jn,n2 ,...,nf�2
cancels from both sides

of Eq. (B.10) to yield

dP~nf jn,n2 ,...,nf�1

dt

¼
XS

i ¼ f

XS

j ¼ f ,ja i

ðTij~nþ~ei�~ej
P~nf þ~e fi�~e fj jn,n2 ,...,nf�1

�Tji~n P~nf jn,n2 ,...,nf�1
ÞYij,

ðB:12Þ

where~nf � ðnf , . . . ,nSÞ and efi is an (S� f+1)-dimensional unit vector
along the i th-direction. Now let

XJL�����nf

d�
XJL�n�n2�����nf

nf þ 1 ¼ 0

. . .
XJL�n�n2�����nf

nS ¼ 0

dðJL�n�n2� � � � �nSÞ, ðB:13Þ

so that

Pnf jn,n2 ,...,nf�1
¼

XJL�����nf

dP~nf jn,n2 ,...,nf�1
: ðB:14Þ

Applying Eq. (B.13) to both sides of Eq. (B.12), we obtain

dPnf jn,n2 ,...,nf�1

dt

¼
XJL�����nf

d
XS

i ¼ f þ1

XS

j ¼ f þ1,ja i

ðTij~nþ~ei�~ej
P~nf þ~e fi�~e fj jn,n2 ,...,nf�1

�Tji~n P~nf jn,n2 ,...,nf�1
ÞYij

þ
XJL�����nf

d
XS

j ¼ f þ1

ðTfj~nþ~ef�~ej
P~nf þ~e ff�~e fj jn,n2 ,...,nf�1

�Tjf~n P~nf jn,n2 ,...,nf�1
ÞYfj

þ
XJL�����nf

d
XS

i ¼ f þ1

ðTif~nþ~ei�~ef
P~nf þ~e fi�~e ff jn,n2 ,...,nf�1

�Tfi~n P~nf jn,n2 ,...,nf�1
ÞYif : ðB:15Þ
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By inspection, the first term is identically zero and the remaining
terms generate the right-hand side of Eq. (B.7), namely

XJL�����nf

d
XS

j ¼ f þ1

Tfj~nþ~ef�~ej
P~nf þ~e ff�~e fj jn,n2 ,...,nf�1

Yfj

¼ rnf þ1jn,n2 ,...,nf�1
YðJL�ðnf þ1ÞÞPnf þ1jn,n2 ,...,nf�1

,

XJL�����nf

d
XS

j ¼ f þ1

Tjf~n P~nf jn,n2 ,...,nf�1
Yfj

¼ gnf jn,n2 ,...,nf�1
YðJL�ðnf þ1ÞÞPnf jn,n2 ,...,nf�1

,

XJL�����nf

d
XS

i ¼ f þ1

Tif~nþ~ei�~ef
P~nf þ~e fi�~e ff jn,n2 ,...,nf�1

Yif

¼ gnf�1jn,n2 ,...,nf�1
Yðnf�1ÞPnf�1jn,n2 ,...,nf�1

,

XJL�����nf

d
XS

i ¼ f þ1

Tfi~n P~nf jn,n2 ,...,nf�1
Yif

¼ rnf jn,n2 ,...,nf�1
Yðnf�1ÞPnf jn,n2 ,...,nf�1

: ðB:16Þ

The stationary distribution of Eq. (B.7) is a Pólya distribution
(Johnson et al., 1992)

Pnn�
nf jn,n2 ,...,nf�1

¼NPf

JL� ~nf�1

nf

 !
Bðfonxf þnf ,JL� ~nf�1þfonð1� ~xf Þ�nf Þ

Bðfonxf ,JL� ~nf�1þfonð1� ~xf ÞÞ
, ðB:17Þ

where

N�1
Pf ¼

BðJL� ~nf�1þfonð1� ~xf�1Þ,fonð1� ~xf ÞÞ

Bðfonð1� ~xf�1Þ,JL� ~nf�1þfonð1� ~xf ÞÞ
, ðB:18Þ

and

fon ¼ Io
1þnðw�1Þ=ðJL�1Þ

1þxðw�1Þ
: ðB:19Þ

Plugging Eqs. (21) and (B.17) into (B.6), we obtain the approximate
sampling distribution of Eq. (28). To validate Eq. (28), we demonstrate
approximate detailed balance, as defined by Eq. (10), for large-JL nearly
neutral communities where S,w�15

PS
l ¼ 1 wlnl�1¼ JL�1þnðw�1Þ

such that e� ðw�1Þ=ðJL�1þnðw�1ÞÞ is a small number. For i,jZ2,
detailed balance is exact. But for i¼1 and jZ2, we have

Pnn�
~n

Pnn�
~nþ~e1�~ej

¼
nþ1

nj

1

w

1�mo

1�m

nj�1þfonxj

nþfnx

�
ðð1�xÞfonþ1ÞJL�n�1

ðð1�xÞfonÞJL�n�1

YS

k ¼ 2

ðfonxkÞnk�djk

ðfonþ1xkÞnk�djk

, ðB:20Þ

where

fn ¼ I
1þnðw�1Þ=ðJL�1Þ

1þxðw�1Þ
: ðB:21Þ

Given ðað1þeÞÞn � ðaÞnþOðeÞ, we find

Pnn�
~n

Pnn�
~nþ~e1�~ej

¼
T1j~nþ~e1�~ej

Tj1~n
þOðSeÞ: ðB:22Þ

The case of iZ2 and j¼1 is similar.
Appendix C. Asymptotic expansions for hypergeometric
functions

Calculating Eqs. (21), (25), (27), (28), (A.8), (A.11), and (A.14) for
large communities requires computationally intensive evaluations
of hypergeometric functions. To address this problem, one of us
(N.M.T.) developed previously unknown asymptotic expansions.
All required expansions are summarized here. Relevant details can
be found in Abramowitz and Stegun (1965), Luke (1969), Wong
(2001), and Gil et al. (2007).

C.1. Expanding 3F2ð1�JL,1þl,2;2�x,1;ZÞ

Using the reduction formula

3F2ða,b,2; c,1; zÞ ¼
abz

c 2F1ðaþ1,bþ1; cþ1; zÞþ2F1ða,b; c; zÞ,

ðC:1:0:1Þ

this case can be expanded with the methods of Appendix C.2.

C.2. Expanding 2F1ða�JL,aþl;aþ1�x;ZÞ

C.2.1. Notation

We write

a¼ a�JL, b¼ aþbþmJL, c¼ aþgþrJL, ðC:2:1:1Þ

with a¼ 0,1,2 and JL a positive integer. In terms of w, m, x, and mo

we have

b¼�
mx

1�mþxðw�1Þ
, m¼�b, ðC:2:1:2Þ

and

g¼ 1�xwmoþxðw�1Þ

1�wmoþxðw�1Þ
, r¼�g: ðC:2:1:3Þ

The asymptotic behaviour will be considered of the Gauss hyper-
geometric function

F ¼ 2F1ða,b; c;ZÞ, ðC:2:1:4Þ

for large-JL, where

Z¼w
1�mþxðw�1Þ

1�wmoþxðw�1Þ
, ðC:2:1:5Þ

and

wA ð0,1Þ, x,m,moAð0,1Þ: ðC:2:1:6Þ
C.2.2. The neutral case: w¼1, m¼mo

In this case

Z¼ 1, m¼ mx

1�m
, r¼�1�mx

1�m
: ðC:2:2:1Þ

The exact relation

2F1ð�n,b; c;1Þ ¼
ðc�bÞn
ðcÞn

¼
GðcÞGðc�bþnÞ

GðcþnÞGðc�bÞ
, n¼ 0,1,2, . . . ,

ðC:2:2:2Þ

can be used, together with the asymptotic estimate of the ratio of
gamma functions

GðxþnÞ

GðyþnÞ
¼ nx�yð1þOð1=nÞÞ, n-1: ðC:2:2:3Þ
C.2.3. Critical values

Considered as functions of w, m and r become unbounded at
w¼wcm and w¼wcr , respectively, where

wcm ¼
mþx�1

x
, wcr ¼

1�x

mo�x
: ðC:2:3:1Þ

The case w-wcm : In this case Z becomes small, b becomes
unbounded, but the product bZ remains finite. The kth term of the
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standard power series of F becomes (see also (C.2.2.3))

ðaÞkðbÞk
k!ðcÞk

Zk �
ðaÞk

k!ðc0Þk
zk, ðC:2:3:2Þ

with

z¼ lim
w-wcm

bZ¼ uþvJL, c0 ¼ lim
w-wcm

c¼ g0þr0JL, ðC:2:3:3Þ

where

u¼�
mxðmþx�1Þ

mx�moðmþx�1Þ
, v¼�u, ðC:2:3:4Þ

and

g0 ¼
xðmð1�moÞþmoð1�xÞÞ

mx�moðmþx�1Þ
, r0 ¼�g0: ðC:2:3:5Þ

It follows that F approaches a confluent hypergeometric function:

2F1ða,b; c;ZÞ-1F1ða; c0; zÞ: ðC:2:3:6Þ

Further action is needed to obtain an asymptotic approximation of
the 1F1-function.

The case w-wcr : In this caseZ and c become unbounded, but the
ratio Z=c remains finite. The kth term of the standard power series
of F becomes

ðaÞkðbÞk
k!ðcÞk

Zk �
ðaÞkðb0Þk

k! zk
, ðC:2:3:7Þ

with

z¼ limw-wcr c=Z¼ uþvJL, b0 ¼ limw-wcr b¼ b0þm0JL, ðC:2:3:8Þ

where

u¼
moðmo�xÞð1�xÞ

mx�moðmþx�1Þ
, v¼�u, ðC:2:3:9Þ

and

b0 ¼�
mxðmo�xÞ

mx�moðmþx�1Þ
, m0 ¼�b0: ðC:2:3:10Þ

It follows that F approaches a 2F0 hypergeometric function

2F1ða,b; c;ZÞ-2F0ða,b0;�;1=zÞ ¼
X�a

k ¼ 0

ðaÞkðb0Þk

k!zk
, ðC:2:3:11Þ

because a is a negative integer. This function can be expressed in
terms of the Kummer U-function

2F0ða,b0;�;1=zÞ ¼ ð�zÞaUða,1þa�b0,�zÞ: ðC:2:3:12Þ

Further action is needed to obtain an asymptotic approximation of
the U-function.

C.2.4. Expansion A

An integral representation is

2F1ða,b; c;ZÞ ¼ GðcÞ
GðbÞGðc�bÞ

Z 1

0
tb�1ð1�tÞc�b�1

ð1�tZÞ�a dt,

ðC:2:4:1Þ

valid for c4b40,Zo1. This integral can be used when r4m40,
Zo1.

As an example, consider

r¼ 3, m¼ 1
2 , mo ¼

1
2 , x¼ 1

3: ðC:2:4:2Þ

This gives

b¼ aþ 1
11 ðJL�1Þ, c¼ aþ5ðJL�1Þ, m¼ 1

11, r¼ 5, Z¼�11:

ðC:2:4:3Þ

In this case the integrand becomes small at t¼0 and t¼1, and
there is a maximum of the integrand at t¼t1, with t1A ð0,1Þ. This
point gives the main contribution.
Write (C.2.4.1) as

2F1ða,b; c;ZÞ ¼ GðcÞ
GðbÞGðc�bÞ

Z 1

0
taþb�1ð1�tÞg�b�1

ð1�tZÞ�ae�JLfðtÞ dt,

ðC:2:4:4Þ

where

fðtÞ ¼ �mlnðtÞ�ðr�mÞlnð1�tÞ�lnð1�tZÞ: ðC:2:4:5Þ

The saddle points t0 and t1 are the zeros of fu
ðtÞ. For the example

(C.2.4.2) this gives

t0 ¼�0:01169 . . . , t1 ¼ 0:1178 . . . , ðC:2:4:6Þ

and

fðt1Þ ¼ �0:02136 . . . , f00ðt1Þ ¼ 35:83 . . . : ðC:2:4:7Þ

An asymptotic approximation follows from the substitution

fðtÞ�fðt1Þ ¼
1
2f
00ðt1Þs

2, signðt�t1Þ ¼ signðsÞ, ðC:2:4:8Þ

which gives

2F1ða,b; c;ZÞ ¼ GðcÞ
GðbÞGðc�bÞ

e�JLfðt1Þ

Z 1
�1

f ðsÞe�ð1=2ÞJLf00 ðt1Þs
2

ds,

ðC:2:4:9Þ

where

f ðsÞ ¼ taþb�1ð1�tÞg�b�1
ð1�tZÞ�a dt

ds
: ðC:2:4:10Þ

Because locally at t¼t1 (or s¼0), t¼ t1þsþOðs2Þ, we have dt/ds¼1
at s¼0, and

f ð0Þ ¼ taþb�1
1 ð1�t1Þ

g�b�1
ð1�t1ZÞ�a: ðC:2:4:11Þ

This gives the first order approximation

2F1ða,b; c;ZÞ � GðcÞ
GðbÞGðc�bÞ

e�JLfðt1Þf ð0Þ

Z 1
�1

e�ð1=2ÞJLf00 ðt1Þs
2

ds,

ðC:2:4:12Þ

that is

2F1ða,b; c;ZÞ � GðcÞ
GðbÞGðc�bÞ

e�JLfðt1Þf ð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

JLf00ðt1Þ

s
, JL-1:

ðC:2:4:13Þ
C.2.5. Expansion B

Another integral representation is

2F1ða,b; c;ZÞ ¼ Gð1þb�cÞ

GðbÞGð1�cÞ

Z 1
0

tb�1ðtþ1Þc�b�1
ð1þtZÞ�a dt,

ðC:2:5:1Þ

which is only valid for a¼0,�1,�2,yand coaþ1. It can be
verified by expanding ð1þtZÞ�a in powers of Z.

We have m40 and ro�1, and because (see (C.2.1.2), (C.2.1.3)
and (C.2.1.5))

Z¼� mx

ð1�moxÞ

r
m

, ðC:2:5:2Þ

we see that ZZ0.
As an example, consider

r¼ 1
3 , m¼ 1

2 , mo ¼
1
2 , x¼ 1

3: ðC:2:5:3Þ

This gives

b¼ aþ3ðJL�1Þ, c¼ aþ15
13 ð1�JLÞ, m¼ 3, r¼�15

13 , Z¼ 1
13:

ðC:2:5:4Þ
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Write (C.2.5.1) as

2F1ða,b; c;ZÞ ¼ Gð1þb�cÞ

GðbÞGð1�cÞ

Z 1
0

taþb�1ðtþ1Þg�b�1
ð1þtZÞ�ae�JLcðtÞ dt,

ðC:2:5:5Þ

where

cðtÞ ¼�mlnðtÞ�ðr�mÞlnðtþ1Þ�lnð1þtZÞ: ðC:2:5:6Þ

The saddle points t0 and t1 are for the example (C.2.5.3)

t0 ¼�74:89 . . . , t1 ¼ 3:385 . . . , ðC:2:5:7Þ

and

cðt1Þ ¼ 2:251 . . . , c00ðt1Þ ¼ 0:04951 . . . : ðC:2:5:8Þ

An asymptotic approximation follows from the substitution:

cðtÞ�cðt1Þ ¼
1
2c
00ðt1Þs

2, signðt�t1Þ ¼ signðsÞ, ðC:2:5:9Þ

which gives

2F1ða,b; c;ZÞ ¼ Gð1þb�cÞ

GðbÞGð1�cÞ
e�JLcðt1Þ

Z 1
�1

gðsÞe�ð1=2ÞJLc00 ðt1Þs
2

ds,

ðC:2:5:10Þ

where

gðsÞ ¼ taþb�1ð1þtÞg�b�1
ð1þtZÞ�a dt

ds
: ðC:2:5:11Þ

Because locally at t¼t1 (or s¼0), t¼ t1þsþOðs2Þ, we have dt/ds¼1
at s¼0, and

gð0Þ ¼ taþb�1
1 ð1þt1Þ

g�b�1
ð1þt1ZÞ�a: ðC:2:5:12Þ

This gives the first order approximation

2F1ða,b; c;ZÞ � Gð1þb�cÞ

GðbÞGð1�cÞ
e�JLcðt1Þgð0Þ

Z 1
�1

e�ð1=2ÞJLc00 ðt1Þs
2

ds,

ðC:2:5:13Þ

that is

2F1ða,b; c;ZÞ � Gð1þb�cÞ

GðbÞGð1�cÞ
e�JLcðt1Þgð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

JLc
uu
ðt1Þ

s
, JL-1:

ðC:2:5:14Þ

C.2.6. Expansion C

If moro�1 and Zo0, apply the transformation

2F1ða,b; c;ZÞ ¼ ð1�ZuÞ
a

2F1ða,bu; c;ZuÞ, ðC:2:6:1Þ

where

bu ¼ c�b¼ bu
þmuJL, bu

¼ g�b, mu ¼ r�m, Zu ¼
Z

Z�1
: ðC:2:6:2Þ

Now,

mu40, ro�1, Zu40, ðC:2:6:3Þ

and it follows that Expansion B, Appendix C.2.5, applies to the
Gauss function on the right-hand side of (C.2.6.1).

C.2.7. General cases for all non-critical values
1.
 wcm ,wcr o0: For all w40, we have m40, ro�1, and Z40, so
use Expansion B, Appendix C.2.5.
2.
 wcm 40, wcr o0: For all wcm 4w40, we have mo�1, ro�1,
and Zo0, so use Expansion C, Appendix C.2.6.
For all w4wcm , we have m40, ro�1, and Z40, so use
Expansion B, Appendix C.2.5.
3.
 wcm o0, wcr 40: For all wcr 4w40, we have m40, ro�1, and
Z40, so use Expansion B, Appendix C.2.5.
For all w4wcr , we haver4m40 and Zo0, so use Expansion A,
Appendix C.2.4.
4.
 wcr 4wcm 40: For all wcm 4w40, we have mo�1, ro�1, and
Zo0, so use Expansion C, Appendix C.2.6.
For all wcr 4w4wcm , we have m40, ro�1, and Z40, so use
Expansion B, Appendix C.2.4.
For all w4wcr , we haver4m40 and Zo0, so use Expansion A,
Appendix C.2.4.

C.3. Expanding 2F1ð1�JM ,1;2�xM ;ZMÞ

C.3.1. Notation

We write

a¼ 1�JM , b¼ 1, c¼ sþtJM , ðC:3:1:1Þ

with

s¼ 1þ
1

1�wno
, t¼� 1

1�wno
: ðC:3:1:2Þ

The asymptotic behaviour will be considered of the Gauss hyper-
geometric function

F ¼ 2F1ða,b; c;ZMÞ ðC:3:1:3Þ

for large-JM, where

ZM ¼
wð1�nÞ
1�wno

, ðC:3:1:4Þ

and

wA ð0,1Þ, n,noAð0,1Þ: ðC:3:1:5Þ

C.3.2. The neutral case: w¼1, n¼ no

In this caseZM ¼ 1 and (C.2.2.2) can be used to get an exact result
in terms of gamma functions.

C.3.3. The critical case wcno
¼ 1=no

In this case we have (see also Appendix C.2.3)

2F1ða,b; c;ZMÞ-2F0ða,b;�;1=zÞ ¼ ð�zÞaUða,1þa�b,�zÞ, ðC:3:3:1Þ

where

z¼�
ðJM�1Þno

1�n : ðC:3:3:2Þ

C.3.4. The case 0owowcno

Use the integral representation

2F1ða,b; c;ZMÞ ¼
Gð1þb�cÞ

GðbÞGð1�cÞ

Z 1
0

tb�1f ðtÞe�JMfðtÞ dt, ðC:3:4:1Þ

where

f ðtÞ ¼ ð1þtÞs�b�1
ð1þZMtÞ�1, fðtÞ ¼�tlnð1þtÞ�lnð1þZMtÞ:

ðC:3:4:2Þ

The saddle point t0 follows from solving fu
ðtÞ ¼ 0. This gives

fu
ðtÞ ¼�

t
1þt
�

ZM

1þZMt
, t0 ¼�

tþZM

ZMðtþ1Þ
: ðC:3:4:3Þ

In terms of w and n

t0 ¼�
ð1�wnoÞð1�wþwnÞ

noð1�nÞw2
: ðC:3:4:4Þ
1.
 If 0owo1=ð1�nÞ �wcn , then the saddle point is negative, and
we can substitute s¼fðtÞ, giving

2F1ða,b; c;ZMÞ ¼
Gð1þb�cÞ

GðbÞGð1�cÞ

Z 1
0

sb�1gðsÞe�JMs ds, ðC:3:4:5Þ
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where

gðsÞ ¼ f ðtÞ
t

s

� �b�1 dt

ds
¼

t

s

� �b�1 f ðtÞ

fu
ðtÞ
: ðC:3:4:6Þ

Apply Watson’s lemma by expanding gðsÞ ¼
P1

k ¼ 0 gksk to obtain

2F1ða,b; c;ZMÞ �
Gð1þb�cÞ

GðbÞGð1�cÞ

X1
k ¼ 0

GðbþkÞ gk

Jbþk
M

: ðC:3:4:7Þ

To compute the coefficients gk we first expand t¼
P1

k ¼ 1 tksk.
The coefficients tk follow from inverting the expansion

s¼�tlnð1þtÞ�lnð1þZMtÞ ¼
X1
k ¼ 1

sktk, s1 ¼�t�ZM : ðC:3:4:8Þ

This gives

t1 ¼�
1

tþZM

¼
1�wno

1�wþwn
, ðC:3:4:9Þ

and for the first coefficient in the expansion (C.3.4.7)
g0¼g(0)¼t1

b. This gives

2F1ða,b; c;ZMÞ �
Gð1þb�cÞ

Gð1�cÞ

t1

JM

� �b

: ðC:3:4:10Þ
2.
 If w4wcn , then t0 is positive, and Laplace’s method can be used,
as in Appendices C.2.4 and C.2.5. We substitute

1

2
f00ðt0Þs

2 ¼fðtÞ�fðt0Þ, f00ðt0Þ ¼
Z2

Mðtþ1Þ3

tðZM�1Þ2
, ðC:3:4:11Þ

and obtain

2F1ða,b; c;ZMÞ �
Gð1þb�cÞ

GðbÞGð1�cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

JMf
uu
ðt0Þ

s
e�JMfðt0Þtb�1

0 f ðt0Þ,

ðC:3:4:12Þ

where t0 is given in (C.3.4.3).

3.
 If w¼wcn , then t0¼0 and Laplace’s method on a half-infinite

interval can be used.
C.3.5. The case w4wcno

Use the integral representation

2F1ða,b; c;ZMÞ ¼
GðcÞ

GðbÞGðc�bÞ

Z 1

0
f ðtÞe�JMfðtÞ dt, ðC:3:5:1Þ

where

f ðtÞ ¼ tb�1ð1�tÞs�b�1
ð1�ZMtÞ�1, fðtÞ ¼ �tlnð1�tÞ�lnð1�ZMtÞ:

ðC:3:5:2Þ

The saddle point t0 follows from solving fu
ðtÞ ¼ 0. This gives

fu
ðtÞ ¼

t
1�t
þ

ZM

1�ZMt
, t0 ¼

tþZM

ZMðtþ1Þ
: ðC:3:5:3Þ

In terms of w and n

t0 ¼
ð1�wnoÞð1�wþwnÞ

noð1�nÞw2
: ðC:3:5:4Þ
1.
 If wowcn , then t0o0 and Watson’s lemma should be used. The
result is

2F1ða,b; c;ZMÞ �
GðcÞ

Gðc�bÞ

t1

JM

� �b

, t1 ¼
1

ZMþt
: ðC:3:5:5Þ
2.
 If w4wcn , then the saddle point t0 is always inside the interval
(0,1), with t0-1 if w-1. Laplace’s method should be used.
This gives

2F1ða,b; c;ZMÞ �
GðcÞ

GðbÞGðc�bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

JMf00ðt0Þ

s
e�JMfðt0Þtb�1

0 f ðt0Þ,

ðC:3:5:6Þ

where f ,f and t0 are given in (C.3.5.2)–(C.3.5.3) and

f00ðt0Þ ¼
Z2

Mðtþ1Þ3

tðZM�1Þ2
: ðC:3:5:7Þ
3.
 If w¼wcn then t0¼0 and Laplace’s method on a half-infinite
interval can be used.

C.4. Expanding 3F2ð1�JM ,1,1;2,2�xM;ZMÞ

C.4.1. Notation

We write

a¼ 1�JM , c¼ sþtJM , ðC:4:1:1Þ

with

s¼ 1þ
1

1�wno
, t¼� 1

1�wno
, ðC:4:1:2Þ

The asymptotic behaviour will be considered of the hypergeo-
metric function

F ¼ 3F2ða,1,1; c,2;ZMÞ, ðC:4:1:3Þ

for large-JM, where

ZM ¼
wð1�nÞ
1�wno

, ðC:4:1:4Þ

and

rAð0,1Þ, n,noAð0,1Þ: ðC:4:1:5Þ

Note that

3F2ða,1,1; c,2;ZMÞ ¼
X1
k ¼ 0

ðaÞkð1Þkð1Þk
k! ðcÞkð2Þk

Zk
M ¼

X1
k ¼ 0

ðaÞk
ðcÞk

Zk
M

kþ1
, ðC:4:1:6Þ

and because a is a negative integer this series terminates at k¼�a.

C.4.2. Representation in terms of a Laplace integral

We substitute

1

kþ1
¼

Z 1
0

e�ðkþ1Þw dw, ðC:4:2:1Þ

and obtain

3F2ða,1,1; c,2;ZMÞ ¼

Z 1
0

e�w
2F1ða,1; c,zÞ dw, z¼ ZMe�w:

ðC:4:2:2Þ

For this representation we use the results of Appendices C.3.4 and
C.3.5 when, with ZM replaced by ZMe�w, the saddle points t0 of
(C.3.4.3) and (C.3.5.3) are negative. This gives two cases.
1.
 The case wowcno
and wowcn . For this case we use the results in

(C.3.4.5)–(C.3.4.10) with b¼1. We have

2F1ða,1; c; zÞ ¼
1�c

JM
g0þOð1=JMÞ, ðC:4:2:3Þ

where g0¼t1 and t1 ¼�1=ðtþZMe�wÞ. This gives

3F2ða,1,1; c,2;ZMÞ ¼
c�1

JM

Z 1
0

e�w dw

tþZMe�w
þOð1=JMÞ:

ðC:4:2:4Þ

Evaluating the integral we obtain

3F2ða,1,1; c,2;ZMÞ ¼
c�1

tJM

lnð1þZM=tÞ
ZM=t

þOð1=JMÞ: ðC:4:2:5Þ
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2.
 The case w4wcno
and wowcn . In this case we use the results in

(C.3.5.1)–(C.3.5.5), again, with b¼1 and ZM replaced with
ZMe�w. We use Watson’s lemma for (C.3.4.11) by substituting
s¼fðtÞ and obtain

2F1ða,1; c; zÞ ¼ ðc�1Þ

Z 1
0

e�JMsgðsÞ ds, gðsÞ ¼
ð1�tÞs�2

1�te�w

dt

ds
:

ðC:4:2:6Þ

Expanding g at s¼0 we have gðsÞ ¼ g0þOðsÞ, with
g0 ¼ 1=ðtþZMe�wÞ and, as in the above case, we derive

3F2ða,1,1; c,2;ZMÞ ¼
c�1

tJM

lnð1þZM=tÞ
ZM=t

þOð1=JMÞ: ðC:4:2:7Þ

C.4.3. Summing the series by integration

We replace the Pochhammer symbols in (C.4.1.6) by represen-
tations in terms of the gamma functions

ðaÞk ¼
GðaþkÞ

GðaÞ ¼ ð�1Þk
Gð1�aÞ

Gð1�a�kÞ
: ðC:4:3:1Þ

and replace the gamma functions with large positive argument by
their asymptotic forms that follow from

GðazþbÞ �
ffiffiffiffiffiffi
2p
p

e�azðazÞazþb�1=2, z-1, a40: ðC:4:3:2Þ

This gives the remaining two cases.
1.
 The case wowcno
and w4wcn . In this case to�1 and ZM 40. We

replace the Pochhammer symbols in (C.4.1.6) with the second
form in (C.4.3.1). This gives

3F2ða,1,1; c,2;ZMÞ ¼
X1
k ¼ 0

FðkÞ, ðC:4:3:3Þ

where

FðkÞ ¼
Gð1�aÞ

Gð1�cÞ

Zk
M

kþ1

Gð1�c�kÞ

Gð1�a�kÞ
, ðC:4:3:4Þ

and we replace the summation in (C.4.3.3) by integration,
invoking Euler’s summation formula, or the compound trape-
zoidal rule

3F2ða,1,1; c,2;ZMÞ �
Gð1�aÞ

Gð1�cÞ

Z JM

0

Zk
M

kþ1

Gð1�c�kÞ

Gð1�a�kÞ
dk: ðC:4:3:5Þ

In Euler’s summation formula additional terms occur but in the
present case they can be neglected.
We replace the gamma functions by their asymptotic estimates
following from (C.4.3.2). This gives

3F2ða,1,1; c,2;ZMÞ �
Gð1�aÞ

Gð1�cÞ

Z JM

0

e�fðkÞ

kþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�a�k
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�c�k
p dk, ðC:4:3:6Þ

where

fðkÞ ¼ �klnZM�ð1�c�kÞlnð1�c�kÞþð1�a�kÞlnð1�a�kÞ:

ðC:4:3:7Þ

Then,

fu
ðkÞ ¼�lnZMþ lnð1�c�kÞ�lnð1�a�kÞÞ, ðC:4:3:8Þ

and the derivative vanishes for k¼ks, where

ks ¼
c�1þZMð1�aÞ

1�ZM

¼ k0þk1JM , k0 ¼
s�1

ZM�1
, k1 ¼

tþZM

ZM�1
,

ðC:4:3:9Þ
and 0ok1o1. The dominant point of the integral in (C.4.3.6) is
k¼ks, and we apply Laplace’s method. We substitute

1

2
f00ðksÞs

2 ¼fðkÞ�fðksÞ, f00ðksÞ ¼ �
ðZM�1Þ2

JMZMðtþ1Þ
þOð1=J2

MÞ:

ðC:4:3:10Þ

This gives

3F2ð1�JM ,1,1;sþtJM ,2;ZMÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

f00ðksÞ

s
FðksÞ, ðC:4:3:11Þ

where F(k) is given in (C.4.3.4). After using (C.4.3.2) we obtain

3F2ð1�JM ,1,1;sþtJM ,2;ZMÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

f00ðksÞ

s
ZM�1

ðZMþtÞJM
�
ZM

t

� �1=2�c 1þt
1�ZM

� �a�c

: ðC:4:3:12Þ
2.
 The case w4wcno
and w4wcn . In this case t40 and ZM o0. We

use (C.4.1.6), replacing the Pochhammer symbol (a)k by the
second form of (C.4.3.1) and (c)k by the first. This gives

3F2ða,1,1; c,2;ZMÞ ¼
X1
k ¼ 0

FðkÞ, ðC:4:3:13Þ

where

FðkÞ ¼
GðJMÞGðcÞð�ZMÞ

k

ðkþ1ÞGðJM�kÞGðcþkÞ
, ðC:4:3:14Þ

and we replace the summation in (C.4.3.13) by integration,

3F2ða,1,1; c,2;ZMÞ �

Z JM

0
FðkÞ dk: ðC:4:3:15Þ

Applying the asymptotic estimates of gamma functions in
(C.4.3.2), we obtain

FðkÞ ¼
GðJMÞGðcÞecþ JM

2pðkþ1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJM�kÞðcþkÞ

p
e�fðkÞ, ðC:4:3:16Þ

where

fðkÞ ¼ ðcþkÞlnðcþkÞþðJM�kÞlnðJM�kÞ�klnð�ZMÞ: ðC:4:3:17Þ

We have

fu
ðkÞ ¼ lnðcþkÞ�lnðJM�kÞ�lnð�ZMÞ, ðC:4:3:18Þ

and the saddle point given by

ks ¼
cþZMJM

ZM�1
¼ k0þk1JM , k0 ¼

s
ZM�1

, k1 ¼
tþZM

ZM�1
,

ðC:4:3:19Þ

where, again, 0ok1o1. The dominant point of the integral in
(C.4.3.15) is k¼ks, and we apply Laplace’s method to this
integral. We substitute

1
2f
00ðksÞs

2 ¼fðkÞ�fðksÞ, f00ðksÞ ¼ �
ðZM�1Þ2

JMZMðtþ1Þ
þOð1=J2

MÞ,

ðC:4:3:20Þ

where fðkÞ is given in (C.4.3.17). This gives

3F2ð1�JM ,1,1;sþtJM ,2;ZMÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

f00ðksÞ

s
FðksÞ, ðC:4:3:21Þ

where F(k) is given in (C.4.3.16). After using (C.4.3.2) we obtain,
as in the case above,

3F2ð1�JM ,1,1;sþtJM ,2;ZMÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

f00ðksÞ

s
ZM�1

ðZMþtÞJM
�
ZM

t

� �1
2�c 1þt

1�ZM

� �a�c

: ðC:4:3:22Þ
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