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Characterizing spatial patterns in allele frequencies is fundamental to evolutionary biology because these patterns contain evidence of 
underlying processes. However, the spatial scales at which gene flow, changing selection, and drift act are often unknown. Many of these 
processes can operate inconsistently across space, causing nonstationary patterns. We present a wavelet approach to characterize spa
tial pattern in allele frequency that helps solve these problems. We show how our approach can characterize spatial patterns in related
ness at multiple spatial scales, i.e. a multilocus wavelet genetic dissimilarity. We also develop wavelet tests of spatial differentiation in 
allele frequency and quantitative trait loci (QTL). With simulation, we illustrate these methods under different scenarios. We also apply 
our approach to natural populations of Arabidopsis thaliana to characterize population structure and identify locally adapted loci across 
scales. We find, for example, that Arabidopsis flowering time QTL show significantly elevated genetic differentiation at 300–1,300 km 
scales. Wavelet transforms of allele frequencies offer a flexible way to reveal geographic patterns and underlying evolutionary processes.
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Introduction
Geographic clines in allele frequency are a classic pattern in evo
lutionary biology, being frequently observed in nature and having 
extensive theory for the underlying processes. For example, the
ory describes how limited gene flow and drift (Wright 1931) or 
changing selection (Haldane 1948) can generate allele frequency 
differences between populations. Accordingly, researchers often 
estimate and model spatial allele frequency patterns to make in
ferences about underlying evolutionary and ecological mechan
isms. To do so, researchers often divide sampled individuals into 
discrete groups (populations) among which differences in allele 
frequencies are calculated. A common such approach involves es
timating FST, the proportion of total allele frequency variation that 
differs between discrete populations (Wright 1949; Lewontin and 
Krakauer 1973).

However, many species exist as more or less continuously dis
tributed populations. Theoretical study of allele frequency change 
across continuous populations began as early as Wright (1943)
and Malécot (1948), who found expectations for genetic differenti
ation or kinship as functions of gene flow and geographic distance. 
Later progress included diffusion models (Nagylaki 1978) and 
stepping stone/lattice models (Kimura and Weiss 1964) giving ex
pectations for correlation in allele frequencies across distance, 
and models accounting for population regulation by negative 
density dependence (Barton et al. 2002).

Despite these theoretical advances, the statistical tools for in
ference on continuously distributed populations have lagged 
(Bradburd and Ralph 2019; Hancock et al. 2023). Nevertheless, 
statistical approaches to studying spatial pattern in continuous 

populations include models relating landscape features to gene 
flow (McRae et al. 2008), calculating correlations between spatial 
functions and genotype (Yang et al. 2012; Wagner et al. 2017), 
and applying discrete landscape grids to identify geographic re
gions where genetic turnover is particularly high or low (Petkova 
et al. 2016). Approaches have been developed to estimate the 
average distance of gene flow from the slope of genetic divergence 
versus geographic distance (Rousset 2000; Vekemans and Hardy 
2004), to estimate localized genetic “neighborhoods” (Wright 
1946; Shirk and Cushman 2014), and to model both discrete 
and continuous relatedness patterns simultaneously (Bradburd 
et al. 2018).

In recent years, researchers have collected many large, broadly 
distributed DNA sequence datasets from diverse species 
(Alonso-Blanco et al. 2016; Yeaman et al. 2016; Wang et al. 2020; 
Machado et al. 2021). Statistical inference can be applied to these 
data to understand gene flow, demographic histories, and spatial
ly varying selection. Despite the progress made by previous ap
proaches, there remain challenges.

The form and scale of relevant spatial patterns is 
unknown
Humans can infer seemingly meaningful patterns in even ran
domly generated images (Blakemore et al. 2003; Ayton and 
Fischer 2004; Fyfe et al. 2008). So what are the spatial patterns 
we are looking for? The functional forms (i.e. shapes) of both spa
tially varying selection and neutral processes (e.g. dispersal ker
nels) are often unknown, as are the forms of resulting spatial 
patterns. For example, the specific environmental gradients 
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driving changing selection are often not known, nor is the spatial 
scale at which they act, and whether they change at the same rate 
consistently across a landscape.

In the case of neutral processes, a homogeneous landscape ap
proximately at equilibrium is rarely of interest to empiricists. 
Instead, the influence of heterogeneous landscapes (Manel et al. 
2003) and historical contingency is usually a major force behind 
spatial patterns in allele frequency and traits (Excoffier and Ray 
2008). As a result, researchers often attempt to characterize spa
tial patterns of relatedness and genetic similarity to make infer
ences about variation in gene flow (McRae et al. 2008; Wang et al. 
2009; Peterman 2018) and recent population expansion (Slatkin 
1993). The influence of gene flow, drift, and range expansion can 
occur at a variety of spatial scales, and in different ways across 
a heterogenous landscape. For example, the rate at which related
ness decays over geographic distance can change abruptly at ma
jor barriers (Rosenberg et al. 2005). However, the scale-specificity 
and nonstationarity of such patterns can be challenging to 
characterize.

The spatially varying selective gradients causing 
local adaptation are unknown
One important force behind allele frequency clines is changing se
lection due to environmental gradients, resulting in local adapta
tion. However, it is often not clear what environmental gradients 
drive local adaptation (Kawecki and Ebert 2004). This is especially 
true of nonmodel systems and those with little existing natural 
history knowledge. Even for well-studied species, it is not trivial 
to identify the specific environmental conditions that change in 
space and drive local adaptation. Ecology is complex, and abiotic 
and biotic conditions are high-dimensional. Rather than a priori 
selection of a putative selective gradient, an alternative approach 
is to search for spatial patterns in allele frequencies that cannot 
be explained by neutral processes. This approach is embodied 
by several statistics and approaches, such as FST (Weir and 
Cockerham 1984), XtX (Gautier 2015), spatial ancestry analysis 
(SPA) (Yang et al. 2012), Moran’s eigenvector maps (MEMs) 
(Wagner et al. 2017), and others.

Many approaches rely on discretization of 
population boundaries
Some of the aforementioned approaches rely on dividing sampled 
individuals into discrete spatial groups. FST is one such approach, 
that was introduced by Wright (1949) and defined as the “correl
ation between random gametes, drawn from the same subpopula
tion, relative to the total,” where the definition of “total” has been 
interpreted differently by different authors (Bhatia et al. 2013). The 
classic approach of calculating FST to test for selection was usually 
applied to a small number of locations, a situation when discret
ization (i.e. deciding which individuals genotyped belong in which 
population) was a simpler problem. Current studies often sample 
and sequence individuals from hundreds of locations, and so the 
best approach for discretizing these genotyped individuals into 
defined ’populations’ is less clear. In addition to the spatial scale 
of subpopulations, at issue is precisely where to place the bound
aries between populations. The problem is enhanced for broadly 
distributed species, connected by gene flow, that lack clear spa
tially distinct populations (Josephs et al. 2019). Even if clustering 
algorithms appear to show clustering of genotypes, these meth
ods can be sensitive to sampling bias (e.g. geographic clustering) 
and can mislead as to the existence of discrete subpopulations 
(Serre and Pääbo 2004; Frantz et al. 2009).

Some approaches are not limited by discretization, and might 
be generally termed “population-agnostic” because discrete popu
lations are not defined. These instead use ordination of genetic 
loci or geographic location. Approaches that use ordination 
(such as PCA) of genetic loci look for particular loci with strong 
loadings on PCs (Duforet-Frebourg et al. 2016) or traits with an un
expectedly high correlation with individual PCs (Josephs et al. 
2019). Alternatively, ordination of distance or spatial neighbor
hood matrices can create spatial functions that can be used in cor
relation tests with genetic loci (Wagner et al. 2017). However, 
ordinations to create individual rotated axes are not done with re
spect to biology and so might not be ideal for characterizing bio
logical patterns. For example, ordinations of genetic loci are 
heavily influenced by global outliers of genetic divergence (Peter 
et al. 2020) and uneven sampling (McVean 2009). Ordinations 
like PCA also often lack parametric null distributions for hypoth
esis testing.

Wavelet characterization of spatial pattern
Instead of discretizing sampled locations into populations, one 
could model allele frequencies with flexible but smooth functions. 
Wavelet transforms allow one to characterize the location and the 
scale or frequency of a signal (Daubechies 1992). Daubechies 
(1992) gives a nice analogy of wavelet transforms: they are akin 
to written music, which indicates a signal of a particular fre
quency (musical notes of different pitch) at a particular location 
(the time at which the note is played, in the case of music). 
Applying this analogy to genetics, the frequency is the rate at 
which allele frequencies change in space, and the location is the 
part of a landscape where allele frequencies change at this rate. 
Applying wavelet basis functions to spatial genetic data could al
low us to characterize localized patterns in allele frequency, and 
dilating the scale of these functions could allow us to characterize 
scale-specific patterns in allele frequency (see Supplementary 
Fig. 1 for an example). Note that wavelets are distinct from 
Fourier analysis. Wavelets capture localized signals because the 
basis functions’ variance goes to zero moving away from the focal 
location, while Fourier can only capture global average patterns as 
it uses stationary (unchanging) basis functions. Wavelet trans
forms have had some recent applications in modeling ancestry 
along the genome (Pugach et al. 2011; Groh and Coop 2024) but 
have not been implemented to model geographic genetic patterns.

Keitt (2007) created a wavelet approach for characterizing spa
tial patterns in ecological communities. He used this approach to 
identify locations and scales with particular high community 
turnover, and created null-hypothesis testing of these patterns. 
These spatial patterns in the abundance of multiple species are 
closely analogous to spatial patterns in allele frequency of many 
genetic markers across the genome, and previous spatial genetic 
studies have also profited by borrowing tools from spatial commu
nity ecology (Lasky et al. 2012; Fitzpatrick and Keller 2015). Here we 
modify and build on this approach to characterize spatial pattern 
in allele frequency across the genome and at individual loci.

Methods
Wavelet characterization of spatial pattern in 
allele frequency
Our implementation here begins by following the work of Keitt 
(2007) in characterizing spatial community turnover, except that 
we characterize genomic patterns using allele frequencies of mul
tiple loci in place of abundances of multiple species in ecological 
communities. In later sections of this paper, we build off this 
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approach and develop new tests for selection on specific loci. Our 
implementation of wavelets allows estimation of scale-specific 
signals (here, allele frequency clines) centered on a given point, 
a, b, in two-dimensional space. We use a version of the 
Difference-of-Gaussians (DoG) wavelet function (Supplementary 
Fig. 1) (Muraki 1995). We start with a Gaussian smoothing 
function centered at a, b for a set of sampling points 
Ω = {(u1, v1), (u2, v2), . . . (un, vn)}, which takes the form

ηs
a,b(x, y) =

k
􏼒

x − a
s

,
y − b

s

􏼓

􏽐
(u,v)∈Ω k

􏼒
u − a

s
,

v − b
s

􏼓 , (1) 

where s controls the scale of analysis and k(x, y) is the Gaussian 

kernel k(x, y) = e−(x2+y2)/2.
The DoG wavelet function then takes the form

ψs
a,b(x, y) = ηs

a,b(x, y) − η βs
a,b(x, y) (2) 

where β > 1, and so the larger scale smooth function is subtracted 
from the smaller scale smooth to characterize the scale-specific 
pattern. If we use β = 1.87, then the dominant scale of analysis 
resulting from the DoG is s distance units (Keitt 2007). This formu
lation of the wavelet kernel is similar in shape to the 
derivative-of-Gaussian kernel and has the advantage of maintain
ing admissibility (Daubechies 1992) even near boundaries, as each 
of the smoothing kernels ηs

a,b are normalized over the samples 

such that their difference integrates to zero.
Let fi(u, v) be the major allele frequency of the ith locus from a 

set of I biallelic markers at a location with spatial coordinates u, v. 
The adaptive wavelet transform of allele frequency data at locus i, 
centered at a, b and at scale s is then

(Twavfi)(a, b, s) =
1

ha,b(s)

􏽘

(u,v)∈Ω

ψs
a,b(u, v)fi(u, v), (3) 

where the right summation is of the product of the smooth 
function and the allele frequencies across locations. The magni
tude of this summation will be greatest when the DoG wavelet fil
ter matches the allele frequency cline. That is, when the shape 
of the wavelet filter matches the allele frequency cline in space, 
the product of ψs

a,b(u, v) and fi(u, v) will resonate (increase 

in amplitude) yielding greater variation among locations in 
(Twavfi)(a, b, s), the wavelet-transformed allele frequencies. When 
the spatial pattern in the wavelet filter and allele frequencies are 
discordant, the variation in their product, and hence the wavelet- 
transformed allele frequency, is reduced. For consistency, here we 
choose major allele frequency for fi(u, v), though in practice the 
signing of alleles has little impact on our results.

The ha,b(s) term in equation 3 is used to normalize the variation 
in the wavelet function so that the wavelet transforms Twavfi are 
comparable for different scales s and locations a, b:

ha,b(s) =
���������������������􏽘

(u,v)∈Ω

[ψs
a,b(u, v)]2

􏽳

. (4) 

When a, b is far from locations in Ω relative to the scale s, the 
Gaussian functions [ηs

a,b(x, y)] that make up the wavelet function 

ψ are only evaluated over a range where they remain close to 
zero. Thus unsampled geographic regions will have very small 
ha,b(s), the term used to normalize for local variation in the wavelet 

basis functions. In turn, very small ha,b(s) dramatically and un
desirably inflates the wavelet transformed allele frequencies 
(equation 3) in these geographic regions where there is little sam
pling relative to s. For this reason, we do not calculate the wavelet 
transform for locations a, b where there are no locations sampled 
closer than 2s distance units.

Below we illustrate how to apply this wavelet transform 
(equation 3) of spatial allele frequency patterns to characterize 
genome-wide patterns, as well as to test for local adaption at indi
vidual loci.

Wavelet characterization of spatial pattern in multiple loci
Researchers are often interested in characterizing spatial patterns 
aggregated across multiple loci across the genome to understand 
patterns of relatedness, population structure, and demographic 
history. Here, we specifically want to characterize heterogeneity 
in spatial patterns, because this heterogeneity in pattern may re
flect heterogeneity in underlying processes: where there is hetero
geneity in migration rates, such as where there are migration 
barriers (Petkova et al. 2016), or where there are recent range ex
pansions such that spatial patterns are farther from equilibrium 
(Slatkin 1993).

We use

Dwav
a,b (s) =

�������������������������
􏽘I

i=1

[(Twavfi)(a, b, s)]2

􏽶
􏽵
􏽵
􏽴 (5) 

to calculate a “wavelet genetic distance” or “wavelet genetic dis
similarity.” This wavelet genetic dissimilarity is computed as the 
euclidean distance (in the space of allele frequencies across the 
genome) between the genetic composition centered at a, b and 
other locations across s distance units. This wavelet genetic dis
similarity Dwav

a,b (s) is localized in space and scale-specific. This 

quantity captures the level of genetic turnover at scale s centered 
at a, b, and is capturing similar information as the increase in 
average genetic distance between a genotype at a, b and other 
genotypes s distance units away. To obtain the average dissimilar
ity across the landscape, one can also calculate the mean of 
Dwav

a,b (s) across locations a, b at each sampled site, to get a mean 

wavelet genetic dissimilarity for s. A benefit of using the wavelet 
transformation over sliding window approaches (e.g. Bishop 
et al. 2023) is that wavelets smoothly incorporate patterns from 
samples that are not precisely s distance units away and can be 
centered at any location of the analyst’s choosing.

Testing the null hypothesis of no spatial pattern in allele 
frequency
A null hypothesis of no spatial pattern in allele frequencies can be 
generated by permuting the location of sampled populations 
among each other. Most empirical systems are not panmictic, 
and so this null model is trivial in a sense. However, comparison 
with this null across scales and locations can reveal when systems 
shift from small-scale homogeneity (from local gene flow) to lar
ger scale heterogeneity (from limited gene flow) (Keitt 2007).

Simulated neutral patterns across a continuous landscape
To demonstrate the wavelet transformation of allele frequencies, 
and wavelet genetic dissimilarity function, we applied these tools 
to several simulated scenarios. First, we conducted forward land
scape genetic simulations under neutrality using the SLiM 
software (Haller and Messer 2019), building off published 
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approaches (Battey et al. 2020a, 2020b). We simulated outcrossing, 
iteroparous, hermaphroditic organisms, with modest lifespans 
(average of ∼ 4 time steps). Individual fecundity was Poisson dis
tributed, mating probability (determining paternity) was deter
mined based on a Gaussian kernel (truncated at 3 SD), and 
dispersal distance from mother was also Gaussian (Battey et al. 
2020a). Individuals became mature in the time step following their 
dispersal. These parameters roughly approximate a short lived 
perennial plant with gene flow via pollen movement and seed dis
persal. Competition reduced survival and decayed with distance 
following a Gaussian (truncated at 3 SD, Battey et al. 2020b). 
Near landscape boundaries, survival was reduced to compensate 
for lower competition from beyond the landscape margin (Battey 
et al. 2020b). Code is available at GitHub (https://github.com/ 
jesserlasky/WaveletSpatialGenetic).

We began by characterizing a simple scenario across a continu
ous landscape. We simulated a square two dimensional land
scape measuring 25 units on each side. The standard deviation 
of mating and dispersal distance σ were both 0.2, yielding a com
bined standard deviation of gene flow distances of 0.24 [(3σ2/2)1/2]. 
In this first simulation there was no selection. The population was 
allowed to evolve for 1,00,000 time steps before we randomly 
sampled 200 individuals and 1,000 SNPs with a minor allele fre
quency of at least 0.05. The first two principal components (PCs) 
of these SNPs show smooth population structure across the 

landscape, and that these two PCs predict the spatial location of 
each sample (Supplementary Fig. S2 in File S1).

To facilitate interpretation of wavelet transformed allele fre
quencies (Twavfi)(a, b, s) we provide two example loci i with distinct 
spatial patterns (Fig. 1). The first locus has the greatest variance 
in wavelet transformed allele frequencies among sampled loci 
at s = 0.4 (Fig. 1a–c) while the second locus has the greatest 
variance at s = 12.2 (Fig. 1d–f).

We then calculated wavelet dissimilarity Dwav
a,b (s), aggregating 

the signals in (Twavfi)(a, b, s) across loci i, for each sampled location 
at a range of spatial scales s. Here and below we use a set of scales 
increasing by a constant log distance interval, as genetic distances 
are often linearly correlated to log geographic distances in two di
mensions (Rousset 1997). The mean across sampled locations for 
each scale was calculated and compared to the null distribution 
for that scale (Supplementary Fig. S2 in File S1). The null was gen
erated by permuting locations of sampled individuals as described 
above, and observed mean of dissimilarity was considered signifi
cant if it was below the 2.5 percentile or above the 97.5 percentile 
of dissimilarity from null permutations.

When comparing our simulated data to the null, we found that 
mean wavelet genetic dissimilarity was significantly less than ex
pected under the null model at scales s ≤ 0.93, due to local hom
ogenization by gene flow (SD = 0.24). At scales s ≥ 1.24, wavelet 
dissimilarity was significantly greater than expected, due to 

Fig. 1. Two example SNPs (rows) with distinct spatial patterns. Shading shows either allelic variation (untransformed, a, d) or variation in wavelet 
transformed allele frequencies (Twavfi)(a, b, s) (b,c,e,f). The first locus a–c) has the greatest variance in wavelet transformed allele frequency among 
sampled loci at s = 0.4. The second locus d–f) has the greatest variance in wavelet transformed allele frequency at s = 12.2. For the SNP in the top row, the 
variance among locations in (Twavfi)(a, b, s) for s = 0.4 is 0.56 (visualized as shading in b), while it is only 0.17 for the SNP in the bottom row e). For the SNP in 
the bottom row, the variance among locations in (Twavfi)(a, b, s) for s = 12.2 is 44.46 (visualized as shading in f), while it is only 1.24 for the SNP in the top 
row c).
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isolation by distance, with monotonically increasing wavelet gen
etic dissimilarity at greater scales (Supplementary Fig. 2).

To demonstrate how the scale of gene flow influences the 
wavelet dissimilarity Dwav

a,b (s), we also conducted identical simula
tions as described above but instead with standard deviations of 
mating and dispersal distances, σ, of 0.5, 1, 2, or 5, yielding com
bined standard deviations of gene flow distances of 0.61, 1.22, 
2.45, and 6.12.

To verify that simulations were generating results consistent 
with theoretical expectations of continuous populations at equi
librium, we compared the simulated gene flow parameters with 
estimations from the simulated data based on theory. The slope 
of genetic differentiation versus geographic distance in two 
dimensions is expected to be proportional to the inverse of 
Wright’s neighborhood size, 4πDσ2, where D is the effective popu
lation density and σ is the standard deviation of gene flow (Wright 
1943, 1946; Rousset 2000; Vekemans and Hardy 2004).

We estimated D using Ne = (4N − 2)/(V + 2) where N is census 
population size and V is variance in lifetime reproductive output 
(Kimura and Crow 1963). We calculated V using the lifetime repro
ductive output of the individuals dying in the last 50 time steps. 
We then divided the estimated Ne by landscape area (assuming 
evenly distribution across the landscape) to get effective density 
D (Vekemans and Hardy 2004). We used three different genetic dif
ferentiation or kinship metrics (Loiselle et al. 1995; Ritland 1996; 
Rousset 2000) combined with estimated D to estimate gene flow 
across a range of true gene flow parameters (using SPAGeDi v1.5 
software, Hardy and Vekemans (2002)). We also compared indi
vidual pairwise estimates of genetic differentiation across dis
tance with the theoretically expected slope. Simulations were 
run for 100,000 time steps with parameters as described above.

We found that the gene flow estimated using the slope of gen
etic versus geographic distance and D was closely matched by the 
simulation parameter value, especially for the Rousset (2000) gen
etic differentiation estimator (Supplementary Figs. 3 and 4). This 
matching suggests these simulations corresponded well with the
ory for continuous populations at equilibrium, despite ignoring 
the effects of negative density dependence, uneven distribution 
of individuals, and boundary effects (Barton et al. 2002).

With increasing scale of gene flow we see a flatter change in 
wavelet dissimilarity across spatial scales (Supplementary Fig. 5). 
When gene flow is local, wavelet dissimilarity is low at small scales 
and high at large scales. At the large gene flow scale, the observed 
wavelet dissimilarity is indistinguishable from the panmictic null. 
We also ran the same analyses but using biased sampling along 
the landscape’s y-axis, so that 3/4 of samples were in the upper 
half of the landscape. Even with this bias, the wavelet dissimilar
ities across scales and gene flow parameters were essentially 
unchanged (Supplementary Fig. S6 in File S1). To investigate sensi
tivity to landscape size, we also ran these same simulations with 
landscapes four times as large (50×50) and found similar patterns 
of wavelet dissimilarity across scales and simulated gene flows 
(Supplementary Fig. 7).

Results

Simulated long-term neutral patterns in a heterogeneous 
landscape
To assess if our approach could identify localized and scale- 
specific patterns of isolation by distance, we next simulated mul
tiple scenarios where we expected spatial heterogeneity. First, we 

simulated neutral evolution across a simulated patchy landscape 
(generated from earlier work) (Lasky and Keitt 2013). This land
scape contained a substantial portion of unsuitable habitat where 
arriving propagules perished. We used the same population para
meters as previously and simulated 100,000 time steps to reach 
approximately stable relatedness patterns. We then calculated 
wavelet dissimilarity using 1,000 random SNPs of 200 sampled 
individuals.

Additionally, we sought to compare wavelet dissimilarities to 
more familiar metrics. To do so, we calculated euclidean genetic 
distance (in the space of allele frequencies across the genome) 
and geographic distance between pairs of samples, and did this 
for different subsets of samples and regions, so as to compare lo
calized patterns in wavelet dissimilarity to localized patterns in 
pairwise distances.

In our landscape, wavelet dissimilarity showed localized and 
scale-specific patterns of low and high dissimilarity (Fig. 2). 
Notably, the same two islands (top left and bottom right of land
scape in Fig. 2) have lower dissimilarity than expected at small 
scales and are more dissimilar than expected at larger scales. 
Stated another way, these islands have low diversity locally (e.g. 
within populations), as can be seen by the slow increase in genetic 
distance with geographic distance locally (Fig. 2d, compare to 2f). 
However, at larger scales (e.g. comparing island to mainland) is
lands are more dissimilar, as seen by the greater genetic distances 
at larger geographic distances (Fig. 2e, compare to 2g; also see the 
first two principal components of SNPs, Supplementary Fig. S8 in 
File S1). These results highlight the capacity of the method to con
trast patterns across scales requiring only dilation of the analyz
ing kernel.

Simulated neutral patterns in a colonizing and 
range-expanding species
For a second scenario where we expected localized, scale-specific 
heterogeneity, we simulated an invasion/range expansion. 
Beyond the importance of invasions in applied biology, the 
changes in spatial genetic patterns over time are of general inter
est (Slatkin 1991, 1993; Le Corre et al. 1997; Castric and Bernatchez 
2003), considering that all species ranges are dynamic and many 
“native” species still bear clear evidence of expansion, e.g. follow
ing the last glacial maximum.

We simulated invasion across a square landscape of the same 
size as before, but beginning with identical individuals only in the 
middle at the bottom edge of the landscape (Fig. 3). We sampled 
200 individuals at time steps 100, 250, 500, 1,000, 1,500, 2,000, 
through the full populating of the landscape around 2,500 years 
and until the 3,000th time step.

We characterized wavelet genetic dissimilarity and found sub
stantial heterogeneity across different regions and across time 
(e.g. for s = 6.9, dark versus light red in Fig. 3a–c). This heterogen
eity in genetic turnover can be seen by contrasting genotypes 
from different regions. Near the expansion front, there is relative 
homogeneity and low diversity locally in new populations, but 
with rapid turnover in genotypes separated by space, resulting in 
high wavelet dissimilarity at intermediate spatial scales (Fig. 3d). 
In the range interior, there is greater local diversity and less turn
over in genotype across space, i.e. a weaker isolation by distance 
(Fig. 3e, see all SNP genetic distance plot Supplementary Fig. 9). 
Supporting the role of founder effects and low diversity at expand
ing range margins in driving these patterns, we observed a decline 
in medium- and large-scale wavelet dissimilarity in later years 
(Fig. 3g) after the landscape had been populated.
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These patterns highlight how wavelet dissimilarity is capturing 
scale-specific turnover in genetic composition, rather than merely 
genetic distance at a given geographic distance. Comparing the 
two regions highlighted in Fig. 3b, the genetic distances at a 

geographic distance of 6.9 are not strikingly different 
(Supplementary Fig. 9). Rather what distinguishes these regions is 
their rate of genetic change in composition at this scale, as high
lighted in Fig. 3. The region of high wavelet dissimilarity at s = 6.9 

Fig. 2. Wavelet genetic dissimilarity identifies scale-specific, localized patterns in a heterogeneous landscape, with pairwise distance plots for 
comparison. a–c) Maps of simulated landscape where habitat is gray (in background) and unsuitable areas are white. Sampled individuals are circles. 
Colors represent sampling locations where wavelet genetic dissimilarity was significantly high (red) or low (blue), with s, the wavelet scale, shown at top 
of each panel as a horizontal line. At the smallest scales a), samples have less dissimilarity than expected, especially in the island in the upper left of the 
landscape. This pattern can also be seen d,f) when comparing pairwise geographic versus euclidean genetic distances for samples in the different regions 
of the landscape (dashed gray lines in a). At larger spatial scales b–c), all locations have significantly greater dissimilarity than expected due to limited 
gene flow. However, the same islands show the greatest dissimilarity at large scales (lower panels), due to their high genetic difference from mainland 
samples at center. This pattern can also be seen in the pairwise genetic distances across larger geographic distances e,g). d–g) Loess smoothing curves are 
shown.
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(Fig. 3b) transitions from homogeneity among nearby samples to 
high genetic distance at larger scales (Fig. 3d, S9). By contrast the re
gion of low wavelet dissimilarity at s = 6.9 (Fig. 3b) starts out with 
greater genetic distance among nearby samples with a modest in
crease in genetic distance at larger scales (Fig. 3e, S9).

Overall, these simulations show the capacity of Dwav
a,b (s), wavelet 

genetic dissimilarity, to capture localized, scale specific trends in 
genetic composition. Given the spatial heterogeneity in nature 
and the dynamics of populations and species ranges through 
time, there are likely many such patterns waiting to be described 
to shed light on patterns of gene flow and population history.

Finding the loci of local adaptation

Using wavelet transforms to identify outliers of spatial 
pattern in allele frequency
We can also use our approach to transforming allele frequencies to 
identify particular genetic loci involved in local adaptation, and the 

regions and spatial scales of turnover in their allele frequency. Our 
strategy is (as before) to first calculate (Twavfi)(a, b, s), the wavelet 
transform, for each locus i at each sampling point a, b for a set of 
chosen spatial scales s ∈ S.

Because of different ages and histories of drift, mutations will 
vary in their global allele frequency and thus global variance. To 
facilitate comparisons among loci for relative evidence of selec
tion, we can normalize spatial patterns in allele frequency by total 
variation across locations, as is done when calculating FST.

Here we divide the wavelet transforms of allele frequency by 
the standard deviation of global allele frequency variation for 
each locus i, sd(fi). This normalization is greatest when minor al
lele frequency is 0.5 for a biallelic locus, and yields a scaled wave
let transformed allele frequency: (Twavfi)(a, b, s)/sd(fi), for a given 
location and scale.

We then calculate the variance across sampling locations of 
(Twavfi)(a, b, s)/sd(fi) and refer to this quantity as the “scale-specific 
genetic variance.” This scaled-specific variance is akin to FST 

in being a measure of spatial variation in allele frequency normal
ized to total variation (which is determined by mean allele 

Fig. 3. Wavelet genetic dissimilarity reveals dynamic spatial patterns during an invasion across a homogeneous landscape. Left column of panels a–c) 
shows a map of the landscape through time, with 200 sampled individuals at each time step and the wavelet dissimilarity at s = 6.9 at their location. 
Darker red indicates greater wavelet dissimilarity. In the second time step, 1,000, two regions are highlighted in dashed boxes b), one with higher 
dissimilarity at s = 6.9 d) and one with lower dissimilarity at this scale e). d–e) show pairwise geographic distance versus distance in the first PC of SNPs for 
samples from these regions. f) shows the loadings of each sample on the first PC of SNPs. d–e) highlight the greater increase in PC1 distance with 
geographic distance at this scale (vertical dashed lines) in d), compared to the smaller increase in PC1 distance at this scale in e). In particular, the region 
highlighted in d) is homogeneous at short distances but very distinct at distances at the highlighted scale s = 6.9, indicating the major genetic turnover at 
this scale and location. g) Mean wavelet dissimilarity across the landscape changes over time, highlighting the dynamic spatial population genetic 
patterns across invasions. Loess smoothing curves are shown in e–f).
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frequency). High scale-specific variance for a given locus indicates 
high variation at that scale relative to the total variation and mean 
allele frequency. We then used a χ2 null distribution across all 
genomic loci to calculate parametric P-values (Cavalli-Sforza 
1966; Lewontin and Krakauer 1973) and used the approach of 
Whitlock and Lotterhos (2015) to fit the degrees of freedom of 
the distribution of scale-specific genetic variances (see 
Supplemental Methods). Applying this approach to a range of si
mulated scenarios as well as an empirical dataset (described be
low), we see that the χ2 distribution with a maximum-likelihood 
fit to determine degrees of freedom provides a reasonably close 
fit to the distribution of scale-specific genetic variance among 
SNPs (Supplementary Figs. 10–13).

Simulated local adaptation
First, we present some specific individual simulations for illustra
tion, and then a larger set with more variation in underlying para
meters. We simulated a species with the same life history 
parameters as in simulations above, with the addition of spatially 
varying viability selection on a quantitative trait. We imposed two 
geometries of spatially varying selection, one a linear gradient and 
the other a square patch of different habitat selecting for a differ
ent trait value. As with the neutral simulations, simulations with 
selection began with organisms distributed across the landscape, 
with an ancestral trait value of zero. In these simulations, 1% of 
mutations influenced the quantitative trait with additive effects 
and with effect size normally distributed with a standard devi
ation of 5. For the linear gradient, the optimal trait value was 0.5 
at one extreme and −0.5 at the other extreme, on a 25x25 square 
landscape. Selection was imposed using a Gaussian fitness func
tion to proportionally reduce survival probability, with standard 
deviation σk. In this first simulation, σk = 0.5. Carrying capacity 
was roughly five individuals per square unit area, and simulated 
populations usually stabilized close to this density. Full details 
of simulation, including complete code, can be found in 
supplemental materials and on GitHub (https://github.com/ 
jesserlasky/WaveletSpatialGenetic).

In the first simulation along a linear gradient after 2,000 time 
steps, there were 2 selected loci with minor allele frequency 
(MAF) at least 0.1, with a genetic variance in the trait of 3.7. (the 
scale of mating and propagule dispersal were each σ = 1.1) The 
two loci under stronger selection were clearly identified by the 
scale-specific genetic variance var((Twavfi)(a, b, s)/sd(fi)) at the lar
ger spatial scales (Fig. 4). When there is a linear selective gradient 
across the entire landscape, the largest spatial scale is the one 
most strongly differentiating environments and the strongest 
scale-specific genetic variance was at the largest scale (Fig. 4). 
However, power may not be greatest at these largest scales, be
cause population structure also is greatest at these largest scales. 
Instead, power was greatest at intermediate scales, as seen by the 
lowest P-values being detected at these intermediate scales 
(Fig. 4). At these scales, there is greater gene flow but still some de
gree of changing selection that may maximize power to detect 
selection.

We next simulated change in selection in a discrete habitat 
patch, which may more closely correspond to the setting where 
researchers would find useful a flexible approach to finding spa
tial patterns in allele frequency, especially if the patches of dis
tinct environment are not known by researchers. In our 
simulation there was a large central patch, 10x10, that selected 
for distinct trait values (trait optimum = 0.5) compared to the out
er parts of the landscape (trait optimum = −0.5). Selection was ini
tially weakly stabilizing (σk = 3 around the optimum of zero for the 

first 500 years to accumulate diversity, and then the patch select
ive differences were imposed with stronger selection, σk = 0.08. 
The scales of mating and propagule dispersal were each σ = 2. 
Carrying capacity was roughly 50 individuals per square unit area.

In this simulation, we present results after 3,000 time steps, 
where there was a single common quantitative trait locus (QTL) 
under selection, giving a genetic variance in trait of 0.42 (Fig. 5). 
We found several spurious large scale peaks in scale-specific gen
etic variance (Fig. 5a), but when using the χ2 test on these statistics 
we clearly identified the single QTL under selection, with lowest 
P-values for intermediate scales (Fig. 5b).

We calculated the scale-specific genetic variance across a 
denser spectrum of scales s for the causal SNP, to determine at 
what scale variance was greatest. We found the maximum scale- 
specific genetic variance for the causal SNP was at 5.02, approxi
mately half the length of a patch edge (Fig. 5c). For illustration, 
we also calculated FST (Weir and Cockerham 1984; Goudet 2005) 
for several naively discretized subpopulation scenarios for a sim
ple illustration of how results are sensitive to discretization 
(Fig. 5d–f). We also implemented our test on these two simulated 
landscapes but with biased sampling and found our ability to de
tect causal loci was robust (Supplementary Fig. 14).

Evaluating the scale-specific genetic variance test
As an initial assessment of the general appropriateness of the 
scale-specific genetic variance test we proposed above, we con
ducted additional simulations on two types of landscapes with 
varying life history parameters. These simulations were not 
meant to be an exhaustive evaluation of the performance of this 
new test; we leave a more extensive evaluation for future studies.

Here, we again used the discrete habitat patch landscape and 
the linear gradient landscape but with a wider range of parameter 
variation. We tested a range of mating and dispersal (σ) scales in
cluding 0.25, 0.5, 1, and 2, and a range of stabilizing selection (σk) 
values including 0.125, 0.25, 0.5, and 1. Three simulations were 
conducted for each combination of parameter settings and each 
ran for 10,000 years.

Because PCAdapt is one of the few methods for identification of 
spatial pattern in allele frequency that does not require subpopu
lation discretization and in theory could detect patterns at mul
tiple scales, we also implemented this method. We used the PCA 
of the scaled genotype matrix, thinned for LD but including causal 
SNPs, to extract the z-scores and P-values of each SNP with a cut
off of p = 0.05. We used a scree plot showing the percentage of 
variance explained in decreasing order to identify the optimal 
number of principal components following Cattell’s rule 
(Duforet-Frebourg et al. 2016).

Calculating false and true positive rates for PCAdapt was 
straightforward, but for the scale specific genetic variance test 
there are several tests (one at each scale) for each SNP. To conser
vatively represent inference across these multiple tests, we con
sidered SNPs a significant result if one of the tested scales was 
significant. Because the individual scale tests are slightly conser
vative, and continuous wavelet transforms are correlated across 
scales (and hence not completely independent tests), we expected 
the resulting false positive rates would not be unduly high.

Overall the scale-specific genetic variance test showed good 
false positive rates. Across simulations, the proportion of SNPs 
with χ2 upper-tail p < 0.05 at one scale was usually close to but 
sometimes slightly more than 0.05 (Fig. 6). By contrast, under 
scenarios of low gene flow and strong stabilizing selection, nomin
al false positive rates were high for PCAdapt, often >0.15.
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Power to detect SNPs (proportion of selected SNPs with p < 0.05) 
under selection was generally high (true positive rate near 1) but 
sometimes low, depending on the strength of selection (σk) and 
mating and dispersal scales (σ) (Fig. 6). When gene flow was high 
and selection was weak, power was low for both the scale-specific 
genetic variance test and PCAdapt. This also corresponds to the 
scenario when local adaptation is weakest (Kirkpatrick and 
Barton 1997). In addition to considering power simply based on P 
for each SNP, we also considered power using the top P-value 
rank among selected SNPs under each simulation, based on the 
reasoning that researchers may want to follow up on top ranked 
outlier SNPs first before any lower ranked SNPs. This approach 
showed similar results, with high power for both the scale-specific 
genetic variance test and PCAdapt except when gene flow was 
high and selection weak. In general, the two methods showed 

comparable power across different scenarios (Fig. 6), with some 
indication that the scale-specific genetic variance test had higher 
power under high gene flow and PCAdapt slightly higher power 
under lower gene flow. By plotting individual SNPs we can see 
that for the upper end of gene flow scenarios (σ = 1 or 2), the scale- 
specific genetic variance test more consistently identified selected 
SNPs at the top compared to PCAdapt. For the low gene flow scen
arios, PCAdapt more consistently identified large effect variants, 
while the scale-specific genetic variance test more consistently 
identified the smaller effect variants (see results for linear gradi
ent in Supplementary Fig. 15). Overall, the similarities in true 
and false positive rates between methods suggest that our wavelet 
approach is effective compared to other related tools, while our 
test also offers the ability to explicitly consider variation in spatial 
scale.

Fig. 4. Scale-specific genetic variance test applied to simulations with a linear selective gradient. (top panels) Genome-wide variation in scale-specific 
genetic variance, var((Twavfi)(a, b, s)/sd(fi)), for five different scales s and upper-tail P-values for χ2 test using fitted values of d.f. Each point represents an 
SNP at a specific scale. Loci under selection are indicated with vertical lines along with the absolute value of the derived allele’s effect on the trait and 
MAF. At bottom are shown maps of the two selected loci as well as their spectra of scale-specific genetic variance. At upper right the mean scale-specific 
genetic variance across all genomic loci is shown for each scale s. The scale of mating and propagule dispersal were each σ = 1.1. Gaussian viability 
selection was imposed with σk = 0.5. Carrying capacity was approximately five individuals per square unit area.
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Testing for spatial pattern in QTL

When testing for spatially varying selection on a quantitative 

trait, one approach is ask whether QTL identified from associ

ation or linkage mapping studies show greater allele frequency 

differences among populations than expected (Berg and Coop 
2014; Price et al. 2018). Here we implement such an approach 
to compare wavelet transformed allele frequencies for QTL L 
to a set of randomly selected loci of the same number and 
distribution.

Fig. 5. Simulations of local adaptation to a single discrete patch of different habitat. a) Genome-wide variation in scale-specific genetic variance 
var((Twavfi)(a, b, s)/sd(fi)) and b) χ2 P-values for six different scales s, for a discrete habitat difference after 3,000 simulated years. Each point in the left 
panels represents an SNP, and wavelet statistics a–b) at specific scales. The selected SNP is indicated with a vertical line along with the absolute value of a 
derived allele’s effect on the trait and MAF. c) A map of the landscape with individuals’ genotypes at the causal SNP indicated with color, in addition to the 
spectrum of scale-specific genetic variance at this SNP, showing a peak at approximately half the patch width (vertical line at 5). d–e) Implementation of 
FST using arbitrary boundaries for populations. This approach can easily miss causal loci c,e) if the delineated population boundaries do not match 
habitat boundaries. a) At upper right the mean scale-specific genetic variance across all loci is shown for each scale s. The scale of mating and propagule 
dispersal were each σ = 2. Gaussian viability selection was imposed with σk = 0.08.
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For this test, we calculate the mean of scale-specific genetic 
variance for all QTL with MAF at least 0.05 among sampled indivi
duals. We then permute the identity of causal QTL across the gen
ome and recalculate the mean scale-specific genetic variance, and 
repeat this process 1,000 times to generate a null distribution of 
mean scale-specific genetic variance of QTL for each scale s.

We illustrate this test here briefly using a simulation of adapta
tion to a square patch of habitat in the middle of a landscape, with 
the two gene flow parameters σ = 0.5, the strength of selection 
σK = 0.5, carrying capacity ∼ 5 individuals per square unit area. 
After 1,000 generations we sampled 300 individuals, from which 
there were 13 QTL for the trait under selection with MAF at least 
0.05. We then calculated the mean scale-specific genetic variance 
for these QTL across scales s and compared to the null permuta
tions of randomly selected 13 SNPs from the genome.

We found significantly higher mean scale-specific genetic vari
ance for the QTL than the null expectation at all six scales tested. 
Although the scale-specific genetic variance was greatest at the 
largest scales for the QTL, these scales did not show as great a dis
tinction when comparing to the null. The greatest mean wavelet 
variance of QTL relative to null came at the intermediate scales 
of 3–5, which was approximately 1/3–1/2 the width of the habitat 
patch (Supplementary Fig. 16).

Application to an empirical system

Genome-wide wavelet dissimilarity
We applied our approach to an empirical dataset of diverse, 
broadly distributed genotypes with whole genome resequencing 
data: 908 genotypes from 680 natural populations of the model 
plant, Arabidopsis thaliana (Brassicaceae). We used a published 
Arabidopsis dataset (Alonso-Blanco et al. 2016), only including 
Eurasian populations and excluding highly distinct “relicts” and 
also likely contaminant accessions (Pisupati et al. 2017). For loca
tions with more than one accession genotyped, we calculated al
lele frequency. We used a total of 1,29,536 SNPs filtered for 
minor allele frequency (MAF>0.05) and LD (Zheng et al. 2012).

We first calculated the genome-wide wavelet dissimilarity, 
Dwav

a,b (s), across a series of increasing scales s at even intervals in 
log distance units from ∼ 50 m to approximately half the distance 
separating the farthest samples, ∼ 3,000 km.

We observed increasing mean genome-wide wavelet dissimi
larity at larger scales (Fig. 7), a pattern indicative of isolation by 
distance, on average, across the landscape. Arabidopsis showed 
significantly low dissimilarity at scales less than ∼ 5 km, likely 
due to the homogenizing effect of gene flow. However, we found 
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Fig. 6. Comparing the scale-specific genetic variance test with PCAdapt in simulations of adaptation to single discrete patch of different habitat. a) True 
positive rates (nominal p < 0.05) for each combination of simulation parameters, the scales of mating and dispersal σ and the standard deviation of the 
Gaussian stabilizing selection function σk. b) An alternate view of statistical power based on the median rank of the top selected SNP among all SNPs. c) 
False positive rates (nominal p < 0.05). d) Comparing power between the two statistical approaches for the different simulation runs. Density of points is 
shown in the blue scale so as to indicate where many simulations had the same result. The line indicates a 1:1 relationship. e–f) Individual selected SNPs 
in simulations, showing their nominal P values and ranks among all SNPs, colored based on σ in the simulation. The x-axis represents the proportion of 
total phenotypic variation among sampled individuals that was explained by the given SNP (R2 from a linear model).
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significantly high dissimilarity at scales greater than ∼ 7 km. This 
scale of significantly high dissimilarity may be a relatively short 
distance, considering that Arabidopsis is largely self-pollinating 
and lacks clear seed dispersal mechanisms (though seeds of 
some genotypes form mucus in water that increases buoyancy) 
(Saez-Aguayo et al. 2014). At scales greater than ∼ 120 km, we 
found an increase in the slope relating scale s and dissimilarity, 
perhaps signifying a scale at which local adaptation begins to 
emerge.

The locations of scale-specific dissimilarity among Arabidopsis 
populations revealed several interesting patterns. Even by the 
∼ 30 km scale, there were three notable regions of significantly 
high dissimilarity: northern Spain and extreme southern and nor
thern Sweden (Fig. 7). The high dissimilarity at this scale in nor
thern Spain corresponds to the most mountainous regions of 
Iberia, suggesting that limitations to gene flow across this rugged 
landscape have led to especially strong isolation among popula
tions at short distances. In northern Sweden, Long et al. (2013) pre
viously found a particularly steep increase in isolation-by-distance. 
Alonso-Blanco et al. (2016) found that genetic distance was greatest 
among accessions from Southern Sweden at scales from ∼ 2 to 250 

compared to regions farther south. At larger, among-region scales, 
dissimilarity was significantly high across the range, with Iberia 
and northern Sweden again being most dissimilar at ∼ 234 km 
and surpassed by central Asia at ∼ 1,834 km as being most dissimi
lar. Iberia and northern Sweden contain many accessions distantly 
related to other accessions, likely due to isolation during glaciation 
and subsequent demographic histories (Alonso-Blanco et al. 2016). 
This scale in Asia separates populations in Siberia from those fur
ther south in the Tian Shan and Himalayas, indicating substantial 
divergence potentially due to limited gene flow across the heteroge
neous landscape. By contrast, populations in the UK and the Balkan 
peninsula had low dissimilarity across a range of scales, possibly 
due to reduced diversity and a more recent history of spread in 
these regions.

Identifying putative locally adapted loci
For this analysis, we used the same genotypes as in the prior sec
tion but not filtered for LD, leaving 1,642,040 SNPs with MAF>0.1 
(Alonso-Blanco et al. 2016).

The scale-specific genetic variance test identified putative lo
cally adapted loci (Supplementary Fig. 17). The distribution of 

Fig. 7. Genome-wide wavelet dissimilarity, Dwav
a,b (s), for Arabidopsis genotypes. a) The global mean dissimilarity across scales compared to the null 

expectation (gray ribbon) and b) the dissimilarity across scales centered on each sampled genotype, with several regions highlighted (vertical lines 
indicate scales shown in panels c–f). c–f) Selected scales highlight the changes in dissimilarity across locations, with each circle indicating a genotyped 
sample/population. Red indicates significantly greater wavelet dissimilarity than expected, blue significantly less than expected. For the map panels, the 
intensity of color shading indicates the relative variation (for a given scale) in Dwav

a,b (s) among significant locations.
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scale-specific genetic variance among SNPs was reasonably 
matched to the theoretical χ2 distribution (Supplementary Fig. 
13). Among notable loci, at the ∼ 59 km scale, the #2 QTl and #3 
SNP is in the coding region of METACASPASE 4 (MC4), a gene 
that controls biotic and abiotic stress-induced programed cell 
death (Hander et al. 2019; Shen et al. 2019). To speculate, if MC4 
were involved in coevolution with microbial pathogens we might 
expect rapid allele frequency dynamics and thus a pattern of high 
variation among even nearby populations.

The #1 SNP for the ∼ 282 km scale was in the coding sequence of 
the DOG1 gene (Fig. 8, Supplementary Fig. 17). This SNP, Chr. 
5, 18,590,741 was also strongly associated with flowering time 
(see next section) and germination and tags known functional 
polymorphisms at this gene that are likely locally adaptive 
(Martínez-Berdeja et al. 2020). The spatial pattern of variation at 
this locus (Fig. 8) is complicated, highlighting the benefit of the 
flexible wavelet approach. By contrast, imposing a grid on this 
landscape, or using national political boundaries to calculate FST 

could easily miss the signal as did Horton et al. (2012). The 
climate-allele frequency associations for DOG1 are also compli
cated and nonmonotonic (Martínez-Berdeja et al. 2020; Gamba 
et al. 2023), making it challenging for genotype-environment asso
ciation approaches (Lasky et al. 2023).

At the ∼ 1,359 km scale, the #1 SNP (and also the lowest 
P-value SNP among all scales, Fig. 8, Supplementary Fig. 17) 
was on chromosome 5 at 26,247,515 bp, 555 bp upstream from 
AT5G65660, a hydroxyproline-rich glycoprotein family protein. 
These are cell wall glycoproteins with important roles in devel
opment and growth (Johnson et al. 2017) some of which have a 
role in abiotic stress response (Tseng et al. 2013).

Testing for local adaptation in QTL
We tested for nonrandom scale-specific genetic variance of QTL 
for Arabidopsis flowering time, a trait that is likely involved in lo
cal adaptation (Ågren et al. 2017). We used previously published 
data on flowering time: days to flower at 10◦C measured on 

Fig. 8. Allelic variation (colors) for SNPs that were top outliers for scale-specific genetic variance test at different scales. On maps at left, the scale for 
which an SNP was an outlier is indicated by a bar above each map. The right panels show the spatial spectra for each SNP, i.e. the scale-specific genetic 
variance across a range of scales. Dashed lines indicate the scale for which an SNP was an outlier.
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1,003 genotypes and days to flower at 16◦C measured on 970 rese
quenced genotypes (Alonso-Blanco et al. 2016). We then per
formed mixed-model genome wide association studies (GWAS) 
in GEMMA (v 0.98.3) (Zhou and Stephens 2012) with 2,048,993 M 
SNPs filtered for minor allele frequency (MAF>0.05), while con
trolling for genome-wide similarity among ecotypes.

We found that top flowering time GWAS SNPs showed signifi
cantly elevated scale-specific genetic variance at several inter
mediate spatial scales tested. For flowering time at both 10◦ and 
16◦C, scale-specific genetic variance was significantly elevated 
for the top 1,000 SNPs at the 282, 619, and 1,359 km scales, but 
not always at the largest or smallest scales (Fig. 9). In particular 

Fig. 9. Testing for selection on Arabidopsis flowering time QTL. We compared scale-specific genetic variance, var((Twavfi)(a, b, s)/sd(fi)), of QTL with 
random SNPs, for five different scales s, for flowering time measured at 10◦C and 16◦C. The first two columns show the observed mean of the top 1,000 
flowering time SNPs with a vertical line and a z-score. The histograms show null distributions of scale-specific genetic variance based on permutations of 
an equal number of markers with an equal distribution as the flowering time QTL. At right the scale-specific genetic variance is shown for random SNPs 
and for the flowering time QTL (gray lines), across scales, with the mean indicated by a black line.
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the scale-specific genetic variances were greatest for the ∼ 282  
km scale where the mean scale specific genetic variance for 
16◦C QTL was 15.2 SD above the null mean, and the ∼ 619 km 
scale, where the mean scale specific genetic variance for 10◦C 
QTL was 13.5 SD above the null mean. For QTL from both tem
perature experiments, results were nearly equivalent if we in
stead used the top 100 SNPs.

Discussion
Geneticists have long developed theory for spatial patterns 
in allele frequency (Wright 1943; Haldane 1948; Malécot 1948). 
Empiricists have sought to use these patterns make inference 
about underlying processes of demography, gene flow, and selec
tion (Lewontin and Krakauer 1973; Rousset 2000; McRae et al. 
2008). While statistical approaches have been developed to char
acterize geographic patterns, few are flexible enough to incorpor
ate patterns at a range of scales that are also localized in space. 
Because wavelet transforms have these properties, we think 
they may be useful tools for geneticists. Here we demonstrated 
several applications of wavelet transforms to capture patterns 
in whole genome variation and at particular loci, under a range 
of neutral and nonneutral scenarios.

Some important existing approaches are based on discret
ization of spatially distributed samples into spatial bins, i.e. puta
tive populations (Weir and Cockerham 1984; Petkova et al. 2016; 
Bishop et al. 2023). However, without prior knowledge of selective 
gradients, patterns of gene flow, or relevant barriers, it is often un
clear how to delineate these populations. For example, we can see 
how the specific discretization can hinder our ability to find locally 
adapted loci in our simulations (Fig. 5) and in empirical studies of 
Arabidopsis in the case of the phenology gene DOG1 that was 
missed in previous FST scans (Horton et al. 2012; Alonso-Blanco 
et al. 2016).

Our goal in this paper was to provide a new perspective on spa
tial population genetics using the population-agnostic, and spa
tially smooth approach of wavelet transforms. We showed how 
these transforms characterize scale-specific and localized popu
lation structure across landscapes (Figs. 2, 3, 7). We also showed 
how wavelet transforms can capture scale-specific evidence of 
selection on individual genetic loci (Figs. 4, 5, 6, 8) and on groups 
of QTL (Fig. 9). Our simulations and empirical examples showed 
substantial heterogeneity in the scale and stationarity of spatial 
patterns. For example, the wavelet genetic dissimilarity allowed 
us to identify regions near a front of range expansion with steeper 
isolation by distance at particular scales due to drift (Fig. 3). 
Additionally, we identified loci underlying local adaptation and 
showed an example where the evidence for this adaptation was 
specific to intermediate spatial scales (Fig. 5). While existing ap
proaches to characterizing population structure or local adapta
tion have some ability to characterize scale specific patterns, 
e.g. those based on ordinations of geography (Wagner et al. 2017) 
or SNPs (Josephs et al. 2019), and some can capture localized 
patterns (e.g. Petkova et al. 2016), there are few examples of ap
proaches that merge both abilities (Wagner et al. 2017).

Like many methods in population genetics that rely on inference 
from observational data, we view our approaches as exploratory 
and hypothesis generating. Heterogeneous patterns of genome- 
wide wavelet dissimilarity suggest demographic hypotheses, 
some of which can be tested with detailed ecological and genetic 
study (e.g. Keeley et al. 2017). For genome-scans for loci involved 
in local adaptation, the P-values resulting from multiple tested 
scales are comparable and so we recommend starting with the 

loci having the lowest P-value, and using these to develop hypoth
eses for functional follow up experiments (Lasky et al. 2023).

The test for spatial pattern in individual loci we developed owes 
greatly to previous work from Lewontin and Krakauer (1973) who 
initially developed χ2 tests applied to the distribution of FST values, 
and from Whitlock and Lotterhos (2015)’s approach of inferring 
the degrees of freedom of the χ2 distribution using maximum like
lihood and FST across loci. The χ2 distribution underlies a number 
of related tests applied across loci (François et al. 2016). However, 
we note that this test may be slightly conservative in some situa
tions (Fig. 6). Nevertheless, we believe there were important signs 
in our work that this χ2-based scale-specific genetic variance test 
was valuable. In particular, we found in our simulation of adapta
tion to a habitat patch that the scale-specific genetic variance was 
greatest at large spatial scales but at neutral sites, which obscured 
spatial pattern at the causal locus (Fig. 5). When applying the χ2 

test, we were able to clearly map the causal locus while spurious 
loci with high scale-specific genetic variance fell away because 
spatial patterns at those loci still fit within the null distribution.

Relatedly, we found in other simulations and our empirical ex
amples that the strongest evidence for local adaptation was often 
not at the largest spatial scales (Fig. 9), even when the selective 
gradient was linear across the landscape (i.e. the largest scale, 
Fig. 4). This enhanced power at scales sometimes smaller than 
the true selective gradients may be due to the limited power to re
solve true adaptive clines at large scales from the genome-wide 
signal of isolation by distance at these scales. At intermediate 
scales, there may be a better balance of sufficient environmental 
variation to generate spatial pattern versus higher relatedness be
tween locations due to gene flow.

We note that there remain several limitations to our approach 
proposed here. First, the ability of wavelet transforms to capture 
patterns depends on the correspondence between the wavelet 
form (shape) and the form of the empirical patterns we seek to en
hance, and there may be better functional forms to filter spatial 
patterns in allele frequency. Generally speaking, a more compact 
smoothing kernel with minimum weight in the tails will be better 
at revealing abrupt spatial transitions, but at the necessary cost of 
less precise determination of scale (Heisenberg 1927). Smoothing 
kernels such as the tricube (kx ≃ [1 − x3]3) have been shown to op
timize certain tradeoffs in this space and could be used to con
struct a difference-of-kernels wavelet. However, the overall 
influence of kernel shape tends to be much less than the influence 
of kernel bandwidth in our experience. Second, we have not yet 
implemented localized tests for selection (i.e. specific to certain lo
cations) as we did with genome-wide dissimilarity. A challenge 
applying this test at individual loci is that there is a very large 
number of resulting tests from combinations of loci, locations, 
and scales. Therefore, we have not fully exploited the localized in
formation we derive from the wavelet transforms.

There are number of interesting future directions for research 
on wavelet characterization of spatial pattern in evolutionary 
biology. First, we could apply the wavelet transforms to genetic 
variation in quantitative traits measured in common gardens, to 
develop tests for selection on traits akin to the QST - FST test 
(Whitlock and Guillaume 2009; Josephs et al. 2019). Second, we 
could follow the example of Al-Asadi et al. 2019 and apply our 
measures of genetic dissimilarity to haplotypes of different size 
to estimate relative variation in the age of population structure. 
Third, we should test the performance of our tools under a wider 
range of demographic and selective scenarios to get a more 
nuanced picture of their strengths and weaknesses. Fourth, null 
models for wavelet dissimilarity could be constructed using 
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knowledge of gene flow processes (instead of random permuta
tion) to identify locations and scales with specific deviations 
from null patterns of gene flow.

In conclusion, population genetics (like most fields) has a long 
history of arbitrary discretization for the purposes of mathematic
al, computational, and conceptual convenience. However, the 
real world often exists without clear boundaries between popula
tions and where processes act simultaneously at multiple scales. 
We believe that wavelet transforms are one of a range of tools that 
can move population genetics into a richer but still useful charac
terization of the natural world.

Data availability
Code used to generate the simulations and analyses shown 
here are freely available at https://github.com/jesserlasky/ 
WaveletSpatialGenetic/.

Supplementary material available at GENETICS online.
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