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Historically,  the  migration  of birds  has been  poorly  understood  in  comparison  to  other  life  stages  dur-
ing  the  annual  cycle.  The  goal  of our  research  is  to present  a novel  approach  to  predict  the  migratory
movement  of  birds.  Using  a  blue-winged  teal  case  study,  our  process  incorporates  not  only  constraints  on
habitat  (temperature,  precipitation,  elevation,  and  depth  to  water  table),  but  also  approximates  the  likely
bearing  and  distance  traveled  from  a  starting  location.  The  method  allows  for  movement  predictions  to  be
made  from  unsampled  areas  across  large  spatial  scales.  We  used  USGS’  Bird  Banding  Laboratory  database
as the  source  of  banding  and  recovery  locations.  We  used  recovery  locations  from  banding  sites  with
multiple  within-30-day  recoveries  were  used  to build  core  maximum  entropy  models.  Because  the core
models  encompass  information  regarding  likely  habitat,  distance,  and  bearing,  we  used  core  models  to
project (or  forecast)  probability  of  movement  from  starting  locations  that  lacked  sufficient  data  for  inde-
pendent  predictions.  The  final  model  for an unsampled  area  was  based  on an  inverse-distance  weighted
averaged  prediction  from  the  three  nearest  core  models.  To illustrate  this  approach,  three  unsampled

locations  were  selected  to probabilistically  predict  where  migratory  blue-wing  teals  would  stopover.
These  locations,  despite  having  little  or none  data,  are  assumed  to  have  populations.  For  the blue-winged
teal  case  study,  104  suitable  locations  were  identified  to generate  core  models.  These  locations  ranged
from  20  to  228  within-30-day  recoveries,  and  all core  models  had AUC  scores  greater  than  0.80.  We
can infer  based  on model  performance  assessment,  that our novel  approach  to  predicting  migratory
movement  is  well-grounded  and provides  a reasonable  approximation  of  migratory  movement.
. Introduction

Despite vast amounts of research conducted on birds, migra-
ion ecology is poorly understood relative to the other life stages
uring the migratory birds’ annual cycle (Bairlein, 2008). In 1979,
authreaux (1979) called for a modern synthesis of bird migra-

ion, which without, he argued, we would be incapable of properly
dentifying and monitoring critical stopover habitat or assessing
opulation dynamics of threatened and endangered species. As
ur needs for understanding migration remain the same, or are
erhaps even more critical, we still have yet to reach a full syn-
hesis on bird migration (Hutto, 1998, 2000). The primary goal of
his research is to present a method that will advance our abil-
ty to model the migratory movement of birds based on habitat
equirements, directionality, and distance. Our long-term goal is

se modeling to explore connectivity between breeding and non-
reeding habitat, to identify key stopover areas, and to forecast
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potential impacts of climate and land-use change on migration
systems.

The lag in knowledge gained regarding bird migration rel-
ative to breeding and wintering ecology is largely due to the
intrinsic difficulties associated with studying migration. There
has been significant work in migration ecology in the last thirty
years (Faaborg et al., 2010); key advances owing largely to
innovations in technology, i.e. radio/satellite telemetry, GPS, and
isotope analysis. However, modern technologies remain expen-
sive, and thus greatly reduce the feasible sample size. These
technologies have provided valuable information about fine-scale
movement of individual birds, but lack the ability to extrapolate
this knowledge to an entire population or to individuals in different
areas.

Alternatively, research has been conducted where comprehen-
sive surveys count migratory birds at a key stopover location. The
Prairie Pothole Region (PPR) is one example (Earnst, 1994; De Leon
and Smith, 1999; Naugle et al., 2001). The PPR is critical habitat

for waterfowl; millions of migratory birds use the PPR as stopover
habitat, while other birds rely on it for nesting sites (Williams et al.,
1999). Conservation of migratory waterfowl, which rely on this
area, requires extensive knowledge about the ecology of the PPR.

dx.doi.org/10.1016/j.ecolmodel.2011.10.019
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
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owever, we need to know from where these birds are coming,
here they are going, and what ranges in migratory distance and
irection they are capable of traveling.

Recently, there have been a few well-constructed attempts to
patially model migratory bird movement, specifically to deter-
ine their migratory pathway. Tankersley and Orvis (2003)

xplored potential migration pathways of neotropical birds across
he United States. They determined location of optimal stopover
abitat, defining habitat requirements from previous research, and
hen established connections of stopovers based on a fixed dis-

ance and bearing. In 2008, Downs and Horner (2008) developed

 network approach to investigate potential migration pathways,
hich attempts to find the optimal path (i.e., path with fewest

ig. 1. Graphical representation of the approach to predict movement from an undersamp
here  is either no banding data or the available data is insufficient to create a core model. P
ocation with sufficient recoveries. Inset 2 depicts the location of the banding site (purple
sed  as the dependent variables with the independent variables (inset 3) to create a Max
ecalculated for the undersampled point, the core model (used to create predictions in in
:  the predictions from the first closest core model (inset 6) and the two next closest cor
ndersampled point. Part D: inset 9 depicts the final averaged prediction of movement fr

egend, the reader is referred to the web  version of the article.)
Modelling 224 (2012) 25– 32

stops) across the landscape. The nodes in the network are all delin-
eated freshwater wetlands in the study extent, and, as with the
2003 study, the distance is predefined.

Our research advances upon the foundation of the above
studies by predefining neither distance nor any other predic-
tor variable. This approach has significant advantages, because
distance traveled by a bird will impact its habitat selection.
Migratory birds are likely to continue flying in search of bet-
ter habitat, or vice versa, select less suitable habitat if distance
traveled is great (Moore and Aborn, 2000; Alerstam, 2001).

By not fixing distance traveled, our model is more likely to
capture some of this interplay between distance and habi-
tat.

led point. Part A: the point denoted with a red star is a hypothetical location where
art B: this portion is repeated three times; once for each of the closest three banding

 star) with multiple within-30-day recoveries (small red circles). The recoveries are
Ent model of predicted movement (inset 4). With the ancillary variables (inset 5)

set 4) is used to project the probabilities for the undersampled point (inset 6). Part
e models (inset 7 and 8) are averaged together weighted by the inverse distance to
om undersampled point. (For interpretation of the references to color in this figure
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Fig. 2. Line graphs of method assessment. A: kappa statistic comparing the test
location prediction to predictions made for the test location from the other 103 core
model locations. The 103 core models are arranged with increasing geographical
B.J. Kreakie, T.H. Keitt / Ecolo

We  used banding data from the Bird Banding Laboratory (BBL)
ataset. Because the BBL has a large sample size (over 3 million
ame bird bands recovered) and large spatial extent (United States,
nd, although less comprehensive, Mexico and Canada) (Buckley
t al., 1998), this is an ideal data set to accomplish the goals of this
ork.

The main goal of our research is to present a novel method,
hich may  provide a means to predict migration movement of

irds. Predicted movement from one area to another is contin-
ent on habitat selection criteria, and likely distance and bearing of
ravel. The described approach allows for predictions to be made
rom any starting or stopover location, including areas that might
ave little or no sample data.

. Methods

The main goal of this research is to develop a method by which
o predict movement of a migratory bird from a source location
o its next migration stopover (or to, perhaps, its final destination).
his endeavor, essentially, has two main lines of analysis. The first is
reating models to determine the predicted probabilities of move-
ent from source areas that have been thoroughly sampled. These
odels will be referred to as the core models for the entire pro-

ess. The second, and the real obstacle for this area of research,
s predicting movement to a destination from source areas where
here has been inadequate levels of sampling to reasonably predict

igration movement. To accomplish our goal, the models devel-
ped for well-sampled areas (core models) were used to predict for
ess-than-ideally-sampled areas (undersampled point prediction).

.1. Development of core models from well-sampled areas

The BBL is a long-term data set, started in 1902, which records
he banding location of a bird and all its subsequent recoveries
Gustafson and Hildenbrand, 1999). To illustrate the approach of
his study, blue-wing teal (Anas discors) fall migration was  used as
he test case. Blue-wing teal was selected based on its relative high
evels and consistency of sampling.

Initially, the BBL data was filtered to include only birds that
ere recovered within 30 days of being banded. For the remaining
ortion of this text, “recovery” will reference only to individuals
ecaptured within 30 days of being banding. Selecting these recov-
ries was necessary to increase the likelihood that the individuals’
ravel was not confounded by multi-season or foraging movement
Kölzsch and Blasius, 2008). Additionally, only birds that moved
rom their original location were included. This avoided including
irds that may  not have begun their migration. Because all inci-
ents are recorded to a 10 min  (approximately 16 km)  grid, how
any recoveries each grid cell had was calculated. All grid cells that

ave above 20 recoveries were considered appropriate locations to
uild core models.

The ancillary variables used to model the destination probability
rom the selected source location are temperature, precipitation,
levation, depth to water table (DWT), distance, and direction.
ll variables were resampled to the BBL’s 10 min  grid spanning

he extent of the contiguous United States, Mexico and Canada.
t 30 s resolution (1 km), the average temperature and precipita-

ion from WorldClim was utilized (Cameron et al., 2005). The 3 s
90 m)  Shuttle Radar Topography Mission (SRTM) Elevation Data
et was used for elevation. The DWT  data layer is a simulated
ata set that reliably predicts the location of natural wetlands

y finding the long-term stable solution of the balance between
he climate driven fluxes (precipitation and evapotranspiration)
nd geologic/topographic water fluxes (riverine and groundwa-
er movement) (Fan et al., 2007). The DWT  has been shown to
distance from the test location. B: kappa statistic comparing the test location to
increasing numbers of averaged predictions made from core model.

be an accurate predictor variable for migratory waterfowl habitat
(Kreakie et al., submitted for publication).

The above ancillary variables remained constant in all our
models, whereas distance and bearing varied according to source
location. Distance and bearing were both calculated in R (R
Development Core Team, 2011) using the “geosphere” package
(Hijmans et al., 2011). To determine the distribution of distance
traveled from a specific source location, great-circle distance was
calculated between the source location and all potential destination
cells (i.e., to all other 10 min  grid cells in the study area). This process
was repeated for direction, but to calculate the bearing between
source point and all potential destination cells. These two vari-
ables were created for each prediction made from a single source
location.
The probability of migration to a destination location was mod-
eled using a maximum entropy algorithm executed in MaxEnt
version 3.3.2 (Dudik et al., 2004; Phillips et al., 2006). MaxEnt is
typically used in ecology for creating species distribution models,
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Fig. 3. Maps of predictive blue-winged teal movement from Ontario, Canada (48.42,−89.25), which is marked with the red dot in each map. (A) is the predictive movement
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urface  created with 44 within-30-day recovery locations. (B) is the probability surf
ad  no survey data. Core models from the three locations marked with blue dots we
o  color in this figure legend, the reader is referred to the web  version of the article

nd our desired results our not exceedingly different from that of
 species distribution model. Instead of creating predictions based
nly on the distribution of habitat measures, our approach includes
onsideration of the migratory distance and direction of appropri-
te habitat. In essence, MaxEnt “estimate(s) the target distribution
y finding the distribution of maximum entropy (i.e., that is closest
o uniform) subject to the constraint that the expected value of each
eature under this estimated distribution matches its empirical
verage” (Phillips et al., 2004). MaxEnt was also selected over other
pproaches due to several of its attributes. It requires presence-
nly data, therefore it is not necessary to have known absences

r create artificial absences (Elith et al., 2006, 2011). MaxEnt has
een shown to model accurately despite varying sample sizes (Wisz
t al., 2008). Even though the BBL is a large data set, it was  subsetted
ubstantially to obtain desired data sets.
ated using the method introduced in this text; essentially treating this point as if it
d to project for the point of interest in Ontario. (For interpretation of the references

2.2. Development of undersampled point prediction and the final
prediction

To predict movement from an area that does not have ade-
quate recovery numbers for independent modeling, we relied on
projections from core models created in the previously described
approach (Fig. 1). For undersampled locations, the nearest, in
geographical space, core model was located. This nearest core
model was  used to project predictions for the undersampled point.
The undersampled point predictions were created by retaining
all the environmental independent variables, except the distance

and direction were changed to correspond to the new source
location. This process was  repeated a total of three times with pre-
dictions made from the three closest core model locations. The
three predictions were then averaged together weighted by the
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Fig. 4. Line graphs of predicted probability of occurrence for recovery points. The
blue line represents the sorted values of predicted probability from the model cre-
ated  with actual date (Fig. 3A). The red line represents the sorted value of predicted
B.J. Kreakie, T.H. Keitt / Ecolo

nverse distance to the specified point, which was used as the final
rediction.

.3. Assessment of model performance

The MaxEnt model for each of the core source locations was
reated by using only the within-30-day recovery locations as the
ependent variable. Only the recoveries were used because we
ant to know where a bird is likely to migrate if it were to start

t the source location. The recoveries were split into 70% training
ata and 30% test data, and the split was randomized ten times. A
otal of 10,000 background points, which were also randomized ten
imes, were used to produce the receiver operating characteristic
ROC) plot and calculate the area under the curve (AUC) score. The
UC score was used to determine acceptability of a model and to
ompare different models.

As previously stated, the final prediction for an unsampled area
s based on the average predictions of the three nearest core model
ocations. The decision to use three models was  determined by
omparing the performance of increasing numbers of core model
rojections averaged together to the predictions for a point with
dequate within-30-day sample data. For clarification, first we
elected a core model location and model movement predictions
or this point (from now on referred to as the test location). Then
e selected the next core model that was spatially the closest to

he test location and projected movement predicted for the test
ocation. The test location predictions and the projected predic-
ions from the next closest core model were compared using a
appa statistic. Kappa statistic measures the agreement between

wo data sets; a kappa statistic of 1.0 is prefect agreement and 0
s no agreement (Landis and Koch, 1977; Bell and Fielding, 1997).
appa statistic indicates how closely the forecasted predictions are

o the prediction from actual data. This process was repeated by
reating projected predictions from the next closest core model for
he test location.

The above process for assessing the modeling methods for
nsampled locations is not ideal, yet it is presently the only method
vailable. Ideally, one would prefer to completely independent data
o test the method, but this data is lacking. Therefore, we were
equired to use model prediction from the test location as compar-
son data set. Because we were required to compare model output
o model output, this should be taken into account was  reviewing
he conclusions. However, the AUC scores of the core models were
ll well above the threshold of acceptable, and should be considered
esonable points of reference. At least until independent movement
ata is available to validate the full method (Fig. 1).

. Results

There were 104 locations that had over 20 within-30-day recov-
ries of blue-winged teal. The number of recoveries for each core
odel location ranged from 20 to 228. Models preformed nearly

qually regardless of number of recovery locations. The model with
28 recovery points had an AUC of 0.983, and the model with 21
ecovery points, the least, had an AUC of 0.965 (Supplemental Fig.
A). Additionally, both the bearing and distance predictor vari-
bles significantly contributed to the AUC scores of the core model
Supplemental Fig. 1B and C).

As a means of assessment for undersampled area predictions,
e compared the outputs from a test location that had adequate

ampling and then used our method to create projections for this
rea as if it did not have any sample data. The test location is in

hunder Bay, Ontario, Canada (48.42,−89.25), and had a total of 44
lue-winged teal birds recovered within 30 days of banding. The
axEnt model was constructed with 44 recovery locations and had

n AUC score of 0.962. All 103 other core model locations were used
probability averaged from the three projected models for the test point (Fig. 3B). (For
interpretation of the references to color in this figure legend, the reader is referred
to  the web version of the article.)

to project predictions for this test location. Kappa statistics, which
describe the accuracy of the core model projected predictions to
the predictions from actual data, ranged from 0 to 0.7978 (Fig. 2A).
Generally, the core models closest to the test location performed
best. We  tested the agreement between increasing numbers of
core model projected predictions averaged together weighted by
inversed distance to the test location (Fig. 2B), and determined
three to be optimal.

Fig. 3A maps the predictions for the test location based on actual
within-30-day recovery data from this point. Fig. 3B used the three
closest core model locations: (1) eastern Montana, USA  (48.48,
−95.92) with 30 recovery locations, (2) Upper Peninsula, Michigan,
USA (46.25, −85.92) with 30 locations, and (3) eastern Wisconsin,
USA (44.08, −87. 92) with 23 locations.

Additionally, we examined the predicted probability of occur-
rence for recovery points used to create the MaxEnt prediction in
Fig. 3A (Fig. 4). For the same recovery point locations, the values
of predicted probability of occurrence were then compared to the
values of projected predicted probability in Fig. 3B. This compari-
son provides us with a way  to compare the predicted probability
of occurrence for actual data points between the two methods pre-
sented in this research. Clearly, the method that relies on averaging
the three closest core models closely mirrors the model predictions
created with actual recovery data. The projected predicted proba-
bility is however less than the predicted values from actual data,
as anticipated. The method used to create predictions for location
that lack sample data closely mirrors the predictions made by the
model created with actual data, but is conservative in its predictions
of likely occurrence.

Our method was then applied to three locations with no recov-
ery data, and where it was  considered highly likely to be blue-wing
teal habitat (Kreakie et al., submitted for publication). The first loca-
tion was  immediately south of Winnipeg, Manitoba (49.31, −97.34)
(Fig. 5A). This location’s predictions are focused in the Missis-

sippi flyway and have an upper probability of predicted occurrence
around 0.72. The second model was  built for a location in eastern
Montana (48.37, −105.86) in the Prairie Pothole Region (Fig. 5B). Its
results, with highest predicted probability of occurrence about 0.71,
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ig. 5. Maps of predictive blue-wing teal movement from three different source lo
nd  (C) in New York, USA. (For interpretation of the references to color in this figur

redicted a main corridor of migration through the Great Plains
nd eventually merging into the Mississippi flyway. The final loca-
ion is in the Ha-De-Ron-Dah Wilderness Area in the New York
dirondacks (43.76, −75.21) (Fig. 5C). This projection depicts less
istance traveled and is concentrated in the Adirondacks and along
he Atlantic Flyway. It projected 0.52 as the high end of its predicted
robability of occurrence.

. Discussion
The intent of this project is to present a novel method of pre-
icting migratory bird movement and to explore its validity and
utputs with a blue-winged teal case study. The inclusion of habitat
s. (A) has a start location (purple dot) in Manitoba, Canada. (B) is in Montana, USA,
nd, the reader is referred to the web version of the article.)

measures, distance, and bearing make it possible to create proba-
bilistic predictions based on the ecology, physiology, and behavior
of a species. Each species is ecologically constrained by its suitable
stopover habitat. Determining species distributions is, perhaps,
the traditional manner in which MaxEnt is used in ecology; it
defines the probability distribution of environmental variables.
Beyond habitat needs of a species, there are physiological consider-
ations that influence the optimal distance flown by birds between
stopover locations. Clearly, migration has a predefined final desti-

nation, and this behavioral factor is accounted for by the inclusion
of bearing.

Conceivably the largest contribution of this approach is the
inclusion of both distance and habitat in determining the predicted
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ovement. Given that migration is extremely costly to the animal
n terms of resources and mortality, optimal migration theory illus-
rates that birds should attempt to accomplish migration with the

inimal number of stopovers (Desholm, 2003; Fujita et al., 2004).
ince migration has a high caloric demand, physiology prevents
ndividuals from making the journey in one step. This means that
irds should attempt to maximize the distance they fly between
topovers while attempting to select optimal habitat for refueling
nd predator-avoidance. Stopover locations that are too close to
ne another will increase the overall cost of migration. While flying
ast optimal habitat to maximize the distance between stopovers,
he bird risks not finding suitable habitat before resources are
epleted. The interaction between optimizing distance and habitat
election during migration is directly incorporated in this method.

This method is fundamentally comprised of two main parts: (1)
onstruction of the core models for banding sites that have ade-
uate within-30-day recoveries and (2) using the core models to
roject probabilities for sites that lack sampling. Model assessment
f each of these parts entails different approaches. Core model
ssessment relied on the use of AUC scores (Supplemental Fig.
). Each core model performed well, and can be interpreted as

 reliable prediction of real-world events. We  demonstrated that
he addition of bearing and distance added to the accuracy of the
redictions. Based on these results, it can be inferred that our
pproach for modeling migration movement from locations with
umerous within-30-day recoveries is well founded. However,
here are a large number of locations without the data necessary to
irectly predict movement, and must rely on the second part of our
ethod.
The assessment of the predictions for undersampled location

s not as forthright as the core model validation procedure. To
llustrate the validation of undersampled location predictions, the
redictions made from a core model as test data set were used. Then
arious projected predictions were created for the test location, and
ompared to the original predictions. In Fig. 2A, kappa statistics
ompare all core models projected predictions to the actual data
redictions for the test location. Clearly, as the distance from the
est location increase the kappa statistic decreases. For this point,
rojected predictions’ accuracy decrease as distance between the
ore model location and projection point location increases. Instead
f relying on a single projected prediction, we tested the valid-
ty of using multiple projected predictions for the final prediction.
his agreement between the actual data predictions and averaged
rojected predictions spikes at three. These results show that the
losest core models have the highest accuracy, and that three pre-
ictions averaged together is the strongest.

Although the predictions are not identical, and we  have no way
o know which is superior, they do share some key similarities.
he areas in each map  that have high predicted probability of
eing stopover habitat for this source location have the same spa-
ial extent. This includes the complexity of the shape to the high
robability area. For example, both results include areas around
he Hudson Bay and up into the St. Lawrence River.

Even though the predictions are all made for the same species,
his method makes it possible to examine regional differences in

igrations routes due to the inclusion of distance and bearing in
odeling (Fig. 5). The maps for Manitoba (Fig. 5A) and Montana

Fig. 5B) depict similar predictions along the Central and Missis-
ippi Flyways. However, those individuals leaving from Montana
ave a more diffuse predicted path, which includes some portions
long the Pacific Flyway. This is obviously due to the relative prox-
mity to this area compared to the source location in Manitoba. The

ource location in New York (Fig. 5C) is even further east, and nearly
ompletely abandons the Mississippi Flyway in favor of the Atlantic.
he ability to predict regional movement of migratory birds will be
ritical for their long-term conservation (Haig et al., 1998).
Modelling 224 (2012) 25– 32 31

The BBL data has many attributes that contribute to usefulness
in migration study: for example, the large spatial extent of banding
sites, the near global recording of recoveries, and the long time span
of the study. Nonetheless, there are data considerations that should
be kept in mind while interpreting the output. Since the occurrence
of banding sites that have sufficient within-30-day points to build
a core is rare, they are not evenly distributed across the landscape.
If the three core models used to create the averaged prediction
for a site are all exceedingly distant from the prediction site, the
results should be carefully reviewed. It is likely that the habitat
selection would not change for migrating birds within a species.
Although clearly the average distance and bearing traveled would
vary regionally for migrating birds.

The need for increased understanding about migration is no less
important than in 1979 when Gauthreaux called for a modern syn-
thesis of bird migration. The field has advanced in the last 30 years,
but not sufficiently to address his original concerns and definitely
not enough to help mediate modern concerns. The method outlined
in this text will allow for us to begin to explore step-wise movement
across the landscape and identify key stopover locations. Stopover
habitat is of critical importance to migratory birds (Alerstam et al.,
1990; Alerstam and Hedenström, 1998; McWilliams et al., 2004).
It has been estimated that some individuals spend as much of
90% of their migration actually resting and refueling in stopovers
(Schaub et al., 2001). Typically, these habitats are wetlands, which
are extremely sensitive landscape features (Fretwell et al., 1996).
Wetlands are exposed to multiple anthropogenic pressures; such
as water divergence, land use change, sedimentation/erosion, and
rapid climate change. It is critical to understand how birds use
these habitats as they move between their breeding and wintering
ground to ensure their long-term conservation.
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