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Abstract

In addition to being used as a tool for ecological understanding, management and conservation of migratory waterfowl rely
heavily on distribution models; yet these models have poor accuracy when compared to models of other bird groups. The
goal of this study is to offer methods to enhance our ability to accurately model the spatial distributions of six migratory
waterfowl species. This goal is accomplished by creating models based on species-specific annual cycles and introducing a
depth to water table (DWT) data set. The DWT data set, a wetland proxy, is a simulated long-term measure of the point
either at or below the surface where climate and geological/topographic water fluxes balance. For species occurrences, the
USGS’ banding bird data for six relatively common species was used. Distribution models are constructed using Random
Forest and MaxEnt. Random Forest classification of habitat and non-habitat provided a measure of DWT variable
importance, which indicated that DWT is as important, and often more important, to model accuracy as temperature,
precipitation, elevation, and an alternative wetland measure. MaxEnt models that included DWT in addition to traditional
predictor variables had a considerable increase in classification accuracy. Also, MaxEnt models created with DWT often had
higher accuracy when compared with models created with an alternative measure of wetland habitat. By comparing maps
of predicted probability of occurrence and response curves, it is possible to explore how different species respond to water
table depth and how a species responds in different seasons. The results of this analysis also illustrate that, as expected, all
waterfowl species are tightly affiliated with shallow water table habitat. However, this study illustrates that the intensity of
affiliation is not constant between seasons for a species, nor is it consistent between species.
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Introduction

Species distribution models, especially for migratory waterfowl,

are employed as a tool in diverse areas of investigation and

application [1]. For example, distribution models have been used

to help explore how the interactions between migratory waterfowl

and landscape factors will impact the spread of diseases [2–4].

These approaches are used to understand how migratory birds

might influence the health of the ecosystem through which they

move [5,6]. The economics of waterfowl hunting draw on

distribution modeling to optimize long term success of these game

species and thus the sport [7,8]. Perhaps the field that most heavily

relies on distribution modeling is those that attempt to forecast

how waterfowl will respond to anthropogenic disturbances, such as

climate change [9,10].

Given the dependency of waterfowl research and management

on distribution modeling, it is critical that these tools be of the

highest quality. Yet it has been shown that distribution models for

birds that are migratory and have high wetland affinity are less

accurate than those models for species that do not have these

specific ecological traits [11]. Seasonal changes, in not only spatial

location, but also habitat selection, contribute to this decrease in

model capacity [12,13]. Compounding temporal factors affecting

model accuracy, waterfowl are reliant on wetland habitats, which

are a poorly recorded habitat type [14]. Even though there may be

well-mapped modern wetland data available, due to the dynamic

and often ephemeral nature of wetlands, this data will most likely

be insufficient for time series analysis [15,16].

The goal of this study is to offer new strategies that will

enhance distribution modeling of migratory waterfowl through-

out their entire annual cycle. For each species included in our

study, distribution models were constructed for each portion of

the annual cycle (i.e. fall, winter/non-breeding, spring, and

summer/breeding). The delineation of these events is species

specific, which allows for reciprocal species specific variation in

predictor variables. Even though species specific distributions

were created, we utilized the availability of the community data

to more accurately generate pseudo-absences when necessary

[17]. Additionally, this study introduces a novel data set to use as

a predictor variable in distribution modeling of wetland species.

This wetland data set, depth to water table (DWT), is a simulated

long-term measure of the point either at or below the surface

where climate and geological/topographic water fluxes balance

[18].
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The inclusion of wetland proxy data is a common technique

used to attempt to overcome the difficulties of modeling species

with high wetland affinity [1,19]. These measures range from fine

scale research with direct measure of wetland quality [20], through

large scale research that incorporates watershed-level hydrological

modeling [21,22], to potentially global-scale relatively fine grain

classified satellite imagery [23]. When habitat variables have been

included in distribution modeling, they are based on current

classifications and not model-based prediction. In addition to the

advances already made to account for wetland influence of species

distribution, the inclusion of DWT data in distribution modeling

provides numerous advantages to this field. The DWT data are

process-driven, and allow us to investigate the underlying

hydrologic drivers that may influence habitat selection. Further-

more, the DWT has a large spatial extent (nearly global) and fine

resolution (approximately 270 m). The inclusion of this process-

driven wetland proxy data will potentially allow us to overcome

the shortcomings of forecasting future spatial distributions of

countless wetland species with other approaches (such as climate

envelopes) [24,25].

The presented research is intended to augment the approaches

used to construct distribution models for migratory waterfowl. We

assembled distribution models for species-specific annual cycles.

This allows us to assess spatial distributions throughout the entire

annual cycle, not just focusing on one portion, while adjusting for

differences in timing between species. Furthermore, a novel data

set, DWT, is introduced and shown to be an important predictor

variable of migratory waterfowl habitat. These data are calcula-

tions of hydrological balances between climate and geology, which

will allow for more mechanistic approaches to constructing

distribution models for wetland species. Overall, the strategies

presented in this research will enhance and improve distribution

modeling of migratory waterfowl, and in turn allow for better

management and conservation of these species.

Methods

Species Data
The United State Geological Survey’s (USGS’) Banding Bird

Laboratory (BBL) game bird dataset was used as the source of

species presence data. Established in 1902, the BBL is a long-term

monitoring project with over three million waterfowl encounter

records [26]. The data record the incidence of banding and band-

recovery events within 10-minute bins of latitude and longitude.

Most bands are reported by hunters and are thus terminal

encounters. Each banding location and all subsequent encounter

locations were treated as a known presence for that species. Owing

to uncertainty in exact encounter locations, the BBL data only

provide locations at 10-minute resolution (approximately 16 km);

however this resolution is sufficiently fine given the broad spatial

extent of our analysis. We restricted our analysis to banding and

encounter events from January 1, 1990 through December 31,

1999, which we considered to be enough time to capture the main

trend of defining the spatial distribution.

Six species were included in the study: American black duck

(Anas rubripes), blue-winged teal (Anas discors), Canada goose (Branta

canadensis), mallard (Anas platyrhynchos), northern pintail (Anas acuta),

and wood duck (Aix sponsa) (Table 1). These species were chosen

because they have the highest numbers of encounters, and also

had adequate sampling in all portions of the annual cycle. All six

species are in the family Anatidae, which are deemed typical

waterfowl [27,28]. Canada goose is in the subfamily Anserinae

(geese and swan), while all other species are in the subfamily

Anatinae (dabbling ducks).

Investigation of seasonal differences in distribution and habitat

use required delineating the four major components of the annual

cycle. BBL data was used to determine which times of the year

individuals were traveling the greatest average daily distance, and

these peaks in velocity were labeled as fall and spring migration.

Because of the potential for confounding inter-season movement,

our analysis was restricted to the mean daily traveled distance of

those records where bands were recovered within 30 days of being

banded. For each within-30-days recovery, the total great circle

distance traveled, calculated using the ‘‘geosphere’’ package in R

[29], was divided by the total number of days between banding

and recovery. Fall and spring migration were delineated by

locating peaks in the average weekly distance traveled, and

summer and winter were dated according to the appropriate

intermediate seasons. These results were compared to our initial

dates established by natural histories [30–32] and the dates were

adjusted when clear migration signals were present (Figure 1).

Environmental Data
All predictor variables were resampled, throughout the

contiguous United States study extent, to agree with the BBL

data grid. Average seasonal temperature, average seasonal

precipitation, and elevation were used in all distribution models.

Average monthly precipitation and monthly average temperature

data were obtained from the Prism Climate Group [33], originally

a 2.5-minute (approximately 4 km) resolution. We used the 3-

second (approximately 90 m) Shuttle Radar Topography Mission

(SRTM) Elevation Data Set. In addition to the three previously

mentioned variables, one of two different wetland measures were

included. A derived variable of percent classified wetland was

created from the 2001 National Land Cover Database (NLCD)

30-meter data [34]. The 2001 NLCD data is a land use-land cover

classification of satellite, Landstat imagery. Models were built with

the inclusion of the percent NLCD wetland as a point of

comparison for the models build with the DWT data.

The DWT data layer is a simulated data set that reliably

predicts the location of natural wetlands (Figure 2) [18,35]. The

depth to water table is determined by finding the long-term stable

solution of the balance between the climate-driven fluxes

(precipitation and evapotranspiration) and geologic/topographic

water fluxes (riverine and groundwater movement) balance.

Initially, the water table was set at the surface and at each time

step the modeled DWT was recalculated based on water inputs or

outputs. The model was allowed to run until the water table for

each cell (9-second resolution) was stable (less than 1 mm

change). The DWT model was validated using 500,000+ USGS

field observations of water table depth from 1927–2005; the

mean of the residuals (simulated DWT – observed DWT) is

0.443 m. Fan and Miguez-Macho [18] further tested the ability

of the data to locate wetlands on the landscape. They found a

strong correlation (0.8469) between field-mapped wetlands and

the simulated data thresholded to 1.0 m water table depth. There

is a -0.36 correlation between the DWT data and NLCD percent

wetland data, which was used as an alternative measure of

wetland habitat for this study. The DWT data were obtained

directly from Fan and Miguez-Macho, and the referenced

manuscripts provide in-depth details on model development

and validation [18,35].

Statistical Analysis and Distribution Modeling
Random Forest was used to robustly gauge variable importance

[36]. Random Forest is a technique that fits multiple classification

trees (specifically 1000 trees) [37,38]. Each unique classification

created is considered a ‘‘class,’’ and every time this class is created

Enhanced Migratory Waterfowl Distribution Modeling

PLoS ONE | www.plosone.org 2 January 2012 | Volume 7 | Issue 1 | e30142



it receives a vote. The class with the highest number of votes is

selected as the final output. The individual trees are built by

recursively resampling the data into two groups: approximate 63%

training and 37% test. The test data provides a means to test not

only model accuracy, but also variable importance. We used the

mean decrease in accuracy, which is the normalized difference

between classification accuracy and the accuracy when the

variable values have been randomly permuted. Higher mean

decrease in accuracy indicates that a variable is more important to

the accuracy of the classification. All Random Forest analyses used

the ‘randomForest’ package in R [39].

Because the BBL data is a presence-only data set, background

points (or pseudo-absences) were created for Random Forest.

Background points for each species and season were identified as

known locations of other study species where the focal species was

absent. This approach to generating background points amelio-

rates the bias of uneven sampling effort [40].

MaxEnt was selected for creating the species distribution

models; it is a maximum entropy approach specifically for

presences-only data [41,42]. It was implemented in MaxEnt

3.3.2 software package, and model set according to Phillips and

Dudik [42]. Models for each season for all species were run a total

of 100 times, randomizing the 70-30 training-test split of the data

and the location of the background points.

Model performance of MaxEnt was measured using Area-

Under-the-Curve (AUC) scores. AUC is the measure of the area

under a receiver operating characteristic (ROC) curve; specifically

plotting the rate of true positive classification to false positive

[43,44]. AUC typically ranges from 0.5 (essentially random) to 1.0

(perfect fit). In addition to MaxEnt and Random Forest, we create

GLM models for all species in each season. These results were

consistent with the MaxEnt and Random Forest results, and

therefore are not presented here.

The predicted probability of occurrence maps and model

response curves from the MaxEnt models are presented. MaxEnt

models are presented due to the fact that this method was created

specifically for presence-only data, and its ability to better address

the sampling bias of the BBL data [45]. Also, only models for the

winter portion of the annual cycle are presented. Winter was

selected due to the relatively high sample intensity and resulting

model accuracy. All other seasons’ results are available in the

supporting information.

Table 1. Season specific MaxEnt AUC scores for each study species.

Fall n Base+DWT Base+PW DWT only

ABDUC 762 0.9202 0.914 0.7274

BWTE 1403 0.8203 0.821 0.7444

CAGO 3223 0.8193 0.8172 0.6658

MALL 5959 0.7332 0.7304 0.6253

NOPI 314 0.8585 0.8668 0.5881

WODU 1307 0.8529 0.8494 0.7844

Winter

ABDUC 765 0.9304 0.9254 0.7649

BWTE 180 0.9544 0.9527 0.9153

CAGO 4149 0.7373 0.7354 0.6217

MALL 4198 0.7886 0.7814 0.6712

NOPI 1458 0.8064 0.8036 0.7368

WODU 1633 0.9251 0.9229 0.8249

Spring

ABDUC 18 0.9544 0.9542 0.7464

BWTE 18 0.844 0.8659 0.6666

CAGO 225 0.7684 0.7525 0.634

MALL 151 0.7902 0.7856 0.5968

NOPI 27 0.8331 0.8659 0.646

WODU 126 0.8784 0.8825 0.7584

Summer

ABDUC 27 0.9208 0.9244 0.6942

BWTE 44 0.8294 0.826 0.5696

CAGO 2255 0.7493 0.7433 0.6671

MALL 651 0.8045 0.8034 0.5888

NOPI 33 0.866 0.8799 0.6048

WODU 2606 0.8447 0.8401 0.7009

The ‘‘base’’ variables are temperature, precipitation, and elevation. Models were constructed using the two different measures of wetland: average water table depth
(DWT) from dynamically-driven hydrology model and percent wetland (PW) based on land cover classification. See Figure 3 for species abbreviations.
doi:10.1371/journal.pone.0030142.t001
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Figure 1. Barplot of annual cycle timing for study species.
doi:10.1371/journal.pone.0030142.g001
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Results

Random Forest was used to measure variable importance on

the accuracy of classification of presences and absences. More

specifically, it was used to determine how important DWT was to

the overall model and how it compared to the other predictor

variables (see Figure 3 for winter results and Figure S1 for all

other seasons). Depth to water table was consistently as important

as the other customary predictor variables: temperature,

precipitation, and elevation. Also, DWT’s importance was

comparable to the importance of NLCD percent wetland for

Random Forest models. The importance of DWT varied by

species; with it being least important for the classification of blue-

winged teal in the winter (mean decrease in accuracy = 0.097).

During winter, DWT was most important for northern pintail

(mean decrease in accuracy = 0.75). Comparing the importance

throughout the annual cycle, DWT had the highest importance

values for the spring (ranging from 1.4 for wood duck to 2.28 for

American black duck).

MaxEnt models created with a wetland variable (DWT or

NLCD percent wetland) had considerably higher AUC score than

those models (from here forward referred to as ‘‘base models’’)

created with only temperature, precipitation, and elevation. When

the AUC of MaxEnt models for each species were directly

compared between base with DWT and base with percent

wetland, 11 MaxEnt models build with DWT had a higher

Figure 2. Map of the simulated equilibrium water table depth for the contiguous US [18]. The values illustrate the depth in meters below
the surface where the simulated water table is located.
doi:10.1371/journal.pone.0030142.g002

Figure 3. Plot of variable importance measure from Random Forest. Variable importance is measured in mean decrease in accuracy, which is
the decrease in accuracy of a classification after the variable has been randomly permuted. A higher mean decrease in accuracy means the variable
contributes more to the accuracy of the classification. The abbreviations are as follows: ABDU (American black duck), BWTE (blue-winged teal), CAGO
(Canada goose), MALL (mallard), NOPI (northern pintail), WODU (wood duck), temp (temperature), ppt (precipitation), elev (elevation), dwt (depth to
water table), and pw (NLCD’s percent wetland).
doi:10.1371/journal.pone.0030142.g003
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AUC than percent wetland model for that species (table 1). Six

MaxEnt models had no statistical difference between AUC scores,

and 4 MaxEnt base and percent wetland models had higher AUC

scores than the reciprocal base and DWT model. Nine of the 24

MaxEnt models built with only DWT as predictor variable had an

AUC over 0.7.

The MaxEnt winter predictions, created with base predictor

variables and DWT, for all species are presented in Figure 4 (see

Figures S2, S3, S4 for all other seasons). Predictions are in line

with the fact that all species should be centered in the southern

portions of their ranges. The highest predicted values for blue-

winged teal, northern pintail, and wood duck are along the

southern portion of the east coast and the Gulf of Mexico coast up

the Mississippi River. Canada goose and mallard, to a lesser

degree, have large areas of mid-range predicted probability of

occurrence in the central portion of the United States. American

black duck’s predictions are focused in the northeastern portion of

the country, while avoiding the peaks of the Appalachian

Mountains. All species have some moderate predictions along

the west coast, especially in the Central Valley in California.

For each of the study species in the winter, the relationship

between DWT and MaxEnt predicted probability of occurrence is

Figure 4. Maps of predicted probability of occurrence for all study species’ winter habitat. Predictions were created using MaxEnt with
100% of known presence locations to increase accuracy of the visual representation. Temperature, precipitation, elevation, and water table depth
were the predicted variables used to construct the probability surfaces.
doi:10.1371/journal.pone.0030142.g004
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presented in Figure 5 (all other response curves are provided in

Figures S5, S6, S7). The distribution of each species is skewed

towards the shallow water tables. Canada goose and mallard’s

distribution are less skewed to the left than the other species; they

have a more gradual decrease in predicted occurrence as the water

table becomes deeper. Northern pintail has the highest peak at 0.6

at the shallowest water table level.

Discussion

The foremost goal of this study was to present strategies that

would enhance our ability to create accurate distribution models of

migratory and wetland species. By modeling distributions based on

species-specific annual cycles and introducing a novel data set, we

were able to successfully accomplish this goal. All species, in all

four portions of the annual cycle, had MaxEnt models (base

variables plus DWT) with AUC scores greater than 0.7.

Additionally, we were able to show that the DWT data set

consistently contributed to the distribution models of these species.

This was illustrated, first, by showing that DWT was consistently

ranked high in variable importance for Random Forest classifica-

tions. Secondly, DWT added to the classification accuracy of

MaxEnt models when compared to models created with only

temperature, precipitation, and elevation. And finally, the DWT

data set performed as well, and often better than, as a standard

proxy for wetland habitat, classified satellite imagery.

The DWT data offers more advantages to distribution modeling

beyond the increased model performance presented here in this

research, most of which are due to the fact that it is a model-

derived data set. Most importantly the DWT has the potential to

be more than a static measure of wetland habitat. The DWT is a

measure of the point where hydrologic, topographic, geologic, and

climatic fluxes balance. By predicting how the depth to water table

changes according to changes in the environment, such as climate

change, it will allow for more mechanistic predictions of how

wetland species will respond. This data set avoids many of the

biases that are present in the more traditional measures of wetland

habitat quality or quantity. For example, if using field delineated

wetland maps, especially for studies at the continental scale, there

is a concern that all those who did the delineation were using the

same definition of a wetland [46]. Additionally for studies of large

spatial extent, there are often large gaps in digitally available

mapped wetland data. These concerns are also true for classified

satellite imagery. Often it is unclear, if what is being classified as

wetland is truly wetland on the ground [47].

One concern with the DWT data set for distribution modeling is

its accuracy at finer scale. The model from which the DWT data

are derived does not for example incorporate detailed data on

local water extraction and management. Water levels in many

wetlands (and wildlife refuges in particular) are actively managed

and therefore are expected to deviate from the DWT data. At the

relatively coarse 10-minute scale of this study, these deviations are

likely not of great concern as the hydrological model will generally

identify low-lying areas where water accumulates. These are the

same areas where both managed and unmanaged wetlands will

predominantly occur. At finer sub-kilometer scales, the limitations

of the modeling approach might however become much more

apparent as even small changes in water table could be the

difference between wetland habitat and dry ground. We are

currently investigating the performance of the DWT data for

wetland-species distribution models using fine-scale species

occurrence data (Kreakie and Keitt, unpublished data).

In addition to the methodological advantages presented here,

this research provides insight into the ecology and behavior of

these six species. Each species responds differently to the

hydrologic regime, even within the group of waterfowl [48]. By

using the response curves (Figure 5), it is possible to quantitatively

gauge how each species will respond to the changes in the depth to

water table. All six study species have increased predicted

probability of occurrence toward shallow depth to water table,

but these distributions are not uniform between species. For

example, both American black duck and blue-winged teal are

more skewed toward the shallow end of depth to water table than

Canada goose and mallard. The more uniform predicted

probability of occurrence across the range of DWT for mallard

and Canada goose could be due to multiple factors. First, this

could be due to true behavior of these species. These two are more

generalist species, and can often been seen in areas devoid of

wetlands (such as golf courses and agricultural fields). Second, this

uniform predicted response to DWT could be due to the 10-

minute scale of the analysis. Canada goose and mallard prefer to

be in wet habitat, but are also fine with wet areas nested within an

area of relatively deep DWT (for example, a housing subdivision’s

retention pond) [49].

We are not only able to compare between species response to

DWT, but we can also examine how the predicted response to

DWT changes between seasons (Figure 5 and Figure S5, S6, S7).

For example, blue-winged teal is tightly constrained to shallow

DWT in the winter. However, this predicted behavior changes in

the summer/breeding season. We hypothesize that conceivably

blue-winged teal is foregoing wetland habitat for drier, and

perhaps safer, upland nesting sites. It is also important that this is

may be another relic of our 10-minute scale. The breeding area of

blue-winged teal is concentrated in the Prairie Pothole region,

where there are numerous small wetlands within a relatively dry

upland landscape matrix.

This study illustrated that the new process-driven depth to water

table data set can be used as a predictor variable in distribution

modeling of migratory waterfowl. The depth to water table data

set is new and has some important hurdles to overcome, such as

how to effectively handle human manipulation of the water table.

Yet, despite being in its early period, the future research

possibilities are abundant and exciting. To date, forecasting the

response of wetland species to climate change has been severally

limited due to the dynamic nature of wetlands. This issue becomes

compounded when considering migratory species that rely on

wetlands for stop-over habitat. It becomes nearly impossible to

make predictions about the future of migratory waterfowl and how

manage accordingly, when there has been no mechanistic means

to forecast key wetland habitat across the entire migration route.

The DWT data will allow for us to begin to move beyond these

obstacles, and make more vigorous prediction about the future of

migratory waterfowl.

Supporting Information

Figure S1 Plot of variable importance measure from
Random Forest. Variable importance is measured in mean

Figure 5. Plot of relationship between water table depth (m) and occurrence probability for species in winter. The plots were
constructed by selecting 1,000 random points from the predicted probability of occurrence surface. The red curve is a smoothing spline fit to the
mean of the data points, and is meant only to visually illustrate the trend of the data and the upper threshold of DWT.
doi:10.1371/journal.pone.0030142.g005
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decrease in accuracy, which is the decrease in accuracy of a

classification after the variable has been randomly permuted. A

higher mean decrease in accuracy means the variable contributes

more to the accuracy of the classification. The abbreviations are as

follows: ABDU (American black duck), BWTE (blue-winged teal),

CAGO (Canada goose), MALL (mallard), NOPI (northern

pintail), WODU (wood duck), temp (temperature), ppt (precipita-

tion), elev (elevation), dwt (depth to water table), and pw (NLCD’s

percent wetland).

(TIF)

Figure S2 Maps of predicted probability of occurrence
for all study species’ fall habitat. Predictions were created

using MaxEnt with 100% of known presence locations to increase

accuracy of the visual representation. Temperature, precipitation,

elevation, and water table depth were the predicted variables used

to construct the probability surfaces.

(TIF)

Figure S3 Maps of predicted probability of occurrence
for all study species’ spring habitat. See Figure S2 for

description.

(TIF)

Figure S4 Maps of predicted probability of occurrence
for all study species’ summer habitat. See Figure S2 for

description.

(TIF)

Figure S5 Plot of relationship between water table
depth (m) and occurrence probability for species in fall.
The plots were constructed by selecting 1,000 random points from

the predicted probability of occurrence surface. The red curve is a

smoothing spline fit to the mean of the data points, and meant to

illustrate the trend of the data.

(TIF)

Figure S6 Plot of relationship between water table
depth (m) and occurrence probability for species in
spring. See Figure S5 for description.

(TIF)

Figure S7 Plot of relationship between water table
depth (m) and occurrence probability for species in
summer. See Figure S5 for description.

(TIF)
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25. Thuiller W, Lavorel S, Araújo MB (2005) Niche properties and geographical

extent as predictors of species sensitivity to climate change. Global Ecology &

Biogeography 14: 347–357. doi:10.1111/j.1466-822X.2005.00162.x.

26. Buckley PA, Francis CM, Blancher P, DeSante DF, Robbins CS, et al. (1998)

The North American Bird Banding Program: Into the 21st century. Journal of

Field Ornithology 69: 511–529.

27. Livezey BC (1997) A phylogenetic analysis of basal Anseriformes, the

fossil Presbyornis, and the interordinal relationships of waterfowl. Zoological

Journal of the Linnean Society 121: 361–428. doi:10.1111/j.1096-3642.1997.

tb01285.x.

Enhanced Migratory Waterfowl Distribution Modeling

PLoS ONE | www.plosone.org 9 January 2012 | Volume 7 | Issue 1 | e30142



28. Livezey BC (1996) A Phylogenetic Analysis of Geese and Swans (Anseriformes:

Anserinae), Including Selected Fossil Species. Systematic Biology 45: 415–450.
doi:10.1093/sysbio/45.4.415.

29. Hijmans RJ, Williams E, Vennes C (2011) Package ‘‘geosphere’’. Available:

http://cran.r-project.org/web/packages/geosphere/. Accessed: 2011 Dec 23.
30. Bellrose F (1980) Ducks, Geese, and Swans of North America. Third Edition.

Harrisburg, PA: Stackpole Books. 568 p.
31. Bent AC (1987) Life Histories of North American Wild Fowl. New York: Dover

Publications.

32. Kaufman K (1996) Lives of North American Birds. New York: Houghton Mifflin
Company.

33. PRISM Climate Group (2004) Oregon State University. Available: http://
prism.oregonstate.edu. Accessed: 2011 Dec 23.

34. Homer C, Huang C, Yang L, Wylie B, Coan M (2004) Development of a 2001
National Landcover Database for the United States. Photogrammetric

Engineering and Remote Sensing 70: 829–840.

35. Fan Y, Miguez-Macho G, Weaver CP, Walko R, Robock A (2007)
Incorporating water table dynamics in climate modeling: 1. Water table

observations and equilibrium water table simulations. Journal of Geophysical
Research 112: 17. doi:200710.1029/2006JD008111.

36. Cutler RD, Edwards TC, Beard KH, Cutler A, Hess KT, et al. (2007) Random

Forests for Classification in Ecology. Ecology 88: 2783–2792. doi:10.1890/07-
0539.1.

37. Breiman L (1984) Classification and regression trees. Wadsworth International
Group. Chapman and Hall/CRC. 368 p.

38. Breiman L (2001) Random Forests. Machine Learning 45: 5–32. doi:10.1177/
1062860609354639.

39. Liaw A, Wiener M (2002) Classification and Regression by randomForest.

R News 2: 18–22.
40. Phillips SJ, Miroslav D, Elith J, Graham CH, Lehmann A, et al. (2009) Sample

selection bias and presence-only distribution models: implications for back-

ground and pseudo-absence data. Ecological Applications 19: 187–197.

doi:10.1890/07-2153.1.

41. Dudı́k M, Phillips SJ, Schapire RE (2007) Maximum Entropy Density

Estimation with Generalized Regularization and an Application to Species

Distribution Modeling. The Journal of Machine Learning Research 8:

1217–1260.

42. Phillips S, Dudı́k M (2008) Modeling of species distributions with Maxent: new

extensions and a comprehensive evaluation. Ecography 31: 161–175.

doi:10.1111/j.0906-7590.2008.5203.x.

43. Manel SH, Williams C, Ormerod SJ (2001) Evaluating presence–absence

models in ecology: the need to account for prevalence. Journal of Applied

Ecology 38: 921–931. doi:10.1046/j.1365-2664.2001.00647.x.
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