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SCALE-SPECIFIC INFERENCE USING WAVELETS
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Abstract. Understanding of spatial pattern and scale has been identified as a key issue
in ecology, yet ecology has traditionally lacked necessary tools for making inference about
relationships between scale-specific patterns. We introduce wavelet-coefficient regression,
in which the dependent and independent variables are wavelet transformed prior to analysis,
as a means to formalize scale-specific relationships in ecological data. We apply this method
to data on vegetation and environmental factors related to water availability from Sequoia-
Kings Canyon National Park (California, USA). We find that the wavelet transform and
wavelet-coefficient regression efficiently characterize scale-specific pattern in these data.
We also find that different environmental factors show up as good predictors of vegetation
growth at different scales and that these differences in scale greatly facilitate interpretation
of the mechanisms relating water availability to vegetation growth.

Key words: environmental control; Haar transform; pattern and scale; remote sensing; Sierra
Nevada, California, USA; spatial pattern; spatial scale; statistical analysis; vegetation analysis; wave-
let-coefficient regression; wavelets.

INTRODUCTION

The problem of pattern and scale in landscapes has
been identified as central to further progress in eco-
logical theory (Levin 1992), yet ecology has tradition-
ally lacked general methods for detecting scale-specific
association between observed patterns and hypothe-
sized predictors. Considerable attention has been given
to the problem of detecting dominant scales of pattern
in environmental data, going back to the pioneering
work of Greig-Smith (1964). In vegetation science,
multiscale ordination (Noy-Meir and Anderson 1971,
ver Hoef and Glenn-Lewin 1989, Wagner 2003) was
designed to find the scale(s) at which trends in mul-
tivariate species data are mostly strongly evident. Mul-
tiscale ordination amounts to an analysis of rescaled
data sets generated via blocking the base-level data
(typically, quadrats along a transect); this is essentially
a multivariate extension of two-term local covariances
that evolved from blocksize ANOVA (Greig-Smith
1964, Dale 1999). Similarities between modern block-
ing techniques (e.g., two-term local quadrat covariance,
TTLQC) and the analysis we describe will be apparent
(Dale 1999). More recently, general methods for the
characterization and treatment of spatial pattern have
arisen across a variety of disciplines, with many of
these subsumed under the title of ‘‘geostatistics’’ (Cres-
sie 1993). In this, the contiguity relationship explicit
in blocking techniques is represented by the distance
between two samples (lag distance). Dale (1999) ex-
plains how blocking techniques and semivariance are
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related, and Wagner (2004) illustrates how, under cer-
tain circumstances and assumptions about the data,
blocking techniques such as multiscale ordination and
semivariance analysis can be integrated into a more
cohesive body of spatial analyses. Borcard and Legen-
dre (2002) similarly describe an interesting method of
extracting hierarchical patterns from data based on
spectral analysis of truncated distance matrices. All of
these methods typically ask whether a pattern exists,
and at what scale or scales pattern is expressed most
strongly. In many instances, spatial pattern is seen as
a nuisance, and the goal is to discover how statistical
procedures can avoid undesirable outcomes such as
spurious correlation between variables or biased sig-
nificance tests, in the presence of spatial pattern (Dale
1999).

Less often asked, and perhaps a Rosetta Stone for
translating complex spatial patterns into mechanistic
understanding, is the question of whether a scale-spe-
cific pattern of interest can be predicted from patterns
expressed at similar scales in measured covariates (see
also Borcard et al. 2004). For example, a plant ecologist
might ask whether typical patch size in a plant com-
munity is determined by the scale of pattern in water,
nutrient, or sunlight availability, or is the result of typ-
ical herbivore group size, typical scales of pathogen
outbreaks, or the typical scale of abiotic disturbances.
These questions have, in the past, been addressed in-
directly, for example through hierarchical quadrat
blocking, with standard univariate and multivariate sta-
tistical methods. In spatial statistics, partial Mantel
tests provide some leverage on this problem, but not
in a scale-specific manner (Urban et al. 2002). How-
ever, direct assessment of relationships between vari-
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FIG. 1. Haar wavelet transform of an au-
toregressive time (or equivalently, space) series
defined by xt11 5 21/2xt 2 « where « ; N (0,1).
The right-hand column shows detail coefficients
(d(1), d(2), . . . ) calculated as in Eq. 1. The left-
hand column shows the original sequence and
smooth coefficients (s(1), s(2), . . . ) calculated as
in Eq. 2. The parenthetical superscript numbers
refer to scale; the subscripts refer to location.
In this example, the series oscillates rapidly, and
most of the variance is transfered to the d(1) co-
efficients. Little variance remains by the third
level of the transform. Many space and time
series in nature show increasing variance at
higher levels of the transform (for example, see
Fig. 5).

ables at specific scales has remained a challenging
problem. Here, we show that traditional statistical
methods, such as multiple regression, can be adapted
to address scale-specific questions in ecological data.
Our approach utilizes wavelet transforms (Daubechies
1992) to extract scale-specific information from inde-
pendent and dependent variables, and then employs
familiar statistical methods to detect scale-specific as-
sociations in the transformed data. We illustrate the
method using geophysical and remotely sensed data
from the Sierra Nevada landscape in western North
America to address the question of whether scale-spe-
cific patterns in physical drivers of ecosystem produc-
tivity generate similar scale-specific patterns in vege-
tation structure. In the Sierra Nevada, previous studies
have shown that the physical environment is spatially
structured on multiple scales and we suspect that veg-
etation responds accordingly (Urban et al. 2000, 2002).
However, the approach is quite general and we close
with a discussion of what we see as fruitful avenues
in which to further develop these methods.

Wavelets

Increasingly, wavelet transforms have become the
preferred representation in which to analyze pattern and
scale in environmental data (Bradshaw and Spies 1992,
Dale and Mah 1998, Grenfell et al. 2001, Csillag and
Kabos 2002; Rosenberg 2004). Wavelet transforms are
similar to Fourier transforms, in that they decompose
a pattern into a hierarchy of different scales (Keitt
2000), but offer distinct advantages over Fourier trans-
forms when analyzing complex, nonstationary patterns.
This is because wavelet transforms are local transforms
and thus provide information about the intensity of
pattern at different scales at a particular location. For-
mal treatment of wavelets has been covered exhaus-
tively elsewhere (Daubechies 1992) and is beyond the
scope of this paper. However, basic concepts are easily
mastered and one can get an intuition of how the wave-
let transform works through simple arguments. A par-
ticularly accessible treatment can be found in Walker
(1999).

The wavelet transform repeatedly splits an initial se-
quence into discrete detail coefficients that quantify local
fluctuations at a particular scale, and smooth coefficients
that quantify remaining low-frequency variation in the
signal after the high-frequency detail is removed. The
simplest wavelet transform is the Haar transform. In the
Haar transform, detail coefficients are calculated simply
by subtracting successive values in the sequence (Walker
1999). Given a sequence f 5 ( f1, f2, . . . , fN) sampled at
N equally spaced intervals, the first-level detail coeffi-
cients are given by

f 2 f2m21 2m(1)d ( f ) 5 (1)m Ï2

where m 5 1, 2, 3, . . . , N/2; the parenthetical super-
script numbers refer to scale, the subscript refers to
location. Notice that variation in the level-1 detail co-
efficients only reflects local, nearest-neighbor fluctu-
ations in the sequence. The level-1 smooth coefficients
are then

f 1 f2m21 2m(1)s ( f ) 5 (2)m Ï2

where m 5 1, 2, 3, . . . , N/2. Level-2 detail coefficients
are computed by differencing this trend information

(1) (1)s ( f ) 2 s ( f )2m21 2m(2)d ( f ) 5 (3)m Ï2

where m 5 1, 2, 3, . . . , N/4. Similarly, the level-2
smooth coefficients are obtained by summing pairs of
level-1 smooth coefficients. At each level, the number
of smooth and detail coefficients obtained drops by
1/2. The process can be iterated until only one smooth
and one detail coefficient are produced. Decimation of
the sequence by a factor of 2 at each level has the effect
of amplifying the output variance by a factor of atÏ2
each level. The tradition is to adjust the transform such
that the variance is constant across levels, hence the
division by at each level (Walker 1999). An ex-Ï2
ample illustrating the transform is shown in Fig. 1.

The relationship between the level of the transform
and scale is quite simple in this case. The level-1 detail
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FIG. 2. Image of the Sequoia-Kings Canyon (California, USA) study site showing data transect (green line) overlaid on
terrain. Blue lines show drainage network. North is to the left; the transect length is 30.72 km (1024 cells, each 3 30 m
long).

coefficients correspond to a window spanning two sam-
ple intervals; level-2 coefficients correspond to a win-
dow spanning four sample intervals, and so on. In sig-
nal theory, this is equivalent to decomposing the var-
iation in the original sequence into components cor-
responding to frequencies of p radians per sample
interval (level 1), p/2 radians per sample interval (level
2), p/4 radians per sample interval (level 3), and so on
down to p/N radians per sample interval (Diggle 1990).
The end result of the transform is a partitioning of
variance into a hierarchy of well-defined scales.

The wavelet transform is reminiscent of blocking
techniques familiar to vegetation scientists. In partic-
ular, two-term local quadrat covariances compute a lo-
cal variance (squared differences) from contiguous
samples that are successively aggregated into larger
blocks (Dale 1999). By comparison, the wavelet filter
evaluates a function (the wavelet) using the data within
each window (block). Importantly, there are wavelet
functions (including the Haar transform) that transform
data without loss of information; the back-transfor-
mation can reconstitute the original data (see Inverse
transforms . . . , below)—unlike traditional methods of
pattern analysis in vegetation studies.

Wavelet covariance

Scale-specific relationships between variables can be
quantified by computing the covariance between wave-
let coefficients. For two sequences f and g, let

(,) (,) (,)cov ( f, g) 5 ^d ( f ) 3 d (g)&wav

denote the wavelet covariance where ^& indicates sum-
mation and , is the level of the transform. Strong pos-
itive covariance between wavelet coefficients indicates
a positive assocation at a particular scale. The special
case f 5 g corresponds to wavelet variance. Wavelet
variance is analogous to the Fourier power spectrum

and similarly quantifies the amount of variation present
at a particular scale.

Multiple regression of wavelet-transformed data

Like the Fourier transform, the wavelet transform is
a linear operator. This is convenient within the frame-
work of linear regression because, for any linear func-
tion f, we require that f(ax) 5 af(x) where a is a con-
stant. Thus, the standard multiple linear model

2y 5 b 1 b x 1 b x 1 · · · 1 b x 1 s « (4)0 1 1 2 2 n n

can be transformed by a linear operator C such that

C(y) 5 b9 1 b C(x ) 1 b C(x ) 1 · · · 1 b C(x )0 1 1 2 2 n n

21 s C(«) (5)

without altering the interpretation of the coefficients.
What is different is the intercept term and, in general,
the covariance structure of the error terms. By choosing
the wavelet transform for our linear operator, we can
fit scale-specific models in the sense that the transform
is extracting scale-specific components of pattern at
each level of the decomposition. We refer to this gen-
eral approach as ‘‘wavelet-coefficient regression’’ (see
Appendix).

While not commonly employed in the ecological lit-
erature, we note that spectral transformation of data
prior to data analysis is quite common in some areas
of statistics (see for example Shumway and Stoffer
[2000]). In these cases, wavelets are not generally used
for scale-specific inference, but rather to reduce the
dimensionality of complex space–time problems. Sim-
ilar applications also appear in the economics and fi-
nance literature (Ramsey 1999).

Inverse transforms and multiresolutional
decomposition

If the chosen wavelet meets certain requirements,
then the original data sequence can be reconstructed
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by applying an inverse wavelet transform to the co-
efficients produced by the forward transform (Daube-
chies 1992). This property leads to several interesting
applications of wavelets. One application is as an adap-
tive smoother for noisy data. Because uncorrelated er-
rors result in relatively small wavelet coefficients, ran-
dom corruptions of a signal can often be removed by
replacing small coefficients obtained from the forward
transform with zeros, and then applying the inverse
transform to yield a smoothed version of the original
sequence. Selective removal of wavelet coefficients can
be used for scatter-plot smoothing, or as input to gen-
eralized additive regression models (Hastie and Tib-
shirani 1990). The latter case is sometimes referred to
as ‘‘wavelet regression,’’ but is quite different from the
approach presented here. Additive models seek smooth,
nonparametric functions of independent variables that
are good predictors of dependent variables, but the pro-
cedure is neither scale specific, nor does it directly
assess relationships between spatial patterns in inde-
pendent and dependent variables.

Another application of the inverse transform is mul-
tiresolutional decomposition (Mallat 1989). In multi-
resolutional decomposition (MRD), the original se-
quence is decomposed into a series of new sequences,
each containing only patterns found at a particular
scale. This is accomplished by retaining only the co-
efficients at a single level of the transform (setting all
others to zero) and then back-transforming. The re-
sulting sequence only contains patterns from the orig-
inal sequence specific to the scale at which the coef-
ficients were retained. A nice property of MRD is that
the decomposition is additive so that summing the re-
sulting sequences together yields the original data (see
Fig. 4, below). This also suggests an alternative scale-
specific regression approach. One could fit a regression
model at each level of an MRD of the independent and
dependent variables rather than directly on the wavelet
coefficients as in this paper—the principle disadvan-
tage being the tendency for the MRD to produce strong
autocorrelation, a potentially confounding factor in any
subsequent statistical analysis.

DATA AND METHODS

To illustrate our approach, we compiled a data set
composed of an index related to vegetation growth and
several hypothesized physical predictors of plant
growth sampled from a study site in Sequoia-Kings
Canyon National Park (California, USA). For our char-
acterization of vegetation, we calculated normalized-
difference vegetation index (NDVI) values from Land-
sat thematic mapper (TM) imagery. Data used for sta-
tistical analysis were subsampled from the TM scene
at 1024 locations spaced at 30-m intervals along a 31-
km transect (Fig. 2). The transect runs across the hill
slope, thus intersecting transverse draws cut by the
drainage network, and not simply running uphill. We
also chose several physical predictors based on current

understanding of biotic response to the physical tem-
plate (Stephenson 1990, 1998, Urban et al. 2000).
These included elevation (elev.), topographic conver-
gence index (tci), and analytic hill shading (sun). All
of these variables influence soil water availability, a
critical determinant of plant growth during the summer
dry season, albeit through different mechanisms (Ste-
phenson 1998, Urban et al. 2000). Increasing elevation
results in lower temperatures and greater precipitation
depending on local lapse rates (which are typically high
in the study area). Topographic convergence index is
positively related to water availability owing to drain-
age from upslope areas. Increased radiation tends to
reduce soil moisture because of increased evaporative
demand.

For our statistical analysis we used software routines
available for the R statistical package (Ihaka and Gen-
tleman 1996). We first applied a discrete Haar-wavelet
transform to the transect data, being careful to discard
coefficients obtained from wavelets overlapping the
boundary of the data sequence. (In the case of the Haar
wavelet, only one coefficient need be discarded at each
level; a less compact wavelet would require more
boundary coefficients to be discarded unless a suitable
boundary correction can be applied.) We stopped the
transform when the number of wavelet coefficients
dropped to 15 (level 6), the minimum sample size we
felt was sufficient for the results to be interpretable.
We then fit a multiple linear-regression model to the
coefficients at each level of the transform. We used the
NDVI coefficients for the dependent variable and co-
efficients for elev., tci, sun, and all two-way interac-
tions for the independent variables. We then applied a
stepwise model selection algorithm to arrive at a final
model at each level that minimized Akaike’s infor-
mation criterion (Venables and Ripley 1999).

We emphasize that a scale-specific approach is not
restricted to our choice of linear regression with step-
wise model selection. Other statistical approaches
could have been used (e.g., Bayesian methods, ordi-
nation, nonlinear regression) in analyzing the wavelet-
transformed data. In choosing widely familiar tech-
niques, we hope to demonstrate the power of wavelets
for detecting scale-specific patterns while avoiding un-
due confusion over the statistical methods applied at
each scale of analysis.

RESULTS

Each of the chosen variables show different patterns
of variability, even as simple line transects (Fig. 3).
Elevation shows a broad-scale pattern of peaks and
draws probably generated by water runoff. Topographic
convergence exhibits a fairly noisy, fine-scale pattern.
Pattern in hill shading (‘‘sun’’) appears to be somewhat
intermediate between elevation (elev.) and topgraphic
convergence index (tci), consistent with geostatistical
analyses by Urban et al. (2000). The pattern in NDVI
(normalized-difference vegetation index) seems to be
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FIG. 3. Values of measured variables sampled at 30-m
intervals along the transect shown in Fig. 2. Key to abbre-
viations: NDVI, normalized-difference vegetation index;
elev., elevation; tci, topographic convergence index; sun, an-
alytic hill shading.

FIG. 4. Multiresolutional decomposition of the NDVI
data. The left-hand column shows the decomposition at each
scale (levels 1–6). The right-hand column shows the sum of
the preceding scale components such that sk 5 sk11 1 dk11.
Each ‘‘location’’ unit is 30 m.

a complex mixture of both fine- and intermediate-scale
patterns.

The complexity of the NDVI pattern is further sup-
ported by the multiresolutional decomposition of the
data (Fig. 4). Clearly, there are patterns exhibited at
all scales of the decomposition. Furthermore, different
locations in the sequence exhibit pattern at different
scales. For example, the pattern is relatively intense
about 1/3 of the distance down the transect at levels 2
and 3, but shifts more toward the center of the transect
at levels 4 and 5 (left column, Fig. 4). Wavelet trans-
forms are ideal for characterization of these sorts of
nonstationary, scale-specific patterns.

Fig. 5 plots the wavelet variance–covariance matrix
for the four variables in our analysis as a function of
scale. Typical of noisy, multiscale patterns, wavelet
variances for all variables decay rapidly when moving
from coarse resolution (level 6 ; 1.6 km) to fine res-
olution (level 1 ; 30 m). This is fairly intuitive as it
is reasonable to expect that values at nearby locations
will be more similar, and thus have a smaller autoco-
variance, than values located far apart. The large in-
crease in wavelet variances at coarse scales indicates
the presence of significant pattern in the data (wavelet
variances for uncorrelated random noise are indepen-
dent of scale).

Different patterns appear in the wavelet covariances
depending on the variables compared. Both tci–elev.
and sun–NDVI show increasingly negative associations
with increasing scale. At increasingly broad scales, it
appears that higher sun intensity reduces NDVI, per-
haps due to increased water stress. As expected, tci
increases with decreasing elevation as ravine bottoms
(where convergence is high) must be at lower eleva-

tions than ridge crests. Elevation strongly covaries with
NDVI, but only at the coarsest scale sampled (level 6).
Topographic convergence also covaries negatively with
NDVI at level 5, but only weakly covaries at other
levels. Note, however, that larger covariances are ex-
pected at coarser scales because the variances are also
larger. Small relative covariances at smaller scales do
not necessarily imply a lack of correlation.

To further explore the correlation structure between
patterns in NDVI and patterns in the independent var-
iables, we fit linear-regression models to the wavelet
coefficients at levels 1–6, as well as to the untrans-
formed data and applied a stepwise procedure for mod-
el selection (Table 1). For the untransformed data (level
‘‘0’’), we found significant relationships for each of the
independent variables, and a weak interaction effect
between elevation and hill shading. Interestingly, when
the data were wavelet transformed, the model selection
procedure highlighted quite different associations
among the variables at different scales. Models selected
at levels 1, 4, 5, and 6 gave relatively poor fits, whereas
models fit at levels 2 and 3 (60-m and 120-m scales,
respectively) were significant, and, more interestingly,
suggest different variables control pattern in NDVI at
different scales. At level 2 there was a strong relation-
ship between elevation crossed with topographic con-
vergence. As noted previously, topographic conver-
gence depends crucially on elevation, so the interaction
comes as no surprise. (When taken alone, neither elev
nor tci were significantly related to NDVI at level 2
even though this model minimized AIC. Venables and
Ripley (1999) note that AIC tends to overfit and suggest
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FIG. 5. Wavelet covariances plotted as a function of scale.
Each row and column correspond to a different variable. For
any given row and column, (row variable, column var-(,)covwav

iable) is plotted for levels , 5 1, 2, . . . , 6. The first plot in
the first row is therefore (NDVI, NDVI). The last plot(,)covwav

in the first row is (NDVI, sun), and so on. Dotted lines(,)covwav

indicate zero covariance. See Fig. 3 legend for an explanation
of physical-predictor codes.

TABLE 1. Results of multiple linear models fit to wavelet coefficients based on stepwise
selection and AIC.

Level N Model F AIC

0‡ 1024 elev** 1 tci* 1 sun* 1 elev 3 sun*† 31.21** 6117
1 511 elev 1 sun 1 tci 1 elev 3 tci† 1 elev 3 sun 1.49 2168
2 255 elev 1 tci 1 elev 3 tci** 3.18* 1334
3 127 sun* 4.24* 793
4 63 elev 1 sun 1 elev 3 sun 1.45 451
5 31 intercept only NA 234
6 15 tci 1 sun* 1 tci 3 sun* 2.33 125

Notes: Physical predictors: elev 5 elevation, tci 5 topographic convergence index, and sun
5 hill shading. NA 5 not applicable.

* P , 0.05; ** P , 0.01; † P , 0.1.
‡ Untransformed data.

further variable elimination based on marginality; how-
ever because our analysis is primarily exploratory, we
did not pursue further adjustments to the models.) At
level 3 our results show that hill shading (sun) is a
significant determinant of pattern in NDVI. Although
difficult to ascertain visually, it does appear that hill
shading exhibits somewhat coarser-scale patterning than
does topographic convergence (Fig. 3), and this likely
explains the sudden switch from topographic conver-
gence to hill shading as a driver of pattern at level 3.

Because the linear-regression method applied to the
data is potentially sensitive to spatial autocorrelation
(Keitt et al. 2002), we additionally tested the residuals

of each fit for autocorrelation using Mantel’s test (Man-
tel 1967, Manly 1986). We detected significant spatial
autocorrelation in the residuals when the data were not
transformed (P , 0.001). Visual inspection of the au-
tocorrelation function indicated significant correlation
up to 450-m lag distance. The results of the regression
on the untransformed data must therefore be considered
with some skepticism. (Since we are more interested
here in scale-specific analysis, we did not bother to
account for the autocorrelation in the residuals of the
untransformed regression, although methods to do so
are readily available.) Little or no autocorrelation was
observed in any of the regressions on wavelet-trans-
formed data. Only at level 3 did we observe a margin-
ally significant autocorrelation (P 5 0.02; two-tailed
comparison). Plotting the autocorrelation function for
the level-3 residuals revealed minor autocorrelation
that decayed rapidly with lag distance. No pattern was
observed beyond the 30-m (nearest neighbor) lag scale.
Thus, wavelet transforming the data eliminated any
meaningful spatial autocorrelation as a confounding
factor in our analysis.

DISCUSSION

Our initial application of wavelets to the problem of
scale-specific inferences appears quite promising: the
method highlights strong differences in the scales at
which physical environmental factors are associated
with vegetation patterns in the Sierra Nevada. Topo-
graphic effects on water availability appear to dominate
vegetation patterns at a scale roughly half that of solar
inputs. This is likely because shading is strongly influ-
enced by the larger gullies and ravines, which cast shad-
ows over large areas, blocking any effect of finer scale
topography. On the other hand, effects of topography
and topographic convergence on water availability do
not have a shadow effect, and thus can influence veg-
etation at the finest scales of topographic relief. It is
rather an appealing feature of scale-specific inference
that the spatial signatures of these different mechanisms
of water availability and their effects on vegetation can
be easily detected and separated by scale.
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There are a number of areas in ecology where we
believe wavelet-coefficient regression could lead to in-
teresting new insights. For example, environmental
control over species distribution and abundance, a core
topic in ecology, would seem to be a natural area for
scale-specific analysis, as patterns in the environment
and species distributions are typically manifest across
a wide range of scales (Kendal 1992, Maurer 1994). A
species distribution may be controlled at fine scales by
the presence of riparian habitat, but at a broader scale,
by topography and rainfall patterns that determine the
distribution of riparian habitats across the landscape.
We would expect that testing for scale-specific asso-
ciations using the methods presented here would nicely
highlight important environmental controls of species
distributions at different scales. An interesting question
arises in the appropriate handling of presence–absence
data. Logistic regression is the typical approach. How-
ever, after wavelet transformation, the data would no
longer be strictly presence–absence, but instead would
contain both positive and negative real numbers, ruling
out the use of the logistic framework. We have yet to
explore this problem in detail, but it does raise the
interesting question of whether binary wavelet-like
transforms can be defined for presence–absence data.

Results from our initial application of wavelet-co-
efficient regression appear quite promising. Nonethe-
less, some caution is warranted, as significant statistical
and ecological issues have yet to be explored. We have
illustrated applications of the Haar wavelet, but myriad
other wavelets are available and these yield slightly
different results as a consequence of the degree to
which the shape of the wavelet matches the dominant
pattern in the data. For example, the Haar square wave
is well suited to detecting abrupt edges, while a
smoother wavelet might be more appropriate to topo-
graphic undulations. For our application, the nuance of
wavelet shape is unlikely to have a significant effect
as we are principally interested in extracting scale-spe-
cific covariance information. As long as the wavelet
does a reasonable job of isolating variance in narrow
frequency bands, it should perform adequately. None-
theless, statistical packages that support wavelet anal-
ysis often do include automated functions for discov-
ering good wavelet kernels for specific tasks, such as
image compression. It is yet to be determined, and a
topic of interest for future studies, whether these al-
gorithms are of use in enhancing the detection of scale-
specific associations in ecological data.

In our present study, we have followed Mallat’s
(1989) pyramid scheme (Fig. 1) for computing the
wavelet transform. The pyramid scheme has the limi-
tation that the scale of analysis jumps by a power of
2 in each successive level of the transform. If inter-
esting covariation occurs at scales falling between the
levels analyzed, they may be assigned to the wrong
scale or missed altogether. Wavelet transforms may also
be calculated using a continuous (albeit discretely sam-

pled) wavelet function (Daubechies 1992). The contin-
uous transform permits analysis across a continuum of
scales, allowing the investigator to choose how finely
to explore the frequency spectrum. The cost is a large
overlap in the scales analyzed as one makes finer and
finer steps. It seems convenient to minimize overlap
between levels so that models produced at each scale
are relatively independent (and represent an additive
decomposition of the original variance). However, the
implications of this trade-off of independence for scale
resolution have not been explored.

We have illustrated wavelet applications in a single
dimension, along transects. Even in this case, the lo-
gistical expense implied by the long transect (.30 km)
is essentially beyond field-sampling methods and in-
stead invites applications to remotely sensed data. In
this sense, it is especially compelling to consider ap-
plications to two-dimensional data such as satellite im-
agery. Wavelet applications are well developed to high-
er-dimensional data in other disciplines, but less so in
ecology (Csillag and Kabos 2002; Rosenberg 2004).

As with any statistical analysis, some care is also
needed in interpreting the results of wavelet-coefficient
regressions. Notice that the residual errors are also
wavelet transformed in the wavelet-coefficient model
(Eq. 5), a procedure that may alter the error distribution
and interdependence. Transformation of the residuals
is typically less of a problem than it might seem, and
can have beneficial side effects. Generally, wavelet-
transformed residuals will not show significant auto-
correlation. This is apparent when one considers that
the wavelet decomposition separates a sequence into
low-frequency trend (the smoothed sequences) and
maximally uncorrelated detail (the wavelet coeffi-
cients). Thus, wavelet-coefficient regression will tend
to meet assumptions of independence, even when the
input data are strongly autocorrelated. We found ex-
actly this case in the results presented here. However,
as with any regression analysis, it is wise to test for
normality, independence, and homoscedacity of errors
before placing great confidence in the estimated pa-
rameters.

Development and interpretation of significance tests
is further complicated by the inverse relationship be-
tween the number of coefficients and the scale or level
of analysis; at coarse scales, the very few coefficients
make it difficult to meet parametric tests of significance
because of the low degrees of freedom. Yet much of
the variance, in an absolute sense, tends to occur at
these coarse scales. By contrast, somewhat less vari-
ance tends to be concentrated at very fine scales, yet
the large number of coefficients makes it easier to meet
conventional tests of significance. Some artful blending
of scale-specific and global tests of significance might
be in order. Related to this issue is a question about
how generalizable or transportable the results of wave-
let-based regression models might be. For example, can
a wavelet regression be used in predictive mode using
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data independent of the data used to fit the model? We
have not explored this issue with our data, though the
results of such tests would dictate whether such re-
gressions could be used in inferential mode for a par-
ticular data set or in predictive mode for other data
sets. If applications are intended primarily to interpret
a single data set, then this might invite applications of
alternative regressions with more within-data-set flex-
ibility (e.g., locally weighted methods).

Although these and other issues remain to be re-
solved, it is clear that scale-specific analysis using
wavelets holds great promise for ecological applica-
tions concerned with multivariate, multi-scaled pat-
terns. We offer this introduction as an indication of this
promise and as a benchmark for further developments
in this new approach.
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APPENDIX

A simulation study of wavelet-coefficient regression is available in ESA’s Electronic Data Archive: Ecological Archives
E086-131-A1.
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