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The Lotka–Volterra model of predator–prey interaction is based on the assumption of mass action,
a concept borrowed from the traditional theory of chemical kinetics in which reactants are assumed
to be homogeneously mixed. In order to explore the effect of spatial heterogeneity on predator–prey
dynamics, we constructed a lattice-based reaction–diffusion model corresponding to the Lotka–Volterra
equations. Spatial heterogeneity was imposed on the system using percolation maps, gradient
percolation maps, and fractional Brownian surfaces.

In all simulations where diffusion distances were short, anomalously low reaction orders and
aggregated spatial patterns were observed, including traveling wave patterns. In general, the estimated
reaction order decreased with increasing degrees of spatial heterogeneity. For simulations using
percolation maps with p-values varying between 1.0 (all cells available) to 0.5 (50% available), order
estimates varied from 1.27 to 0.47. Gradient percolation maps and fractional Brownian surfaces also
resulted in anomalously low reaction orders. Increasing diffusion distances resulted in reaction order
estimates approaching the expected value of 2.

Analysis of the qualitative dynamics of the model showed little difference between simulations where
individuals diffused locally and those where individuals moved to random locations, suggesting that
global density dependence is an important determinant of the overall model dynamics. However,
localized interactions did introduce time dependence in the system attractor owing to emergent spatial
patterns.

We conclude that individual-based spatially explicit models are important tools for modeling
population dynamics as they allow one to incorporate fine-scale ecological data about localized
interactions and then to observe emergent patterns through simulation. When heterogeneous patterns
arise, it can lead to anomalies with respect to the predictions of traditional mathematical approaches
using global state variables.

1. Introduction

In developing a quantitative theory for the interaction
of predator and prey, Lotka (1956) and Volterra
(1928) applied the logic of mass action to model the
influence of predator and prey density on population
dynamics. The assumption of mass action appears
in the Lotka–Volterra model as a product of the
respective populations:

dA/dt= rA− sAB (1a)

dB/dt= tAB− uB (1b)

where A and B are density of prey and predator,
r and u are per capita change in the absence of each
other, and s and t are rates of change due to
interaction. The model treats populations rather like
an ideal gas, i.e. the distribution of predators and prey
are assumed to be uniformly mixed and homogeneous
throughout. Thus the encounter rate between
predator and prey can be approximated by the
product of their respective biomasses. Dynamically,
eqns (1a) and (1b) result in neutrally stable limit
cycles. Mass action plays an important role in much
of the physical sciences. It is particularly prevalent in
the equilibrial theory of chemical kinetics where it
may be referred to as a mean-field approximation
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(Snoeyink & Jenkins, 1980). A ‘‘mean-field’’ approach
is commonly taken when modeling chemical reaction
mechanisms and rates (Gardiner, 1972).

Whereas a mean-field approximation may be useful
for modeling reactions in a chemostat, it is generally
a poor assumption when considering population
dynamics distributed spatially across a landscape.
Space introduces lags in population responses to
resource availability or predation because local
increases in abundance do not immediately effect
areas further away. Time is required for individuals to
disperse. Spatial lags lead to a variety of complex
spatial patterns ranging from traveling waves to chaos
(Kareiva, 1990; Hassel et al., 1991; Dunning et al.,
1992). Furthermore, habitat distributions can them-
selves be heterogeneous and exhibit scale-dependent
fractal geometry (Milne, 1992). Individuals dispersing
in patchy environments can exhibit both increased
and decreased rates of diffusion depending not only
on the geometry of the landscape, but also on the
spatiotemporal scale over which one tracks individual
movements (Johnson et al., 1992a). Patchy habitats
can also stabilize competitive and predator–prey
interactions which would otherwise be unstable
(Huffaker, 1958; Godfray & Pacala, 1992; Palmer,
1992; however see Murdoch et al., 1992). Hetero-
geneous population distributions can arise both
through the intrinsic dynamic of the ‘‘players’’ (i.e.
organisms) and via a heterogeneous ‘‘playing field’’.

A number of approaches have been taken towards
improving the mathematical treatment of predator–
prey theory (for a review see Berryman, 1992). Prey
density dependence may be added in the form of a
logistic prey growth function, changing eqn (1a) to

dA/dt= rA (1−A/K )− sAB, (2)

where K is the equilibrium prey density. The second
term on the right in eqn (2) (sAB ) is known as the
predator functional response. Prey density dependence
results in a slanting prey zero-growth isocline and a
stable focus equilibrium. The logistic approach may
be extended to the predator equation as well (Leslie,
1948; Berryman, 1981) yielding

dB/dt= tB (1− vB/A ). (3)

Equations such as (3) which include a predator–prey
quotient are referred to as ratio-dependent models.
Ratio dependence has also been applied to modeling
predator functional responses (Aditi & Ginzburg,
1989).

Ratio-dependent models do not rely on mass action
since ratios (e.g. predators per prey) approximate
conditions experienced by each individual as opposed

to the overall effect of one population on the other.
Furthermore, these models overcome many of the
limitations of the original Lotka–Volterra model,
such as the ‘‘paradox of enrichment’’, in which
traditional models predict that increased resource
availability will lead to an increase in predator
density, but not that of the prey (Berryman, 1992).
Both experimental and empirical data support
ratio-dependence as a model for trophic interactions
(Arditi & Saı̈ah, 1992; Ginzburg & Akçakaya, 1992;
Gutierrez, 1992).

Although these approaches to modeling predator–
prey dynamics rectify many of the weaknesses of the
original Lotka–Volterra theory, they nonetheless rely
on what Slobodkin (1992) refers to as ‘‘extensive’’
variables, i.e. global quantities. Individual organisms
do not directly experience extensive quantities. The
fate of individual interactions depends on ‘‘intensive’’
variables (i.e. local conditions) such as the number of
prey neighboring a predator. Ratio- and per-capita
based models (Berryman, 1992), although they
approximate per-individual interactions, are derived
as functions of extensive variables. Extensive vari-
ables are themselves transformations of intensive
variables, generally a quantity summed over a given
area. It is important to note that in general the
transformation from local variables to global vari-
ables is not necessarily invertible, unless the system is
spatially homogeneous. In the presence of significant
spatial variation in abundance, knowing the total
number of individuals distributed across a land-
scape provides little information about how many
individuals one will find within a given local area.

In this paper, we adopt a more direct approach to
modeling predator–prey interaction based on inten-
sive variables. We simulate individual predators and
prey interacting on a lattice of cells. The outcome of
individual encounters is determined by probabilistic
interaction rules. We also introduce a novel approach
to incorporating environmental heterogeneity into
population models by simulating population dynam-
ics on fragmented lattices. Several aspects of the
model are considered and contrasted with traditional
‘‘extensive-variable’’ population models. Emergent
spatial patterns on both homogeneous and frag-
mented lattices are explored. We then consider the
effects of spatial heterogeneity on the instantaneous
rates of population growth rates. Our analysis is
based on the theory of anomalous chemical kinetics
in heterogeneous media (Kuzovkov & Kotomin,
1988; Havlin, 1989; Kopelman, 1989). Finally, we
examine qualitative aspects of the model in the
phase plane comparing local versus global movement
rules.
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1.1.  

In order to quantify deviation in the behavior of
the spatially explicit predator–prey model from the
Lotka–Volterra model, we adopt an analogy to a
chemical reaction system. Written as a set of reac-
tions, the Lotka–Volterra equations correspond to

A04
k1

2A (4a)

A+B04
k2

2B (4b)

B04
k3

2C, (4c)

where A represents ‘‘prey’’, B represents ‘‘predators’’,
and ki are reaction rate constants. The first reaction
corresponds to prey reproduction. The second corre-
sponds to predator reproduction due to consumption
of prey and the last reaction represents predator
mortality.

Following the basic analytical methods of chemical
kinetics, we rewrite the reaction system as a set of
differential equations

dA/dt= k1Aa − k2AaBb (5a)

dB/dt= k2AaBb − k3Bb, (5b)

which are equivalent to the Lotka–Volterra model.
The exponents a and b represent, in the theory of
chemical kinetics, the order of the reactions with
respect to predator and prey density. In the
well-mixed Lotka–Volterra model, these exponents
are assumed to equal one and are therefore not given
explicitly. It is important to note that in the theory
of ordinary differential equations (ODEs), the term
order is used in an entirely different sense and refers
to the highest derivative appearing in a differential
equation.

In ecological terms, reaction order can be thought
of as the sensitivity of the growth, mortality, and
encounter terms to changes in the density of predator
or prey. Thus, for large reaction orders, increasing
either predator or prey densities will have a
proportionately large effect on the magnitudes of the
terms in the equations.

Chemists use reaction orders to mathematically
express the underlying mechanisms occurring in
chemical reactions and their effect on overall reaction
kinetics (Snoeyink & Jenkins, 1980). In classical
kinetics, reaction orders are integer values determined
by the molecular interactions that constitute the
reaction. For instance we might have a simple decay
reaction of a molecule into one or more products,

such as in the decomposition of hydrogen peroxide to
water and oxygen. The general form of the reaction
and rate law are

A 4 products (6a)

Rate=K [A ]1, (6b)

where in this case K would be a negative constant
determining how fast the decomposition occurred.
The reaction order is determined by summing the
exponents of the concentrations. In this case, the
reaction is first order. Bimolecular reactions are
typically second order, but higher orders are possible
and depend on the particular reaction mechanism of
interest.

The classical theory of chemical kinetics is based
on homogeneous distributions of reactants, much in
the same manner as ecological theory based on
the Lotka–Volterra model. Recently, the kinetics
of diffusion limited reactions occurring in spatially
heterogeneous environments has gained considerable
attention (Kopelman, 1989; Havlin, 1989). Much of
this work has focused on simulations of chemical
reactions occurring on fractal structures. Fractals
are geometric patterns that exhibit statistical
self-similarity when viewed at different scales
(Mandelbrot, 1982; Milne, 1992). Simulated chemical
reactions on fractal surfaces show considerable
deviations from the expectations of traditional
kinetics, exhibiting both time dependence in the
reaction rate coefficient and anomalous reaction
orders (Kopelman, 1989).

Analytically, it has been shown that for homo-
geneous reactions in three dimensional systems,
random diffusion of reactants is sufficient to maintain
a mixed system and the reaction rate is linearly
proportional to the diffusion coefficient (D ) of the
reacting molecules (Smoluchowski, 1971, as cited in
Kopelman, 1989). However, in lower dimensional
systems (i.e. surfaces and fractal-subsets of surfaces
and volumes) diffusion is inhibited because particles
are no longer free to move in all directions and are
constrained to locally available sites. The result is
what Kopelman (1989) has termed ‘‘fractal kinetics’’.
A striking result from these investigations is the
spontaneous emergence of spatial segregation of
reactants in disordered, randomly diffusing reaction
systems, a phenomenon referred to as self-organiz-
ation (Nicolis & Prigogine, 1989).

Fractal patterns have proven to be important
models of heterogeneous landscapes (Milne, 1992),
and have important consequences for the movement
of organisms (Johnson et al., 1992a) and co-existence
of species (Palmer, 1992). Studies of Tenebrionid
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beetle movements in fractal landscapes have shown
that spatial heterogeneity strongly affects diffusion
rates of organisms and can cause both augmented
(facilitated) diffusion rates as well as inhibited
diffusion (Johnson et al., 1992b). This suggests that
the anomalous kinetics observed in chemical systems
may apply more generally to the movement of
and interaction among organisms in heterogeneous
landscapes.

2. Methods

2.1.  

We used a model similar to a cellular automata,
except that unlike a cellular automata, we did not
focus on state changes within fixed neighborhoods.
Rather the model consists of populations of finite
automata (i.e. individual predator and prey) diffusing
across the lattice. Encounters occurred when two
individuals attempted to occupy the same lattice cell.
Probabilities of movement, reproduction and mor-
tality were stored in a rule table for each species.
Updates to the lattice occurred in an asynchronous
fashion, i.e. the outcome of each encounter was
resolved before updating the next available cell. In
order to avoid directional update biases, the model
cycled through a randomized list of available lattice
cells, thereby updating all cells during each iteration,
but in random order.

Several movement rules were employed. In most
simulations, a target cell was chosen from the four
nearest neighbor cells. Individuals always moved to
unoccupied target cells, whereas prey individuals
could not move to a cell containing a predator. In
other simulations, the target cell was chosen
randomly some fixed distance away from an
individual’s current position. The final movement rule
was to simply chose a random target cell from the
entire lattice, thus removing any spatial effects.

Reproduction was simulated by a process
analogous to cell division. When an individual moved
to a new location, reproduction was accomplished by
leaving a new individual at the old location. Prey
reproduced by occupying empty cells, however if a
prey moved to a cell occupied by another prey
individual, then one of the two individuals were
removed from the lattice imposing a strong density-
dependent mortality. Prey reproduced at each time
step effectively setting the generation time to one
iteration. Predator reproduction and mortality
occurred in the same fashion, except that predators
only reproduced when moving to a cell occupied by
a prey (simultaneously reproducing itself and ‘‘con-

suming’’ the prey). In addition, a 10% background
rate of mortality was imposed on predators that did
not encounter prey during a given iteration.

2.2.   

Patchy or spatially heterogeneous environments are
an important consideration in the dynamics of inter-
acting populations (Kareiva, 1990). In order to exam-
ine the effect of spatial heterogeneity on the kinetics
of predator–prey interaction, we ran simulations in
which portions of the lattice were made unavailable
according to a binary mask. Several methods were
used to generate masks including percolation maps,
gradient percolation maps, and segmented fractional
Brownian surfaces (Peitgen & Saupe, 1988).

Percolation maps were constructed by generating a
uniform random number between 0.0 and 1.0 at each
lattice site. If the random number generated at a
particular cell was less than an a priori probability or
p-value, the cell was turned ‘‘on’’ (i.e. it is set to 1).
Percolation maps are important models used in
condensed matter physics (Kopelman, 1989), and
have been used as models of heterogeneous
landscapes in diffusion studies of animal movements
and other ecological processes (Gardner et al., 1987,
1989; Turner et al., 1989; Johnson et al., 1992a). An
interesting feature of percolation maps is the sudden
appearance of a spanning cluster, a connected set of
cells connecting opposite sides of the lattice, when the
p-value is e0.5928 (Kopelman, 1989).

Gradient percolation maps are constructed simi-
larly, except that the probability of cells being turned
on (p) is varied according to a linear gradient from
left to right across the lattice (Fig. 1). As before, a
random number between zero and one was generated
at each lattice site and compared to the predetermined
p-value for that site. Random numbers below a cell’s
p-value resulted in the cell being turned on.

For the purpose of comparing different gradient
maps, we define a gradient parameter (g) equal to the
linear slope of the gradient times the width of the
lattice. A gradient parameter of 1.0 produces a prob-
ability gradient varying from p=1 at one edge to
p=0 at the other. Small values of g produce shallow
gradients, whereas large values of g produce a sharp
transition from ‘‘on’’ to ‘‘off’’. A g-value of zero
produces no gradient; the entire mask has a p-value
of 0.5. Note that if a g=0 map is viewed at coarse
resolution, it is homogeneous at the broad scale, but
there is much heterogeneity at the fine scale, as any
local neighborhood will have a random mixture of
‘‘on’’ and ‘‘off’’ cells. Conversely, as g becomes large,
the map exhibits broad-scale heterogeneity from large
regions of totally ‘‘on’’ or ‘‘off’’ cells, but most local
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F. 1. Gradient percolation masks. Gradient parameters are (a) 0.01, (b) 0.02, (c) 0.05, (d) 0.14, (e) 0.37, (f) 1.00, (g) 2.72, (h) 7.39,
(i) 20.09 and (j) 54.60. A gradient parameter approaching zero [Fig. 1(a)] produces a standard percolation map with p=0.5. Available
cells are shown in white.

neighborhoods are homogeneous (all ‘‘on’’ or all
‘‘off’’), except in a narrow transition zone where
‘‘on’’ and ‘‘off’’ cells intermingle. Also note that the
percolation gradient is symmetric and therefore the
total area available to individual predator and prey is
approximately equal across all g-values.

Fractal landscapes were generated by segmenting
fractional Brownian surfaces. This method provides a
range of contagion or clumping in the resulting
lattices and is a better approximation of real
landscapes than are random maps (see Gardner et al.,
1987). The fractional Brownian surfaces were created
using the algorithm described by Saupe (Peitgen &
Saupe, 1988) and then ‘‘segmented’’ into a binary
mask by setting all pixels less than the mean to zero
and all greater than or equal to the mean to one.
The resulting image contained approximately 50%
on-cells. Fractional Brownian masks generated with
a Hurst exponent of zero generated small clusters
of ‘‘on’’ cells with relatively little contagion. Larger
Hurst exponents result in increasing contagion and
hence less fragmentation within clusters of on-cells
(Fig. 2).

2.3.  

As discussed previously, the relationship between
the concentration of a chemical reactant and reaction
rate is termed the reaction order and corresponds
to the exponents in a chemical rate equation [e.g.
eqn (3)]. To estimate the ‘‘reaction order’’ of our
ecological simulations we borrowed a technique com-

monly used in experimental chemistry. By alternately
making prey and then predator populations non-
limiting, the effect of each population density on
reproduction rate can be measured empirically
(Snoeyink & Jenkins, 1980). This was done by initial-
izing the model with the predator population near
zero and the prey population much larger. If predator
densities can be considered negligible, the prey growth
rate is determined by a pseudo-first-order equation:

dA/dt=K1Aa B�A�N, (7)

where A is the number of prey, N is the carrying
capacity (number of on-cells in the lattice), and
the rate constant K1 = k1. Moreover, if predators are
present at low density in an environment where prey
are essentially at their carrying capacity, prey
densities can be regarded as constant and predator
growth rates will follow pseudo-first-order kinetics:

dB/dt=K2Bb B�A1N, (8)

where B is the number of predators, N is the carrying
capacity, and K2 = k2Aa − k3. Taking the logarithm
of the equations, the system becomes

a=
log(dA/dt )

log(A )
+ log K1 (9a)

b=
log(dB/dt )

log(B )
+ log K2 (9b)

The reaction order is estimated by regression of the
log–log plot of population growth rate versus density.

F. 2. Segmented fractional Brownian masks. Hurst exponents are (a) 0.0, (b) 0.25, (c) 0.50, (d) 0.75 and (e) 1.0. Available cells are
shown in white.
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2.4. 

For each mask used, ten simulations were run for
each of the cases (predator limiting, prey limiting)
corresponding to eqns (4) and (5). Large lattices of
1000×1000 cells were used to reduce finite-size
effects. For gradient percolation maps and fractional
Brownian maps, where approximately 50% of the
cells were available, there were approximately
5×10−5 cells available for colonization. On percola-
tion maps, the number of cells varied according to the
p-value with the expected number of on-cells being p
times the total lattice size, i.e. p×106. Predator and
prey growth rates were recorded over 20 iterations
and the reaction order estimated from the log–log
regression of growth rate versus density.

A second series of simulations was run to test the
effect of increasing ‘‘jumping distance’’ of predator
and prey individuals. Uniform lattices were used and
the jump distance increased from one cell to ten cells,
in effect increasing the diffusion rate. Reaction order
was estimated as described previously.

2.5.   

A well known feature of the Lotka–Volterra system
is that it exhibits neutrally stable limit-cycles in
the phase plane, i.e. the eigenvalues of the Jacobian
have zero real parts (Murray, 1989). Thus the
Lotka–Volterra model has no dynamical attractor.
Rather, the trajectory of the system is determined by
the initial conditions. We qualitatively analyzed the
dynamical behavior of our spatially explicit model by
constructing phase portraits at 1, 10, 100 and 1000
time steps. Two simulations were run, the first with
local (nearest neighbor) diffusion and the second with
random placement on the lattice (complete mixing).
The model runs were started from 10000 initial
predator and prey population densities. Due to
computational limitations 100×100 cell lattices were
used. For each run the change in predator and prey
density was recorded over a single time step. From
these data, a ‘‘vector field’’ plot was drawn showing
the direction and magnitude of the system trajectory
in the predator–prey phase plane. The behavior was
course grained by averaging nearby vectors into a
20×20 array.

3. Results and Discussion

3.1.   

Emergent traveling waves were observed in time
series of the predator-prey simulation on homo-
geneous lattices (Fig. 3). For these simulations, the
probability of prey reproduction on encountering

an available cell was set to 1.0 [approximates k1 in
eqn (2)]; the probability of predator reproduction on
encountering prey was set to 1.0 [approximates k2 in
eqn (2)]; and predator mortality was set to 0.05 per
iteration [approximates k3 in eqn (2)]. When predator
and prey are given different colors, the structure of the
waves becomes apparent. Prey form a thin, dense
wave front, with a diffuse trailing edge of predators.
Bulk movement of populations occurred even though
the movement rule was local and directionally
random. This movement resulted from differential
mortality of individuals across the wavefront. Prey
adjacent to predators experienced greater mortality
due to predation, whereas predators along the trailing
edge of the wave front experience a net decrease due
to lack of resources (prey).

Emergent wave phenomena are common to a
variety of biological and physical situations, including
excitable media (Gerhart et al., 1990), certain
chemical oscillators (Murray, 1989), aggregation of
slime molds (Murray, 1989), as well as predator–prey
systems as demonstrated here and elsewhere (see
Karieva, 1990). A classic example is the Belousov–
Zhabotinski reaction which can produce highly
symmetric spiral waves (Murray, 1989; Nicolis &
Prigogine, 1989). In terms of reaction kinetics (i.e. the
encounter rate of predator and prey) we note that
the wave patterns result in a relatively smooth,
elongated boundary between predators and prey. This
effectively reduces the encounter rate because the
‘‘reaction’’ occurs along a nearly linear boundary
instead of in two dimensions as would occur in a
randomly mixed system.

3.2.    

Simulations on gradients also produced emergent
spatial patterns, with prey occurring more densely at
intermediate levels of heterogeneity and predators
tending to occupy more open parts of the lattice
(Fig. 4). This apparently occurs because as fewer and
fewer lattice sites are made available for colonization,
it becomes increasingly unlikely that predators will
encounter enough prey to offset their background rate
of mortality. In more open areas, predators can
rapidly increase and locally deplete the prey popu-
lation, resulting in both lower prey density and prop
agating waves as observed in homogeneous maps
(Fig. 3).

We note that gradient percolation maps may be
valuable models for studying ecotones (i.e. ecological
transitions) and that these results suggest a number of
hypotheses for field studies of population dynamics.
Unfortunately, there has been little effort in the past
to study spatial dynamics of populations in the field
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F. 3. Emergent wave patterns in the predator–prey model (shown on a 100×100 lattice). White cells are unoccupied, whereas black
cells represent a single prey or predator individual. Each frame represents 25 time steps.

and they remain largely a property of ecological
models (Kareiva, 1990; however, see Johnson et al.,
1992b).

3.3.   

In order to place our qualitative observations in
a more formal framework, we applied the theory
of chemical kinetics in heterogeneous systems to
the reaction–diffusion model presented here. This
approach allows us to quantify the extent of the
deviation the spatially explicit model exhibits relative
to the assumptions of the ODE Lotka–Volterra
model. As described previously, we estimated the
reaction order, which expresses the sensitivity of the
growth parameter to the population density, for
simulations with different degrees of introduced
spatial heterogeneity. For a homogeneously mixed
system, the expected reaction order is 1.0 for both
predator and prey (second order overall).

As spatial heterogeneity is increased (from p=1.0
to p=0.5), reaction order becomes increasingly
anomalous, i.e. Q1.0 (Fig. 5). Even on a homo-
geneous lattice (p=1.0), reaction order estimates are
considerably less than the expected value of 1.0. For
increasingly fragmented lattices, the reaction order
drops considerably, falling below 0.4 for prey and
below 0.2 for predators. Estimates for predators were
consistently lower than for prey on heterogeneous
lattices, which supports our observations that
randomly diffusing predators are unable to exploit
prey resources effectively in highly heterogeneous
environments.

The variance of our reaction order estimates across
ten simulations was, in nearly all cases, extremely
small, perhaps due to the large (1000×1000) lattices
used. The exception was for percolation lattices with
pE 0.5, where variances suddenly increased (Fig. 5).
For p-values less than 0.3, our method actually
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F. 4. Segregation of predator and prey populations on a 400×400 gradient percolation map: (a) gradient mask with available cells
shown in white; (b) distribution of prey (shown in black); (c) distribution of predators (shown in black).

gave negative reaction order estimates. This was
due to the fact that despite our use of small initial
populations, populations decreased from the initial
value on percolation maps with a low p-value.
This suggests that our analytical framework breaks
down when available sites are sparse and highly
fragmented, and that a probabilistic or stochastic
description of the population dynamics may be more
appropriate.

The same general trend of anomalous reaction
orders was observed with increasingly heterogeneous
environments using gradient percolation maps and
for segmented fractional Brownian surfaces (Figs 6
and 7). The difference between prey and predators is
particularly striking for small gradient percolation
parameters, with predator reaction order estimates
approaching zero. The slight increase in the predator
order estimate for g=0.031 is due to the fact that
fragmented clusters at slightly higher g-values can
become joined as the on-cells become more evenly
distributed across the lattice (see Fig. 1).

The results from the landscapes generated with
fractional Brownian surfaces are less clear, but do
show a general decrease with greater heterogeneity
(smaller Hurst exponent). Whereas Hurst exponents
approaching zero did produce complex, hetero-
geneous fractal patterns, they were clearly more
contagious than random lattices. Nevertheless, the
general trend holds, although we can suggest no
explanation for the sudden drops in the reaction order
estimate, such as for predators at H=0.5.

The anomalous model behavior observed so far
(Figs 5–7) was due to the diffusion-limited nature
of the individual interactions. Because individual
movements were constrained both topologically to a
two dimensional surface, as well as by fragmentation
of the lattices, random diffusion is not sufficient to
completely mix the system and spatial pattern results.
However, we can test the importance of diffusion-
limited dispersal and the robustness of our analytical

framework by augmenting the dispersal of simulated
prey and predator. When the jump distance of
individual predator and prey is increased, in effect
decreasing the spatial correlation of individuals
through time, increased mixing occurs and the
kinetics are less anomalous (Fig. 8). The model
converges on the expected reaction order of 1.0 for
a well-mixed system (or 2.0 if summing across
species).

3.4.      

So far we have been mainly concerned with the
effects of spatial heterogeneity on the kinetics of
the model. An alternative is to consider the global
dynamics of the system in the phase plane (Figs 9
and 10). Although we have demonstrated anomalous
behavior due to both emergent spatial patterns and
fragmented lattice, the qualitative dynamics show
only slight differences when compared to traditional
ODE models (see for example, Berryman, 1992).
Unlike the Lotke–Volterra model [eqns [(1a–b)], the
lattice-based model exhibits strong density depen
dence resulting in a stable limit cycle with noise
(owing to the stochastic nature of the interactions;

F. 5. Estimated reaction order of simulated predator–prey
system using uniform percolation masks. Percolation p-value refers
to the density of randomly placed available sites on the lattice.
Error bars are 21 SD.
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F. 6. Estimated reaction order of simulated predator–prey
system using gradient percolation masks. Error bars are 21 SD.

F. 8. Estimated reaction order of simulated predator–prey
system with increasing jump distance (diffusion rate). Simulations
occurred on homogeneous lattices. Error bars are 21 SD.

Fig. 9). The density dependence arises not because
of the implementation of the interaction rules, but
rather due to the lattice itself. Because the number
of individuals is strictly limited to the number of
available cells, the phase space is compressed into
a triangular region at or below the line where the
sum of the populations equals the lattice size.
Whereas the predator zero-growth isocline is roughly
vertical [Fig. 9(a)] in accordance with the Lotka–
Volterra predator equation [eqn (1b)], the prey
isocline slopes downward toward the lower right
corner indicating a logistic (i.e. density dependent)
prey growth function as shown in eqn (2) with the
lattice size setting the carrying capacity. (Note that
this does not effect our analysis in Section 3.3 because
A/K1 0 when A�K ).

Simulations where a global movement rule was
used showed essentially the same qualitative dynamics
as did simulation where movement was local (Fig. 10).
Again the trajectories indicate logistic prey growth
[Fig. 10(a)] with the system eventually collapsing

down to a noisy limit cycle [Fig. 10(b–d)]. The lack of
a qualitative difference between the spatial and
non-spatial versions of the model is intriguing. Local
diffusive instability resulting in emergent spatial
patterns such as those in Fig. 3 are often cited as a
possible mechanism for maintaining global stability
and coexistence of populations (Karieva, 1990;
Wilson et al., 1993). However, this idea is rarely tested
by examining the behavior of equivalent models with
and without local interactions. Our results suggest
that emergent spatial patterns do not necessarily
increase global stability.

Although the local and global movement rules
resulted in the same overall, qualitative dynamics (i.e.
a noisy limit cycle), an important difference between
the two systems does emerge. Initially, at t=1
[Figs 9(a) and 10(a)], the phase plots are nearly
identical. This is because the simulations were initial-
ized with randomly placed individuals, hence early in
the time series, both systems are well mixed. Later in
the time series, localized movement results in emer-
gent spatial patterns, whereas simulations with global
movement remain homogeneous. In the phase plane,
the difference is manifested as a change in the position
of the center of the attractor, i.e. the point where
A$ 0, B$ 0, and dA/dt1 dB/dt1 0. In the
spatially homogeneous system, the center remains
fixed in phase space [Fig. 10(a–d)], however localized
interactions result in a shift of the center as the system
evolves [Fig. 9(a–d)]. Generally, the shift is toward
slightly higher prey density and considerably lower
predator density. As noted previously, local move-
ment results in segregation of predator and prey
populations, reducing the predation rate, thus sup-
porting larger prey populations and fewer predators.
In the ODE approach, phase portraits can be
constructed analytically by writing the autonomous
system dA/dB= f (A, B, . . .). Time no longer enters

F. 7. Estimated reaction order of simulated predator–prey
system using segmented fractional Brownian surfaces. The fractal
dimension of the simulated landscapes is approximately 2.0−H
where H is the Hurst exponent. Smaller Hurst exponents represent
increasing heterogeneity. Error bars are 21 SD.
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into the equation and therefor the dynamics are, by
definition, time-independent. Yet we have just shown
that localized interactions can lead to a shift in the
dynamics as spatial patterns emerge. Thus a time-
dependence in the attractor of the system, along
with time dependence of rate constants and non-
analytic reaction orders (Kopelman, 1989), may be
added as another ‘‘anomalous’’ property of spatially
heterogeneous reaction systems.

4. Conclusions

Assumptions of spatial homogeneity are inter-
woven throughout ecological theory, particularly in
models based on Lotka–Volterra dynamics. The
study of ecological interaction in spatially complex
environments is increasingly seen as an important

area for both empirical (Kareiva, 1990, Johnson et al.,
1992b) and theoretical research (Godfray & Pacala,
1992; Murdoch et al., 1992; Milne, 1992). However,
despite obvious limitations in the Lotka–Volterra
model (Slobodkin, 1992), it holds an important place
in ecological theory. In certain respects, it can be
viewed a ‘‘frictionless pendulum’’ for ecology. Much
as friction introduces anomalous behavior to real
physical pendulums when analyzed in the context
of classical mechanics, investigation into the
‘‘anomalous’’ behavior of simulated and natural
populations provides important insight into the
underlying mechanisms and constraints determining
ecological dynamics. This approach, we feel, will lead
to a richer formalism for ecological theory.

A model similar to ours was investigated by
Wilson et al. (1993). Although they concentrated

F. 9. Phase plane plot of predator–prey model at (a) t=1, (b) t=10, (c) t=100 and (d) t=1000 time steps. Vectors represent change
in predator and prey density over a single time step.
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exclusively on spatially homogeneous environments,
their work makes an important contribution toward
explicating the sources of deviations from standard
Lotka–Volterra dynamics. In their analysis of an
individual-based predator–prey model, they observed
local diffusive instabilities leading to overall stability
of the populations. Under most scenarios, the
patterns observed were static with small-scale (relative
to the lattice) emergent patchiness in the populations.
Traveling wave fronts were observed by Wilson et al.
(1993), but only when prey growth rate was varied in
an oscillating checker-board fashion. We can think of
no natural situation to support such an assumption.

In general, however, the conclusions of Wilson and
co-workers are in agreement with our observations.
They point out that the discrete nature of space and
time in individual-based models leads to deviations

from a continuous differential equation represen-
tation. In the limit as the time step and lattice cell
size go to zero, their discrete model converged to
Lotka–Volterra dynamics, much in the same manner
as our results for increasing individual diffusivity
(Fig. 8). Our analysis extends their conclusions to
include the effects of a spatially heterogeneous
environment, a situation, we argue is more general in
nature.

One question that has received little attention,
but is nonetheless important, is the relative import-
ance of global density dependence (resulting from
simulating on a finite lattice) versus localized diffusive
instabilities in determining the overall model behav-
ior. Kareiva (1990) for example, discusses the import-
ance of localized patterns in altering the stability
properties of predator–prey models. While we have

F. 10. Phase-plane plot of predator–prey model with random placement at (a) t=1, (b) t=10, (c) t=100 and (d) t=1000 time steps.
Vectors represent change in predator and prey density over a single time step.
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shown that emergent spatial patterns are important
in determining rates of population growth and
interaction (as evidenced by an anomalously low
reaction order), qualitatively there appears to be little
difference between the phase-plane trajectories of
simulations where spatial patterns were observed and
those with random mixing of the populations. We did
however, observe time-dependence in the position of
the attractor due to emergent spatial patterns. This
suggests that when localized interactions are modeled,
the attractor has a higher embedding dimension than
the two-dimensional phase plane. A measure of the
spatial distribution of the populations, such as a
fractal dimension or a spatial cross-correlation, might
be added as a third axis. It is possible that embedding
the attractor in this higher-dimensional phase space
would remove the time-dependent behavior.

Individual-based models, such as the one presented
here, have a natural appeal for modeling ecological
systems (Huston et al., 1988). Ecosystems are
spatially structured and the movement and inter-
action among organisms takes place in a spatial
context. The explicit representation of individuals and
implementation of rules that define local interactions
in individual based models allows a direct mechanism
for including fine-scale ecological knowledge to be
included in course-scale predictive models. One
advantage of analytical approaches based on differen-
tial equations is the ability to manipulate the
equations and deduce novel hypotheses. However, the
mapping of local assumptions about individual
behavior onto global state variables, as with
differential equations, introduces a layer of abstrac-
tion between the model and its underlying assump-
tions. For instance, we might want to introduce a
directional movement bias that varies depending on
the location of the individual. This is a fairly
straightforward process in an individual based model,
but requires, in the case of differential-equation-based
model, that the modeler extrapolate this local
behavior onto a global parameter.

Our model clearly shows systematic deviations in
terms of kinetics from the expectations of Lotka and
Volterra’s predator–prey model when diffusion is
limited by local movements. The effect is enhanced in
heterogeneous landscapes. However, the qualitative
dynamics were not effected by localized interactions
and could be derived from traditional ODE models
with prey density dependent growth. Thus, although
spatially explicit models may make different predic-
tions than their ODE counterparts, both approaches
are appropriate under different circumstances. For
instance, when detailed information about individual
dispersal and foraging behavior are lacking, but

large-scale population and demographic data are
available, ODE or extensive-variable approaches
can be used to characterize the system dynamics
(Berryman et al., 1987). On the other hand, when data
are available to parameterize local dynamics, spatially
explicit models can have distinct advantages, such as
the ability to make predictions at specific locations in
the landscape. In a management context, simulations
can be run directly on top of digitized geographic
information and the model used to assess the overall
effect of localized alterations of the landscape. Such
models could be used for instance in deciding the
location, size and frequency of timber harvests or
other actions which would change the spatial
configuration of available habitat. In a theoretical
context, spatial, individual-based models are compli-
mentary to extensive-variable approaches such as
ODE population models. Spatial models can be
compared to their non-spatial analogs to explore the
effect of localized interactions on the model dynamics.
Another approach is to use a spatial model to
parameterize or derive a mathematical description.
We believe that these approaches, along with
empirical validation of the models, will enhance the
development of theoretical ecology.

The comments of B. Milne, M. Taper and an anonymous
reviewer greatly improved this manuscript. G. Henebry
suggested we explore the qualitative dynamics of the model.
This work was partially supported through NFS grant
BSR-9107339.
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