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Abstract. The response of ecological communities to anthropogenic disturbance is of both
scientific and practical interest. Communities where all species respond to disturbance in a
similar fashion (synchrony) will exhibit large fluctuations in total biomass and dramatic
changes in ecosystem function. Communities where some species increase in abundance while
others decrease after disturbance (compensation) can maintain total biomass and ecosystem
function in the face of anthropogenic change. We examined dynamics of the Little Rock Lake
(Wisconsin, USA) zooplankton community in the context of an experimental pH
manipulation conducted in one basin of the lake. A novel application of wavelets was used
to partition patterns of synchrony and compensation by time scale. We find interestingly that
some time series show both patterns of synchrony and compensation depending on the scale of
analysis. Within the unmanipulated basin, we found subtle patterns of synchrony and
compensation within the community, largely at a one-year time scale corresponding to
seasonal variation. Within the acidified lake basin, dynamics shifted to longer time scales
corresponding to the pattern of pH manipulation. Comparisons between pairs of species in
different functional groups showed both strong compensatory and synchronous responses to
disturbance. The strongest compensatory signal was observed for two species of Daphnia
whose life history traits lead to synchrony at annual time scales, but whose differential
sensitivity to acidification led to compensation at multiannual time scales. The separation of
time scales inherent in the wavelet method greatly facilitated interpretation as patterns
resulting from seasonal drivers could be separated from patterns driven by pH manipulation.

Key words: acidification; community variability; compensation; disturbance; Little Rock Lake
(Wisconsin, USA); scale; synchrony; wavelets; zooplankton.

INTRODUCTION

The empirical study of coordinated changes in
abundance among species has recently emerged as an

important topic in ecology because of its potential for
generating insights into the structure and organization

of ecological communities (Cottingham et al. 2001,
Ernest and Brown 2001). This potential is greatly

enhanced with the recognition that community varia-
bility contains two components: (1) compositional

variation in the relative abundance of constituent species
and (2) aggregate variation in total individuals or

biomass (Micheli et al. 1999). High compositional
variation combined with low aggregate variation is

called ‘‘compensation,’’ because increases in abundance
by one set of species are compensated by decreases

among other species. The opposite of compensation,
‘‘synchrony’’ occurs when constituent species increase

and decrease simultaneously, leading to high aggregate
variability, but low compositional variability.

Community synchrony and compensation play partic-

ularly important roles in determining ecosystem re-

sponses to environmental perturbations (Fischer et al.

2001). Compensatory responses serve to stabilize bio-

mass and ecological function in the face of large

disturbances: as dominant species within functional

groups decline, subdominant species increase in biomass,

taking over the ecological role of the former dominant.

The result is increased ecological resiliency (Holling

1973). Synchronous dynamics inflate overall variation in

biomass leading to reduced resilience. In the most

extreme case, if all species exhibit synchronous declines

after disturbance, ecosystem function may be severely

compromised. However, patterns of synchrony and

compensation may vary among functional groups

(Fischer et al. 2001), leading to partial failure of

ecological function and possibly idiosyncratic long-term

community changes as a result of indirect interactions

(Ives 1995) or nonlinear thresholds (Carpenter et al.

1992).

Prediction of community responses to disturbance

requires detailed mechanistic models of species inter-

actions. These models are difficult to construct and are

unlikely to be available across a majority of ecosystems.

There is thus a significant need for retrospective

methods to assess patterns of synchrony and compensa-

tion in community time series. The weakness of

retrospective methods is of course that, in the absence
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of experimental confirmation, true functional compen-

sation leading to resiliency cannot be distinguished from
apparent compensation where species show strong

negative correlations in abundance because they have
opposite responses to some unmeasured time-varying

covariate such as temperature. Nonetheless, retrospec-
tive methods are important in the detection of com-
munity patterns and the generation of hypotheses that

may later be tested with true experimental controls. The
need for general and flexible diagnostic tools for

community time series is further emphasized by the
arrival of large synoptic ecosystem data sets (Brown

1995) and proposed efforts, such as the National
Ecological Observatory Network (NEON), to generate

such datasets on a large scale.
Despite recent advances in retrospective analysis of

community time series (Collins et al. 2000, Ives et al.
2003, Sandvik et al. 2004, Vasseur et al. 2005), few

studies address the issue of scale in the detection of
synchrony and compensation. Explicit consideration of

scale is critical to modeling associations between
variables measured through time or space as patterns

can change both qualitatively and quantitatively with
changes in scale of analysis (Keitt and Urban 2005).

Here, we apply an alternative method to the detection of
synchrony and compensation in community time series
that explicitly accounts for hierarchical scale-dependent

patterns in data. Our method is based on the wavelet
transform (Daubechies 1992), which, like the Fourier

transform, is a spectral decomposition that partitions
variance according to a precise definition of scale

(Mallat 1989). Unlike the Fourier transform and its
variants such as the Lomb periodogram (Lomb 1976)

that identify dominant frequencies averaged over an
entire time series, the wavelet transform permits analysis

of nonstationary signals where dominant frequencies
change from one moment to the next. Wavelets are

therefore particularly suited to signals containing sharp
transients, a property typical of environmental time

series. The capacity of wavelets to capture transient
behavior has led to their widespread application to

complex nonlinear phenomena, such as turbulent fluid
flow (Muzy et al. 1991), that are unlikely to be efficiently
modeled using Fourier methods or linear autoregressive

methods. Applications in environmental sciences are
beginning to emerge as well (Bradshaw and Spies 1992,

Bradshaw and McIntosh 1994, Dale and Mah 1998,
Grenfell et al. 2001, Csillag and Kabos 2002, Rosenberg

2004). Here, we use wavelets to quantify scale-dependent
patterns in zooplankton community dynamics during

the acidification and recovery phases of a whole-lake
acidification experiment.

METHODS

Research site and zooplankton species

In 1984, the two basins of Little Rock Lake (LRL), a

bilobed seepage lake located in northern Wisconsin,
USA, were separated using a vinyl curtain. Following a

year of baseline data collection, sulfuric acid was added

to the northern basin (hereafter, acidified basin). The pH

of the acidified basin was decreased sequentially to three

target levels each maintained for two years: 5.6 (1985–
1986), 5.1 (1987–1988), and 4.7 (1989–1990). The

recovery phase began in 1991 when all acid additions

ceased and the acidified basin was allowed to recover

naturally. Throughout the entire study period (1984–

2000), the southern basin (hereafter, reference basin)
was unmanipulated and served as a reference system for

the changes that occurred in the acidified basin. Addi-

tional details on the LRL experiment are published

elsewhere (Frost et al. 2005).

Samples for enumeration of zooplankton were col-

lected with a 33-L Schindler-Patalas trap (53 m mesh)

every two weeks during the ice-free season and approx-
imately monthly during winter. Samples were collected

from fixed depths (0, 4, and 8 m in the treatment basin

and 0, 4, and 6 m in the reference basin) and preserved

with 4% sucrose-buffered formalin. Hypsometrically

weighted average abundances were calculated for each
basin and zooplankton abundance was converted to

biomass using length–mass relationships determined

directly for LRL species or from the literature (Frost

andMontz 1988). In this study, we focus on six dominant

crustacean zooplankton species, including the carnivo-
rous copepods Diacyclops thomasi and Mesocyclops

edax, the herbivorous copepods Tropocyclops extensus

and Leptodiaptomus minutus, and the herbivorous

cladocerans Daphnia dubia and Daphnia catawba. We

choose these species pairs because they have been shown

previously to exhibit strong either compensatory or
synchronous dynamics during the acidification phase of

the LRL experiment (Fischer et al. 2001). Specifically,

multivariate autoregressive models suggested that the

synchronous decline in biomass of carnivorous copepods

in the acidified basin was driven by a direct effect of
acidification on these two acid-sensitive species. In

contrast, herbivorous copepods and cladocerans ex-

hibited compensatory dynamics in the acidified basin.

Model results suggested that each of these groups

contained acid-sensitive and acid-tolerant species that
interacted through competition. Although multivariate

autoregressive models are useful for generating and

comparing hypotheses about the role of intrinsic and

extrinsic factors driving community dynamics (Ives et al.

2003) they do not directly evaluate scale-dependency in

the community dynamics. Representative time series
from the two LRL basins are shown in Fig. 1.

Time series analysis

Time series were analyzed using the continuous

wavelet transform (Daubechies 1992), defined by

ðTwavxÞðs; sÞ ¼ 1

hðsÞ

Z ‘

�‘

w
t � s

s

� �
xðtÞdt ð1Þ

where x(t) is a time series of interest, w([t � s]/s)
represents a wavelet centered at s and dilated by the
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factor s, and h(s) normalizes the wavelet variance for

different values of s. A wide variety of wavelets are

available for use in the wavelet transform, each

quantifying subtly different aspects of the pattern of

interest (Mallat 1999).

Because the LRL data were sampled at irregular

intervals, we implemented an adaptive ‘‘second-gener-

ation’’ wavelet derived conceptually from Sweldens’

(1998) discrete ‘‘lifting’’ transform. Second-generation

wavelets have the advantage that they adapt their shape

near sampling gaps and boundaries (see Fig. 2), an

important consideration for ecological time series which

are often short, irregularly sampled, and may contain

missing values. Furthermore, adapting the wavelet at the

ends of the time series means that artificial boundary

adjustments, such as periodic wrapping of the data, are

not needed.

In the discrete lifting transform, a time series is split

into even (t ¼ 2, 4, 6, . . .) and odd (t ¼ 1, 3, 5, . . .)

numbered samples and then the even numbered samples

are predicted by interpolation through the odd num-

bered samples. The failure of the interpolation to predict

the even numbered samples quantifies the variation at

frequency p radians (1/2 cycle) per sample interval. The

predicted values are then ‘‘lifted’’ as input to the next

split-predict cycle which quantifies variation at fre-

quency p/2 radians per sample interval, and so on. The

number of lifting stages is limited only by the length of

the time series.

Lifting is trivially extended to irregular sampling as

the interpolation step does not depend on evenly spaced

samples. Many variants on lifting exist, such as use of

spline interpolation methods (Sweldens 1998). Jansen et

al. (2001), for example, use linear regression to predict

FIG. 1. Time series of Little Rock Lake pH and zooplankton biomass for the reference basin (left column) and the acidified
basin (right column). The horizontal line in the pH plots indicates the mean value. Artificial acidification stopped after year 7.
Abbreviations: D. cat., Daphnia catawba; D. dub., Daphnia dubia; Lept., Leptodiaptomus minutus; Trop., Tropocyclops extensus;
Meso., Mesocyclops edax; Diac., Diacyclops thomasi. Data are from the Little Rock Lake Zooplankton Data, North Temperate
Lakes Long Term Ecological Research program, funded by NSF hhttp://www.limnology.wisc.edui.

November 2006 2897SCALE-SPECIFIC COMMUNITY DYNAMICS

 19399170, 2006, 11, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1890/0012-9658(2006)87[2895:D

O
SC

D
U

]2.0.C
O

;2 by U
niversity O

f T
exas L

ibraries, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



each point from a set of nearest neighbors. Previous

applications of lifting have focused on the discrete
transform where the scale of analysis progresses as a

geometric series, typically doubling at each level of

analysis. For our purposes, the continuous wavelet
transform is far more informative as the scale of analysis

can be continuously adjusted.

To construct a continuous second-generation wavelet

transform, we extended the idea of regression on nearest
neighbors to the more general concept of local

regression (Loader 1999). Local regression methods
estimate the mean of input data conditionally at each

point of interest using locally defined regression weights.

The weights generally decay as a smooth function of
distance. A special case of local regression is the

Nadaraya-Watson estimator,

gs;sðtÞ ¼
k

t�s
s

� �
X
u2X

k
u� s

s

� � ð2Þ

which is equivalent to a local regression model with only

a single intercept term (Hastie and Loader 1993). Here,

X ¼ ft1, t2, t3, . . ., tng are the sample locations, s is the
point of interest and s along with the kernel function k

determines the rate at which regression weights decay

with distance. The Gaussian kernel k(t)¼ e�t2=2 was used
in all subsequent analyses.

Local regression can be thought of as a signal filter

that separates high frequency variation, in the form of
residual errors, from low frequency variation contained

in the local averages. How much of the high frequency

variation is removed depends on the bandwidth
parameter s. Isolation of intermediate frequencies, the

goal of scale-specific analysis, can be accomplished by

subtraction of local regression estimators as follows:

ws;sðtÞ ¼ gs;sðtÞ � gs 0;sðtÞ ð3Þ

with bandwidths s and s 0, resulting in a second-

generation variant of the ‘‘Difference-of-Gaussians’’

(DoG) wavelet (Muraki 1995). The ratio b ¼ s0/s

determines the shape of the DoG wavelet and its

band-pass characteristics. For convenience, we chose b
¼ 1.87 such that for any scaling t ! t/s, the dominant

scale of analysis was simply s time units. To arrive at the

chosen value, we note that Fourier transform of the

DoG wavelet is given by

ðTFourierws;sÞðxÞ ¼ e�s2x2=2 � e�b2s2x2=2 ð4Þ

which attains its maximum at

x ¼ 2
ffiffiffiffiffiffiffi
lnb
p

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p : ð5Þ

Substituting b ¼ 1.87 into Eq. 5 yields a maximum

transfer of variance at frequency x ¼ 1/s, or equiv-

alently, one cycle per s time units. Examples of the

adaptive DoG wavelet and their Fourier transforms are

shown in Fig. 2.

Evaluated over a set of discrete samples X, the

adaptive wavelet transform is given by

ðTwavxÞðs; sÞ ¼ 1

hsðsÞ
X
t2X

ws;sðtÞxðtÞ ð6Þ

where

hsðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
t2X
½ws;sðtÞ�2

r
ð7Þ

ensures that wavelet variances are comparable across all

locations and scales. The major difference between Eqs.

1 and 6 is that the latter depends explicitly on the sample

FIG. 2. Illustration of the adaptive ‘‘Difference-of-Gaussians’’ wavelet. The left-hand panel shows selected basis functions
(wavelets) used in the analysis described in this paper. The slight asymmetries in the wavelets resulted from irregular sampling. The
right-hand panel shows the Fourier transform of 256 of these basis functions along with the analytic result (thick gray line). A small
random vertical offset was added to each of the numerical results (black lines, right-hand panel) so that they would not be
completely obscured by the analytic results.
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locations X. (Despite the sum in Eq. 6, the adaptive

transform remains continuous as s and s can be varied

continuously.)

Wavelet statistics

Scale�location plots were used as a graphic depiction

of the wavelet transform. The coefficients (Twavx)(s, s)
were plotted as an image with scale s increasing

vertically and location s aligned to the horizontal axis.

A color scale was used to indicate the relative

magnitudes of the coefficients (see Fig. 3).

Wavelet covariances were used to quantify scale-

dependent relationships between time series. Wavelet

covariance for the set of discrete sample events X was

defined as

Hsðu; vÞ ¼
X
s2X
½ðTwavuÞðs; sÞ3ðTwavvÞðs; sÞ� ð8Þ

where s is the scale of analysis and u and v are time series

of interest. The special case u ¼ v computes the wavelet

variance (Percival 1995), which quantifies the intensity

of pattern present at scale s (see Fig. 4).

FIG. 3. Scale�location plots for pH and six zooplankton species in the reference basin (left column) and acidified treatment
basin (right column). The time scale increases vertically. Colors indicate magnitudes of the wavelet coefficients at different scales:
blue indicates strong negative values, and red indicates strong positive values; cyan and yellow cells correspond to smaller-
magnitude negative and positive values, respectively. Abbreviations are as in Fig. 1.
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Statistical significance of observed covariances was

assessed by repeated permutation of the original time

series. For each of 1 3 104 permutations, wavelet

covariances were recorded. Confidence intervals were

then generated encompassing 95% of the simulated

covariances. Observed Hs(u, v) values falling outside of

the resulting confidence intervals were considered to

deviate significantly from the null hypothesis of no

pattern.

RESULTS

Scale–location plots and wavelet variances

for individual species

A variety of patterns were present in scale–location

plots of the wavelet transformed time series (Fig. 3).

Annual cycles appeared as alternating blue–cyan and

yellow–red regions near the bottom of the scale–location

plots. Multi-year trends were identified by alternating

blue–cyan and yellow–red patterns near the top of the

scale–location plots. Although all of the species ex-

hibited some degree of annual cycling, Mesocyclops

showed the most consistent annual pattern. Other

species showed episodes of annual cycling punctuated

by periods of relative quiescence (generally correspond-

ing to periods of low abundance).

Wavelet variance results showed significant annual

periodicity for all species (Fig. 4). In the reference basin,

the presence of multi-year trends varied among species.

For example, Mesocyclops and D. catawba did not show

any significant variation beyond the annual time scale in

the reference basin, unlike all remaining species that did

show this pattern. We observed a marked increase in

multi-year variances for all species in the acidified basin,

indicating a strong response to pH manipulation. All of

the time series showed significantly less variability

FIG. 4. Wavelet variance by scale for the reference basin (left column) and acidified treatment basin (right column). Gray
regions bound 95% confidence limits obtained from 1 3 104 random permutations of the original time series. Solid black circles
indicate values falling outside the bootstrap confidence intervals. Note that the x-axis is log-transformed to show more detail at
shorter time scales. Abbreviations are as in Fig. 1.
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relative to the resampled time series at sub-annual scales,

indicating short-range dependencies between successive

values (Fig. 4). Notice that in no case did the

randomized time series (which shared the same sampling

time points as the real time series) show a peak in

variance at the annual time scale, indicating that the

slight seasonal variation in sampling frequency could

not have been responsible for the annual scale peaks

observed in the real data.

pH

Surface pH showed a distinct pattern of annual

variation in both reference and acidified basins, as well

as strong variation over multiple years. The intensity of

the multi-year variation was greater in the acidified

basin as a result of the experimental acidification

(Fig. 4). Interestingly, annual variability was somewhat

reduced in the treatment basin relative to the reference

basin, particularly in earlier phases when pH was being

actively manipulated. Also of interest was the presence

of a multi-year trend in pH in the reference basin,

indicating a natural background trend in pH, albeit not

as large in magnitude as in the acidified basin.

Carnivorous copepods

In the reference basin, the carnivorous copepods

Diacyclops and Mesocyclops exhibited contrasting pat-

terns of scale-dependent covariance with pH. For

Diacyclops, covariance with pH shifted from positive

to negative with increasing time scale, whereas Meso-

cyclops exhibited the opposite pattern (Fig. 5). In the

acidified basin, where pH changes were more dramatic

due to the manipulation, both Diacyclops and Meso-

cyclops showed strong positive covariation with pH at

the longest time scales, indicating a simultaneous

decrease in pH and abundance (Fig. 5). Covariance

FIG. 5. Covariance between zooplankton species and pH as a function of time scale for the reference basin (left column) and
acidified treatment basin (right column). Gray regions bound 95% confidence limits obtained from 13104 random permutations of
the original time series. Solid black circles indicate values falling outside the bootstrap confidence intervals. Note that the x-axis is
log-transformed to show more detail at shorter time scales. Abbreviations are as in Fig. 1.
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between Diacyclops and Mesocyclops was strongly

negative in the reference and acidified basin at annual

time scales (Fig. 6). At the longest time scales analyzed,

strong positive covariance between Diacyclops and

Mesocyclops emerged in the acidified basin, probably

due to parallel declines in Diacyclops and Mesocyclops

abundance during the acidification phase of the experi-

ment.

Herbivorous copepods

In the reference basin, the herbivorous copepod

Tropocyclops exhibited positive covariance with pH at

the longest time scales, whereas Leptodiaptomus showed

negative covariance with pH at the annual time scale

(Fig. 5). In the acidified basin, the two herbivorous

copepods exhibited contrasting patterns of covariance

with pH at the longest time scales. Specifically,

covariance with pH was strongly negative for Tropocy-

clops and positive for Leptodiaptomus. In both reference

and acidified basins, covariance between Tropocyclops

and Leptodiaptomus was negative at 3–4 yr time scale

(Fig. 6). In the acidified basin, this 3–4 yr signal in

covariance between the two species was accompanied by

a strong spike in negative covariance at the longest time

scales (Fig. 6). Interestingly, maximum absolute cova-

riance was approximately threefold larger in the

acidified basin than in the reference basin.

Herbivorous cladocerans

In the reference basin, both D. dubia and D. catawba

exhibited positive covariance with pH at annual time

scales (Fig. 5). Similar to other species, patterns of

covariance with pH in the acidified basin were more

dramatic at the longest time scales, where D. dubia

showed strong positive covariance with pH and D.

catawba exhibited strong negative covariance with pH.

These patterns are clearly visible in the original time

series (Fig. 1). In both acidified and reference basins, D.

dubia and D. catawba showed highly synchronous

annual cycles. We observed a 10-fold increase in the

magnitude of the positive annual covariance between D.

dubia and D. catawba in the acidified basin, as well as the

addition of strong compensation at the longest time

scales.

FIG. 6. Covariance between zooplankton species pairs as a function of time scale for the reference basin (left column) and
acidified treatment basin (right column). Gray regions bound 95% confidence limits obtained from 13104 random permutations of
the original time series. Solid black circles indicate values falling outside the bootstrap confidence intervals. Note that the x-axis is
log-transformed to show more detail at shorter time scales. Abbreviations are as in Fig. 1.
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DISCUSSION

The LRL zooplankton time series exhibited two
hallmarks of complexity: variability across a wide range

of time scales and intermittent dynamical shifts (Stanley
et al. 2000). The pattern of intermittency was clearly

captured in the wavelet scale�location plots (Fig. 3),
where species dynamics shifted between regular annual

cycles and quiescent periods with little or no variation at
the annual scale. Sharp spikes in abundance were also

observed, such as can be seen near the end of the
Diacyclops and Tropocyclops time series. The local

nature of the wavelet transform means that these sorts
of events can be efficiently characterized. Sharp tran-

sients can introduce bias when applying non-local
methods, such as the Fourier transform, because such

events are not easily represented by regularly oscillating
functions. This is not to say that non-local methods

should not be applied. In the case of regular sinusoidal
patterns, Fourier methods can more precisely isolate
dominant frequencies compared to the localized wavelet

transform.

Within the context of complex dynamics, clear
patterns of synchrony and compensation did emerge in
patterns of wavelet covariance for pairs of species. In

some cases, species pairs exhibited both synchrony and
compensation within the same basin, depending on the

scale of analysis. At the annual time scale, variation in
biomass was strongly entrained to seasonal climate

variation, and this abiotic signal could influence aspects
of species interactions. The herbivorous cladocerans, D.

dubia and D. catawba, for example, exhibited strongly
synchronous annual variation. These species are absent

from the water column during the winter, hatch from
dormant eggs shortly after ice-off each spring, and are

usually present in the water column until temperatures
begin to cool in the fall (De Stasio 1990). The

herbivorous copepods, however, exhibited compensatory
annual variation. In Little Rock Lake, Mesocyclops

dominates during the summer months, but Diacyclops is
abundant in the fall, winter, and spring. This species shift
may be driven by competition for a shared food resource

or opposite responses to seasonal variation in other
environmental factors (i.e., apparent compensation).

At longer time scales, the effects of the pH manipu-
lation were apparent in patterns of wavelet covariance

for species pairs in the acidified basin. Carnivorous
copepods declined dramatically during the final stage of

the acidification, and this response was evident in the
positive covariance with pH for both of these species

and the strong positive covariance of the species pair at
the longest time scale. Autoregressive models fit to these

data support the conclusion that the observed positive
covariance was a direct effect of pH stress on these two

acid-sensitive species (Fischer et al. 2001). In contrast,
herbivorous copepods and herbivorous cladocerans

exhibited compensatory dynamics in response to acid-
ification, as indicated by the strong wavelet covariance

for these species pairs at the longest time scales. As the

species-specific patterns of covariance with pH suggest,

each pair contained one acid-sensitive and one acid-

tolerant species. Short-term bioassays indicate that

Leptodiaptomus and D. dubia are acid sensitive, whereas

Tropocylops and D. catawba are more tolerant (Fischer

1997). This composition, along with competitive inter-

actions between species, can generate a resilient response

to environmental fluctuations (Ives 1995, Fischer et al.

2001).

The wavelet transform is a highly flexible tool for

extracting localized, scale-specific information from

data. Although not explored here, there exists a wide

array of wavelets, each emphasizing subtlety different

aspects of pattern. The major consideration in choosing

a wavelet is the trade-off between strong localization,

which is good for analyzing sharp transients, vs. weak

localization, but more precise isolation of dominant

frequencies. Other properties of wavelets may also be

selected, such as symmetry and overall smoothness.

Many software packages provide routines to optimally

select wavelets for a given data set, and this would be an

interesting avenue for future studies. It would also be

interesting to explore fitting parametric regression or

process-driven models to wavelet-transformed commun-

ity time series data (e.g., see Keitt and Urban [2005]).

Overall, our results highlight the utility of wavelet

analysis for quantifying scale-dependent shifts in com-

munity dynamics. Analyzing data in a scale-dependent

manner is particularly helpful in situations where

physical forcing of community dynamics occurs at

widely different time scales, as was the case in our

analysis of the LRL zooplankton community. Applica-

tion of the wavelet transform allowed us to clearly

identify a shift toward multi-annual variation in the

acidified basin paralleling the time scale at which pH was

manipulated. The long-term variation in the acidified

basin contrasted sharply with the more subtle annual-

scale variation observed in the reference basin. The

ability of the wavelet approach to detect and contrast

patterns occurring at different time scales has strong

relevance to the general problem of disentangling

external abiotic drivers of community dynamics from

internal dynamics resulting from processes of popula-

tion growth and interactions. In the context of global

change, scale-dependent analysis may prove useful in

detecting changes in community dynamics resulting

from anthropogenic factors, which may have complex

tempos and scales far different from those naturally

present in a given community.

ACKNOWLEDGMENTS

We thank M. Leibold for constructive comments on an early
version of the manuscript. T. Keitt acknowledges the generous
support of the David and Lucile Packard Foundation. The
Little Rock Experimental Acidification Project has been
supported by funding from the National Science Foundation,
the U.S. Environmental Protection Agency, the U.S. Geological
Survey, and the state of Wisconsin. It has also received logistic
assistance from the North Temperate Lakes Long Term
Ecological Research Program.

November 2006 2903SCALE-SPECIFIC COMMUNITY DYNAMICS

 19399170, 2006, 11, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1890/0012-9658(2006)87[2895:D

O
SC

D
U

]2.0.C
O

;2 by U
niversity O

f T
exas L

ibraries, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



LITERATURE CITED

Bradshaw, G. A., and B. A. McIntosh. 1994. Detecting climate-
induced patterns using wavelet analysis. Environmental
Pollution 83:135–142.

Bradshaw, G. A., and T. A. Spies. 1992. Characterizing canopy
gap structure in forests using wavelet analysis. Journal of
Ecology 80:205–215.

Brown, J. H. 1995. Macroecology. The University of Chicago
Press, Chicago, Illinois, USA.

Carpenter, S. R., C. E. Kraft, R. Wright, X. He, P. A. Spranno,
and J. R. Hodgson. 1992. Resilience and resistance of a lake
phosphorus cycle before and after food web manipulation.
American Naturalist 140:781–798.

Collins, S. L., F. Micheli, and L. Hartt. 2000. A method to
determine rates and patterns of variability in ecological
communities. Oikos 91:285–293.

Cottingham, K. L., B. L. Brown, and J. T. Lennon. 2001.
Biodiversity may regulate the temporal variability of
ecological system. Ecology Letters 4:72–85.

Csillag, F., and S. Kabos. 2002. Wavelets, boundaries, and the
spatial analysis of landscape pattern. Ecoscience 9:177–190.

Dale, M. R. T., and M. Mah. 1998. The use of wavelets for
spatial pattern analysis in ecology. Journal of Vegetation
Science 9:805–814.

Daubechies, I. 1992. Ten lectures on wavelets. CBMS-NSF
Regional Conference Series in Applied Mathematics, Society
for Industrial and Applied Mathematics, Philadelphia,
Pennsylvania, USA.

De Stasio, B. T., Jr. 1990. The role of dormancy and emergence
in the dynamics of a freshwater zooplankton community.
Limnology and Oceanography 35:1079–1090.

Ernest, S. K. M., and J. H. Brown. 2001. Homeostasis and
compensation: the role of species and resources in ecosystem
stability. Ecology 82:2118–2132.

Fischer, J. M. 1997. Zooplankton community responses to
acidification: the role of raid evolution and compensatory
dynamics. Dissertation. University of Wisconsin, Madison,
Madison, Wisconsin, USA.

Fischer, J. M., T. M. Frost, and A. R. Ives. 2001. Compensa-
tory dynamics in zooplankton community responses to
acidification: measurement and mechanisms. Ecological
Applications 11:1060–1072.

Frost, T. M., J. M. Fischer, P. L. Brezonik, M. J. Gonzalez, T.
K. Kratz, C. J. Watras, and K. E. Webster. 2005. The
experimental acidification of Little Rock Lake. Pages 168–
186 in J. J. Magnuson, T. K. Kratz, and B. J. Benson, editors.
Long-term dynamics of lakes in the landscape. Oxford
University Press, New York, New York, USA.

Frost, T. M., and P. M. Montz. 1988. Early zooplankton
response to experimental acidification of Little Rock Lake,
Wisconsin, USA. Internationale Vereinigung fur Theoreti-
scheund Angewandte Limnologie 23:2279–2285.

Grenfell, B. T., O. N. Bjornstad, and J. Kappey. 2001.
Travelling waves and spatial hierarchies in measles epidemics.
Nature 414:716–723.

Hastie, T., and C. Loader. 1993. Local regression: automatic
kernel carpentry. Statistical Science 8:120–129.

Holling, C. S. 1973. Resilience and stability in ecological
systems. Annual Reviews in Ecological Systems 4:1–23.

Ives, A. R. 1995. Predicting the response of populations to
environmental change. Ecology 76:926–941.

Ives, A. R., B. Dennis, K. L. Cottingham, and S. R. Carpenter.
2003. Estimating community stability and ecological inter-
actions from time-series data. Ecological Monographs 73:
301–330.

Jansen, M., G. P. Nason, and B. W. Silverman. 2001. Scattered
data smoothing by empirical Bayesian shrinkage of second
generation wavelet coefficients. Pages 87–97 in M. Unser and
A. Aldroubi, editors. Wavelet applications in signal and
image processing. Proceedings of SPIE, volume 4478. SPIE—
The International Society for Optical Engineering, Belling-
ham, Washington, USA.

Keitt, T. H., and D. L. Urban. 2005. Scale-specific inference
using wavelets. Ecology 86:2497–2504.

Loader, C. 1999. Local regression and likelihood. Statistics and
computing. Springer, New York, New York, USA.

Lomb, N. R. 1976. Least-squares frequency analysis of
unequally spaced data. Astrophysics and Space Science
(Historical Archive) 39:447–462.

Mallat, S. G. 1989. A theory for multiresolution signal
decomposition: the wavelet representation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 11:
674–693.

Mallat, S. 1999. A wavelet tour of signal processing. Second
edition. Academic Press, New York, New York, USA.

Micheli, F., K. L. Cottingham, J. Bascompte, O. N. Bjørnstad,
G. L. Eckert, J. M. Fischer, T. H. Keitt, B. E. Kendall, J. L.
Klug, and J. A. Rusak. 1999. The dual nature of community
variability. Oikos 85:161–169.

Muraki, S. 1995. Multiscale volume representation by a DOG
wavelet. IEEE Transactions on Visualization and Computer
Graphics 1:109–116.

Muzy, J. F., E. Bacry, and A. Arneodo. 1991. Wavelets and
multifractal formalism for singular signals: Application to
turbulence data. Physical Review Letters 67:3515–3518.

Percival, D. B. 1995. On estimation of the wavelet variance.
Biometrika 82:771–787.

Rosenberg, M. S. 2004. Wavelet analysis for detecting
anisotropy in point patterns. Journal of Vegetation Science
15:277–284.

Sandvik, G., C. M. Jessup, K. L. Seip, and B. J. M. Bohannan.
2004. Using the angle frequency method to detect signals of
competition and predation in experimental time series.
Ecology Letters 7:640–652.

Stanley, H. E., L. A. N. Amaral, P. Gopikrishnan, P. C.
Ivanov, T. H. Keitt, and V. Plerou. 2000. Scale invariance
and universality: organizing principles in complex systems.
Physica A: Statistical Mechanics and its Applications 281:60–
68.

Sweldens, W. 1998. The lifting scheme: a construction of second
generation wavelets. SIAM Journal on Mathematical Anal-
ysis 29:511–546.

Vasseur, D. A., U. Gaedke, and K. S. McCann. 2005. A
seasonal alteration of coherent and compensatory dynamics
occurs in phytoplankton. Oikos 110:507–514.

TIMOTHY H. KEITT AND JANET FISCHER2904 Ecology, Vol. 87, No. 11

 19399170, 2006, 11, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1890/0012-9658(2006)87[2895:D

O
SC

D
U

]2.0.C
O

;2 by U
niversity O

f T
exas L

ibraries, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


