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propagation and catastrophic percolation. 
The persistent nucleation and growth of 
these microcracks create extrinsic plastic-
ity that compensates for the low ductility 
of the brittle phase and enables sustain-
able uniform deformation. Compared to the 
conventionally solidified alloy, the self-buff-
ering herringbone EHEA was three times 
more ductile, accompanied with extraordi-
nary damage tolerance and a simultaneous 
enhancement of strength and toughness.

Shi et al.’s engineering of hierarchical 
chemical and nanostructural heterogene-
ities heralds a new approach for developing 
high-performance alloys. Tuning local com-
positional fluctuations may energetically 
alter the nature of a material’s response to 
external stimuli like brittleness (9, 10). Cre-
ation of internal defects within individual 
nanostructures (see the figure) could acti-
vate multiple strengthening and toughen-
ing mechanisms (11). The heterogeneous 
microstructures could be programmed to 
trigger various intrinsic and extrinsic defor-
mation mechanisms (12). 

This design concept will require identi-
fying and quantifying which materials pa-
rameters endow specific properties to help 
unravel how these develop in hierarchical 
structures. An integrated computational and 
experimental protocol, in conjunction with 
data science, could accelerate the establish-
ment of a unified design principle and scien-
tific framework for future mechanistic alloy 
design. Another formidable conundrum is to 
precisely control and organize spatially lo-
cal chemical and structural heterogeneities. 
The advanced additive manufacturing tech-
niques could, through a dedicate multiscale 
processing control, unlock the full poten-
tial of this new alloy design concept to help 
tackle major economic, energy, and environ-
mental challenges. j
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T
he accelerating pace of global change 
is driving a biodiversity extinction 
crisis (1) and is outstripping our abil-
ity to track, monitor, and understand 
ecosystems, which is traditionally the 
job of ecologists. Ecological research 

is an intensive, field-based enterprise that 
relies on the skills of trained observers. 
This process is both time-consuming and 
expensive, thus limiting the resolution 
and extent of our knowledge of the natu-
ral world. Although technology will never 
replace the intuition and breadth of skills 
of the experienced naturalist (2), ecologists 
cannot ignore the potential 
to greatly expand the scale of 
our studies through automa-
tion. The capacity to automate 
biodiversity sampling is be-
ing driven by three ongoing 
technological developments: 
the commoditization of small, 
low-power computing devices; 
advances in wireless commu-
nications; and an explosion in 
automated data-recognition 
algorithms in the field of ma-
chine learning. Automated 
data collection and machine 
learning are set to revolu-
tionize in situ studies of natural systems.

Automation has swept across all human 
endeavors over recent decades, and science 
is no exception. The extent of ecological 
observation has traditionally been limited 
by the costs of manual data collection. We 
envision a future in which data from field 
studies are augmented with continuous, 
fine-scale, remotely sensed data recording 
the presence, behavior, and other proper-
ties of individual organisms. As automa-
tion drives down costs of these networks, 
there will not be a simple expansion of 
the quantity of data. Rather, the potential 
high resolution and broad extent of these 
data will lead to qualitatively new find-
ings and will result in new discoveries 
about the natural world that will enable 
ecologists to better predict and manage 
changing ecosystems (3). This will be es-

pecially true as different types of sensing 
networks, including mobile elements such 
as drones, are connected together to pro-
vide a rich, multidimensional view of na-
ture. Given the role that biodiversity plays 
in lending resilience to the ecosystems on 
which humans depend (4), monitoring 
the distribution and abundance of species 
along with climate and other variables is a 
critical need in developing ecological hy-
potheses and for adapting to emerging 
global challenges.

Ecosystems are alive with sound and mo-
tion that can be captured with audio and 
video sensors. Rapid advances in audio 
and video classification algorithms can al-

low the recognition of spe-
cies and labeling of complex 
traits and behaviors, which 
were traditionally the domain 
of manual species identifica-
tion by experts. The major 
advance has been the dis-
covery of deep convolutional 
neural networks (5). These al-
gorithms extract fundamental 
aspects of contrast and shape 
in a manner analogous to how 
we and other animals recog-
nize objects in our visual field. 
Applied to audio signals, these 
neural networks are highly ef-

fective at classifying natural and anthropo-
genic sounds (6). A canonical example is the 
classification of bird songs. Other acoustic 
examples include insects, amphibians, and 
disturbance indicators such as chainsaws. 
Naturally, these algorithms also lend them-
selves to species identification from images 
and videos. In cases of animals displaying 
complex color patterns, individuals may be 
distinguished, allowing minimally invasive 
mark recapture, an important tool in popu-
lation studies and conservation (7). Beyond 
sight and sound, sensors can target a wide 
range of physical, chemical, and biological 
phenomena. Particularly intriguing is the 
possibility for widespread environmental 
sensing of biomolecular compounds that 
could, for example, allow quantification of 
“DNA-scapes” by means of laboratory-on-a-
chip–type sensors (8).

Several technological trends are shap-
ing the emergence of large-scale sensor 
networks. One is the ongoing miniaturiza-
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tion of technology, allowing deployment of 
extended arrays of low-power sensor de-
vices across landscapes [for example, (9)]. 
In many cases, these can be solar-powered 
in remote locations. The widespread avail-
ability of computer-on-a-chip devices 
along with various attached sensors is en-
abling the construction of large distributed 
sensing networks at price points that were 
formerly unattainable. Similarly, the ubiq-
uitous availability of cloud-based comput-
ing and storage for back-end processing is 
facilitating large-scale deployments.

Another trend is advancements in wire-
less communications. For example, the 
emerging internet of things (10) enables 
low-power devices to establish ad hoc mesh 
networks that can pass information from 
node to node, eventually reaching points of 
aggregation and analysis. The same tech-
nology used to connect smart doorbells and 
lightbulbs can be leveraged to move data 
across sensor networks distributed across 
a landscape. These protocols are designed 
for low power consumption but may not 
have sufficient bandwidth for all applica-
tions. An alternative, although more power 
hungry, is cellular technology, which has 
increasing coverage globally. In remote 
locations, where commercial cellular data 
services may not be available, researchers 
can consider a private cellular network 
for on-site telemetry and satellite uplinks 
for internet streaming. However, in the 
near term, telecommunications costs and 
per-device power requirements may none-
theless prove prohibitive in certain high-
bandwidth applications, such as video and 

audio streaming. An alternative for sites 
where communications bandwidth is lim-
ited by cost, isolation, or power constraints 
is edge computing (11). In this design, com-
putation is moved to the sensing devices 
themselves, which then transmit filtered 
or classified results for analysis, greatly re-
ducing transmission requirements. 

One more trend is the advancement of 
machine-learning methods (12) that can 
classify and extract patterns from data 
streams. Much of this technology has been 
commoditized through intensive develop-
ment efforts in the technology sector that 
have resulted in widely available software 
libraries usable by nonexperts. The afore-
mentioned convolutional neural networks 
can be coded both to segment data into 
units and to label these units with appro-
priate classes. The major bottleneck is in 
training classifiers because initial train-
ing inputs must be labeled manually by 
experts. Although labeled training sets 
exist in some domains—most notably, im-
age recognition—future analysts may be 
able to skip much of the training step as 
large collections of pretrained networks 
become available. These pretrained net-
works can be combined and modified for 
specific tasks without the requirement of 
comprehensive training sets. Of particular 
interest from the standpoint of automation 
are new developments in continual learn-
ing (13), in which networks adjust in re-
sponse to changing inputs. This holds the 
promise of automating model adaptation 
for detecting emerging phenomena, such 
as species shifting their ranges in response 

to climate change or other shifts in ecosys-
tem properties.

Ecologists could leverage these develop-
ments to create automated sensing net-
works at scales previously unimaginable. As 
an example, consider the North American 
Breeding Bird Survey, a highly successful 
citizen-science initiative running since the 
late 1960s with continental-scale coverage. 
Expert observers conduct point counts of 
birds along routes, generating data that 
have proved invaluable in tracking trends 
in songbird populations (14). Although we 
hope to see such efforts continue, imagine 
what could be learned if, instead of sam-
pling these communities once per year, a 
long-term, continental-scale songbird ob-
servatory could be constructed to record 
and classify bird vocalizations in near–real 
time along with environmental covariates. 
Similar networks could use camera traps or 
video streams to reveal details of diurnal 
and seasonal variation across diverse floras 
and faunas. As with all sampling methods, 
sensing networks will not be without biases 
in sensitivity and discrimination, yet they 
hold the extraordinary promise of regional 
sampling of biodiversity at the organismal 
scale, something that has proven difficult, 
for example, by using traditional satellite-
based remote sensing. These efforts would 
complement ongoing development of con-
tinental-scale observatories in ecology [for 
example, (15)] by increasing the spatial and 
temporal resolution of sampling. j
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Small, ruggedized sensors, such as this passive acoustic recorder, enable remote monitoring of biodiversity. 
New technologies are enabling such devices to process data and transmit information via wireless networks.
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