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Abstract

Populations may be regulated by both local density-
dependent factors and spatial variation in habitat
quality. I explore the influence of spatial autocor-
relation in habitat quality on the survival of model
populations. Dispersal is modeled as Markov tran-
sitions between patches. A finite rate of population
increase was assigned to each patch. Total habitat
area and mean dispersal distance had strong effects
on overall population persistence. The effect of spa-
tial autocorrelation was relatively weak, but inter-
acted with dispersal distance. The results suggest
that landscape pattern can play an important role
in population survival, but its importance depends
crucially on dispersal behavior.

1 Introduction

It is often assumed that population growth is lim-
ited by an upper bound or carrying capacity of
the environment, below which a population increases
and above which the population decreases (Murdoch
1994). Pulliam (1988) recognized that population
growth may be regulated by an alternative mecha-
nism: dispersal among habitats of varying quality.
Pulliam referred to those areas where birth rates ex-
ceed death rates as demographic “source” popula-
tions and those areas where death rates exceed birth
rates as “sinks.” Coupled together via dispersal, pop-
ulation sources and sinks present a number of inter-
esting scenarios. For example, sink populations may
persist despite high mortality rates because of immi-
gration from nearby source habitats (Pulliam 1988).
Furthermore, source-sink population structure can
lead to situations in which the majority of individuals
in a population are poorly adapted to the habitats in

which they occur (Dias 1996).

There are a number of factors that can influence
the survival source-sink populations and these relate
both to the extent and spatial arrangement of source
and sink habitats, and the life-history traits of the
species of concern. Primary, of course, are the de-
mographic parameters of a given species: All things
equal, a species with high rate of reproduction and
low mortality has a lower risk of extinction than a
species with high mortality and low reproduction.

However, persistence can also be influenced by be-
havioral attributes such as whether a species typically
disperses long distances to find new habitat areas ver-
sus a species that remains close to home. Species
that disperse long distance may be more successful
in finding unoccupied territories or, in the case of
plants, a forest gap. On the other hand, a species
that disperses short distances may avoid becoming
lost or ending up in a large area of inhospitable habi-
tat. Another attribute of dispersal is directed ver-
sus passive dispersal. Directed dispersal occurs when
an organism actively searches for high quality habi-
tats, whereas with passive dispersal, propagules land
in a random pattern some distance from where they
started. A classic example of passive dispersal is the
“seed shadow” surrounding trees whose seeds are dis-
persed primarily by wind and gravity.

1.1 Spatial autocorrelation

The outcome of dispersal events depends not only on
dispersal behavior, but on the spatial arrangement of
source and sink habitats. In landscapes where source
habitats often occur in close proximity to sink habi-
tats, source and sink habitats will be strongly cou-
pled, even for organisms that disperse relatively short
distances. The proximity of source and sink habitat
can be quantified in terms of a “two-point” autocorre-



lation function. Consider pairs of points chosen from
the landscape at random, but constrained to be dis-
tance k apart. The (sample) autocovariance function

is
n

Z (yz - g)(ysz - g)/n

r=k+1

(1)

Ik =
where y, is a point located at = and g is the mean
value of y across the landscape (Diggle 1990). For
a 2 dimensional landscape, = should of course be a
vector pair of coordinates, but I will use the simpler

1 dimensional notation above. The autocorrelation
function is then
(2)

where g is the variance of the y’s. A large autocorre-
lation at a particular scale (distance) in a landscape
says that moving that distance will result in only a
small change in habitat quality. On the other hand,
a small autocorrelation means that the habitat qual-
ity changes rapidly. Generally, as the degree of spa-
tial autocorrelation increases, landscapes become less
fragmented, having fewer, but larger patches. Be-
cause spatial correlation implies larger patches, in-
dividuals dispersing away from source habitats in a
correlated landscape will tend to encounter higher
quality habitats and be less likely to disperse into
a demographic sink.

The fractal dimension (Mandelbrot 1982) D of a
landscape is directly related to the autocorrelation
function. In fact, saying that a landscape is fractal,
requires the autocorrelation function to take a par-
ticular form. Let the mean value of the landscape
7 =0, then

(3)

where v, is the variance of point a distance k
apart (Diggle 1990). In the geostatistics literature,
v is known as the “variogram” (Cressie 1993). For
a fractal landscape with dimension D, then

Tk = gr/90

v = go(1 — 1)

v o B2 (4)
where H = 3— D (because, in this case we have 2 spa-
tial dimensions and 1 dimensions for habitat quality).
The symbol H is known as the “Hurst exponent.”
Thus, the autocorrelation function can be related di-
rectly to the fractal dimension by

k,2H
roxl———
go

(5)

where, again, D =3 — H.

The important thing to keep in mind is that the
four factors mentioned, local population growth rate,
dispersal range, active versus passive dispersal, and

landscape structure all interact because they affect
the density of individuals that reside in population
sinks versus population sources, and thus the overall
viability of the metapopulation. In this paper, I eval-
uate the impact of these four factors on population
viability in a spatially-explicit model of source-sink
dynamics. The results are presented in the form of
an “impact table,” a devise for communicating the
effects of landscape alteration on population viabil-
ity. For readers interested in the mathematical details
of the source-sink model, a more detailed analysis is
presented in Appendices A and B.

2 Models and methods

2.1 Population processes

Models are often constructed because we gain insight
from building and analyzing the model, even if the
model is not an exact replica of nature. I begin with
the simplest of metapopulation models, the so-called
“BIDE” model in which

Local Population Growth=B+1—-D —E (6)
where B is the local birth rate, D is the death rate,
I is the immigration rate, and E is the emigration
rate. Thus, a demographic sink (source) is patch in
which B < D (B > D). An interesting property of
the model is that a demographic source can decline
to extinction if E — I > B — D, i.e., excess emi-
gration overcomes local population growth. (In Pul-
liam’s [1988] original model, sources could never go
extinct, because emigration only occurred after the
source population reached its carrying capacity.)

The BIDE model can be extended to a network
of habitat patches each with its own rates of birth,
death, immigration, and emigration. In the current
paper, I will only consider a situation in which each
patch is assigned to one of two habitats, a source
habitat (B > D) and a sink habitat (D > B).
The rates of immigration to and emigration from
each patch depends on the spatial arrangement of
the source and sink patches across the landscape as
described below.

The problem then is to determine the population
growth rate of the entire network of patches. It is
easy to show (see Appendix A) that the long-term
growth rate of the metapopulation only depends on
the local growth rates in source and sink patches and
the fraction of population occurring in each patch.
Letting A be the finite rate of metapopulation growth,



Figure 1: Fragmented landscapes with 50% (top pan-
els) and 5% (bottom panels) remaining habitat. Re-
maining habitat is either grouped into several large
patches (left side) or many small patches (right side).

then

M
A= Z QU5 (7)
K3
where M is the number of patches, «; is the finite
rate of increase (= B; — D;) in patch 7 and v; is
the fraction of the entire metapopulation that resides
in patch ¢ at any given moment. For the purposes
of this paper, note that if A is greater than 1, the
metapopulation is considered viable; if A is less than
one, the metapopulation will go extinct.
In all modeling scenarios, the finite growth rate of
source patches was equal 1.2 (20% increase per year).
Sink patches had a growth rate equal 0.2.

2.2 Landscape model

In order to evaluate the effect of landscape pattern on
population processes it is necessary to define a model
describing spatial pattern. Here, I use a model based
on fractal geometry (Mandelbrot 1982) that incor-
porates both habitat density and habitat fragmen-
tation. The technical details of the model can be
found in Appendix A. The model has two parame-
ters: the first p controls the total amount of source
habitat on the landscape; the second H controls the
number of patches among which the source habitat
is distributed. The two parameters can be varied in-
dependently so that it is possible to emulate a wide
variety of landscape scenarios (Fig. 1). Simulated
landscape can be strongly autocorrelated (H = 1.0)
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Figure 2: Dispersal curves for short- and long- dis-
tance dispersal.

or uncorrelated (H = 0.0) and the density of source
habitat p may be varied continuously between 0.0 and
1.0.

An important property of the landscape models is
that, within the constraints imposed by the tuning
parameters, the landscapes are random with respect
to the spatial arrangement of patches. Thus, each
successive landscape is statistically independent from
the previous landscape. If I had chosen some ad
hoc, non-random algorithm, it would be impossible
to know whether the results were biased by an unde-
scribed and uncontrolled aspect of the spatial model.

In all simulations presented here, landscapes were
32x32 arrays of habitat patches. Each habitat patch
was designated either as a source patch or a sink
patch according to the fractal landscape model. Pe-
riodic boundary conditions were used such that in
individual leaving one edge of the landscape would
appear on the opposite edge.

2.3 Dispersal model

Most organisms exhibit a leptokurtic dispersal pat-
tern, i.e., most individuals disperse a short distance,
whereas a few disperse very long distances (Neubert
et al. 1995). The shape of the dispersal curve, par-
ticularly in the long-distance tail, is extremely im-
portant in determining the rate of spread of an or-
ganism (Kot et al. 1996). Most data suggest either a
power-law or negative exponential function. Disper-
sal models based on Fickian diffusion (i.e., a random
walk) generally underestimate the frequency of long-
distance dispersal events, often with profound con-
sequences on model predictions (Kot et al. 1996). A
more fruitful approach is to model the dispersal curve
directly.



Table 1: Summary of model parameters

Parameter

Treatments

Source Habitat Density
Landscape Autocorrelation

Dispersal distance

Medium Density (50% source habitat)
Low Density (5% source habitat)

Autocorrelated (Source habitat in several large patches)
Uncorrelated (Source habitat in many small patches)
Short distance (mean distance equal one patch width)
Long distance (mean distance equal landscape width)

Dispersal behavior

Passive (random direction)

Active (dispersal biased towards source habitats)

I modeled dispersal using a negative exponential
dispersal function. The dispersal function determines
the probability that an individual will disperse a
given distance across the landscape (Fig. 2). Two sce-
narios were examined: short-distance dispersal corre-
sponded to a mean dispersal distance equal the width
of a single habitat patch or 1/32 the width of the en-
tire landscape; for long-distance dispersal, the mean
dispersal distance was 32 patch-widths or the entire
width of the landscape.

A second aspect of the dispersal models was ac-
tive versus passive dispersal. In passive dispersal, in-
dividual disperse in a completely random direction,
independent of any landscape features. Passive dis-
persal models systems such as seed dispersal in plants
(assuming wind and other factors do not bias the dis-
persal direction). In active dispersal, individuals bias
their dispersal such that they land in source patches
more often then sink patches. The extent of the bias
towards or away from a given patch was proportional
to its “quality,” defined here as the local population
growth rate. Active dispersal emulates a situation in
which an organism searches for high quality habitat.

2.4 Modeling scenarios

The combination of the landscape and dispersal mod-
els resulted in four model parameters: source habitat
density, habitat autocorrelation, mean dispersal dis-
tance, and active versus passive dispersal behavior. I
evaluated the impact of each of these parameters on
metapopulation viability using a full factorial experi-
mental design. For each of the parameters, two values
were chosen (see Table 1). All factorial combinations
of the parameter values resulted in 16 different sce-
narios. Ten replicate landscapes were evaluated for
each scenario.

3 Results and discussion

Results of the analysis are presented in the form of
impact tables (Tables 2 and 3). Each column of the
impact table lists a landscape attribute (the columns
correspond to the landscapes shown in Fig. 1). The
rows are species attributes, here, dispersal distance.
Two tables are shown, one for passive dispersal and
one for active dispersal. The entries in the table are
qualitative assessments of the impact of landscape
alteration. Imagine we begin with a landscape com-
pletely filled with source habitat and then remove
50% of the landscape leaving behind many small
source habitat patches. The relative impacts under
this scenario are given in column two of the tables.

Several general patterns emerged from the anal-
ysis. As expected, population viability declined as
the amount of source habitat was reduced. Land-
scape configuration also affected viability: when the
source habitat was clumped into larger patches (in-
creased autocorrelation), the metapopulation growth
rate was higher. Somewhat surprisingly, long dis-
tance dispersal resulted in lower population viabil-
ity. There was no mortality penalty for long distance
dispersal, rather, individuals that disperse long dis-
tances away from source habitat more often end up in
sink habitats, thus lowering the overall growth rate of
the metapopulation. Generally, as one would expect,
passive dispersal resulted in lower viability for much
the same reason as long distance dispersal: more in-
dividuals landed in the sink.

The relative magnitude of effects from different pa-
rameters and parameter interactions is given in Ta-
ble 4. The parameter that had the greatest affect
on population viability was source habitat density,
followed by dispersal distance, and passive versus ac-
tive dispersal. These were followed by several inter-
action effects. Decreasing source habitat density in-
flated the effect of long distance dispersal on viabil-
ity. In short, when there was little habitat available
on the landscape, individuals were better off staying



Table 2: Impact table for passive dispersal

50% Habitat 50% Habitat 5% Habitat 5% Habitat
Remaining, Remaining, Remaining, Remaining,
Several Large Many Small Several Large Many Small
Patches Patches Patches Patches
Shorjc Distance Low Moderate Moderate High
Dispersal
Long Distance . .
Dispersal Moderate Moderate Very High Very High

close to home. There was a three way interaction
between search strategy, habitat density, and disper-
sal distance, indicating that both dispersal behavior
and habitat density need to be considered in viability
studies.

The influence of spatial autocorrelation on viability
was the sixth largest effect, followed by an interaction
between autocorrelation and dispersal distance. The
interaction between the Hurst exponent and dispersal
distance occurred because more correlated landscapes
favor short distance dispersal. It is interesting that
the impact of spatial autocorrelation occurred so low
in the ranking, below all other single parameters and
several interactions. It is possible that the impor-
tance of landscape configuration was underestimated
in the current source-sink model. The model does
not consider the possibility of high intensity environ-
mental disturbances that can cause local extinctions,
i.e., classical metapopulation dynamics (Levins 1969,
Hanski and Gilpin 1991). In the presence of local
extinction and colonization, the importance of long
distance dispersal may be much greater than repre-
sented here.

3.1 Management implications

Given that the total area of source habitat is the
most important factor affecting population viability,
should we care about landscape geometry? It de-
pends somewhat on the situation. Clearly, one needs
to consider the life-history traits, such as mean dis-
persal distance and dispersal mode, of the species of
concern before making a blanket statement regarding
the importance of landscape configuration. These re-
sults do suggest that in situations where we are able
to preserve large areas of high quality, source habi-
tats, we should do so.

It is important, however, to realize that virtually all
habitat management decisions involve tradeoffs be-
tween competing and sometimes conflicting goals. In
an ideal world, we would set aside all habitats as re-
serves. However, in reality, we must pick and choose.

If we are constrained, owing to budgetary, social, or
political factors, in the amount of habitat we can pre-
serve, landscape configuration can be an important
consideration in maximizing the effectiveness of con-
servation efforts. For example, given a target of pre-
serving 50% of the available habitat for a species, the
analysis presented here suggests that the species will
have greater viability if the habitat is clumped into
several large patches.

The interesting problems arise, of course, when
there are tradeoffs to be made between total area and
landscape connectivity. Should one maximize habitat
area at the expense of connectivity? There is no sim-
ple answer, because both area and connectivity are
important. The answer will generally depend on how
a species uses the landscape. However, even simple
analysis of landscape pattern can be useful in prior-
itizing conservation decisions, and in general, land-
scape connectivity can be enhances with little or no
loss in the total habitat area preserved.

A Mathematical models

A.1 Fractal landscapes

Landscapes were modeled as segmented fractional-
Brownian surfaces (sfBs) (Keitt and Johnson 1995).
SfBs were constructed by first creating a fraction-
Brownian surface and then slicing the surface at a
particular elevation. All points above the slice were
assigned to one class and those below another class
(see Fig. 1). Binary sfBs were indexed by two param-
eters, p which determined the area assigned to one of
the classes, and H which set the fractal dimension
of the surface (Mandelbrot 1982, Feder 1988, Peitgen
and Saupe 1988).

A fractional-Brownian surface is most easily de-
fined in terms of its Fourier transform (Hastings and
Sugihara 1993). For fractal patterns, the power-
spectrum (square of the Fourier coefficients) scales



Table 3: Impact table for active dispersal

50% Habitat 50% Habitat 5% Habitat 5% Habitat
Remaining, Remaining, Remaining, Remaining,
Several Large Many Small Several Large Many Small
Patches Patches Patches Patches
Shorjc Distance Low Low Low Moderate
Dispersal
Long Distance . .
Dispersal Low Low High High

as a power-law of the frequency:
S(f) = kf’ (8)

where S(f) is the power at frequency f, k is a nor-
malization constant, and [ is a scaling exponent re-
lated to the fractal dimension of the surface. For a
2-dimensional surface 3 = 2H + 1, where H is known
as the “Hurst exponent” (Mandelbrot 1982). The
Hurst exponent also determines the fractal dimension
D=3-H.

Fractional-Brownian surfaces are easily created by
generating random Fourier coefficients whose vari-
ance decays as a power-law function of frequency. An
inverse Fourier transform is then applied to produce
the fractal landscape.

A.2 Stochastic landscape networks

A stochastic landscape network describes the prob-
ability of an individual dispersing from one habitat
patch to any other habitat patch in a landscape. The
network can be formalized in terms of a matrix T
whose elements ¢;; are transition probabilities from
patch i to patch j. We require that each row of T'
sum to one, because (ignoring for the moment re-
production and mortality) the sum of all individuals
leaving a patch must equal the sum of individuals en-
tering other patches. The matrix T thus defines a
Markov chain.

For the simple lattices used here, filling the ele-
ments of T was simply a matter of computing the
distance between two patches and then modeling the
probability of dispersal as a function of distance.
Here, dispersal was modeled by a negative exponen-

tial
(9)

where p(d) is the probability of dispersing a distance d
and 6 is the dispersal coefficient. The mean dispersal
distance was equal 1/6. For the artificial landscapes
used here, I simply assigned ¢;; = p(d;;)/ Zj p(di;)
where d;; is the distance between patch ¢ and patch j.

p(d) = e

This approximation was justified by the fact that each
of the 32 x 32 cells on the landscape were considered
an individual patch. Thus, all patches were the same
size and had a compact shape. In cases where patches
are defined with different sizes and sinuous or oblong
shapes, corrections to ¢;; need to be made to account
for the irregular patch geometries.

One further modification needs to be made to T
in order to incorporate active dispersal. As defined
above, T" models passive dispersal; the patch tran-
sition probabilities only depend on the distance be-
tween patches. However, if organisms search for high
quality habitats, transitions to better habitat patches
should be higher than to poor habitats. I introduce
the parameter o to represent the degree to which dis-
persal is biased towards high quality habitats. I then
define

(1 -0+ oa;)p(di;)

== > p(dij) + 0 3 ap(dij) 1o

where o; is the growth rate in patch j. This func-
tion simply biases the transition probabilities towards
patches with higher growth rates. When o = 0, then
tij = p(di;)/ >, p(dij) as before. When o =1, ¢;5 is
biased in proportion to the quality of patch j. The
degree of bias in ¢;; is a linear function of o.

Given T we can construct the full BIDE metapop-
ulation model and determine its overall growth rate.
For a single patch, the BIDE model can be written

as
M

U _ . .. .

n; =n;j E tijoy
i

where n; is the local population size in patch j, n; is
the population size in the following generation, and
M is the number of patches in the system. The entire
model can be written in matrix form

(11)

i = AT (12)

where A is a matrix whose diagonal elements are the
local population growth rates in each patch, and 7 is



Table 4: Most influential parameters and interactions

Rank

Parameter or interaction

N O U R W N

Source habitat density
Dispersal distance

Search (passive vs. active)
Density x Distance

Search x Density x Distance
Hurst exponent

Hurst x Distance

a vector containing the local population sizes. Thus,
the overall growth rate of the metapopulation is the
largest eigenvalue A of the matrix AT
It is possible to derive A as a function of the distri-
bution of individuals among patches and the growth
rate in each patch as follows. As long as T is positive,
there exists an eigenvector ¢’ associated with A such
that
ATV = M. (13)

We may choose any scaling of #, so I choose ), v; =
1. Summing across the rows of Eq. 13, we have

Zztijai’l}i = )\ZU]'.
Jj o J

Noting that > ;v; = 1 and that ) ;¢;; = 1, and
rearranging a bit gives the result in Equation 7.

(14)

B Statistical analysis and re-
sults

Mean growth rates on which the impact tables were
based are shown in Table 5. The precision estimate
is one standard error.

The results of an ANOVA on the model output is
shown in Table 6. The given p-values are not partic-
ularly meaningful, however, the F-value gives a rank-
ing of the effect of each parameter and parameter
combinations on population viability.
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Table 5: Mean value of \ for factorial treatments

p=0.50 p=0.05
H=1 H=0 H=1 H=0

c=01|6=321 1.0695+ 0.0351 | 0.9548 +0.0455 | 0.7261 +0.0511 | 0.5073 & 0.06097

# =1 | 0.7064 + 0.0027 | 0.7021 £ 0.0016 | 0.2521 £ 0.0011 | 0.2507 &+ 0.0007

c=1]6=32] 1.1659+0.0065 | 1.1322+0.0062 | 1.0599 £+ 0.0247 | 0.9662 =+ 0.0535

0= 1.0617 +0.0020 | 1.0587 +0.0010 | 0.4694 + 0.0079 | 0.4468 + 0.0046

Table 6: ANOVA results comparing model treatments
Df Sum of S¢ Mean Sq F Value Pr(F)
Search 1 3.002692 3.002692 3616.080 0.0000000
Density 1 6.291388 6.291388 7576.589  0.0000000
Hurst 1 0.151507 0.151507  182.457 0.0000000
Distance 1 4.335539 4.335539 5221.200 0.0000000
Search x Density 1 0.030375 0.030375 36.580 0.0000000
Search x Hurst 1 0.021660 0.021660 26.084 0.0000010
Density x Hurst 1 0.020432 0.020432 24.605 0.0000020
Search x Distance 1 0.002159 0.002159 2.600 0.1090616
Density x Distance 1 0.685271 0.685271  825.257 0.0000000
Hurst x Distance 1 0.115287 0.115287  138.838 0.0000000
Search x Density x Hurst 1 0.000297  0.000297 0.358 0.5505592
Search x Density x Distance 1 0.417326 0417326  502.577 0.0000000
Search x Hurst x Distance 1 0.031927 0.031927 38.449  0.0000000
Density x Hurst x Distance 1 0.013578 0.013578 16.352  0.0000854
Search x Density x Hurst x Distance 1 0.002770 0.002770 3.335 0.0698753
Residuals 144 0.119574  0.000830
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