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Preface

This book was developed from a workshop on the “Effective Use of 
Ecological Modeling in Management,” held in Oak Ridge, Tennessee,
on October 23–26, 2000. The workshop was sponsored by the Department
of Defense’s (DoD’s) Strategic Environmental Research and Development
Program (SERDP), the Army Research Office, and the Engineering
Research and Development Center of the Corps of Engineers as well as by
the U.S. Department of Agriculture (USDA) Forest Service. It was hosted
by the Department of Energy’s (DOE’s) Oak Ridge National Laboratory
(ORNL). The organizing committee for the workshop included senior sci-
entists from ORNL, the USDA Forest Service, and the U.S. Army Corps of
Engineers (ACE). The members of the steering committee were John
Barko, Paul Bradford, Bill Goran, Jeff Holland, Russell Harmon, and Mike
Vasievich. They helped guide the workshop to a useful product by suggest-
ing topics, speakers, and participants. Workshop attendees included senior
ecological modelers within the Forest Service, DoD, other federal and state
agencies, universities, and the private sector together with ecological-
resource managers in the Forest Service, DoD, and other government and
nongovernment agencies and organizations.

The book never could have come to fruition without the dedicated efforts
of Fred O’Hara in editing each of the chapters and making sure that the
text was complete and accurate and that standard methods of expression
and design were used in the text, references, tables, and figures. His careful
attention to the details and to effective communication is appreciated.

Many people helped in bringing the book to completion. Chapter authors
not only contributed the bulk of the work but also assisted by reviewing
manuscripts of their colleagues. In addition, chapters were reviewed by John
Barko, Mark Bevelhimer, Chuck Coutant, Robert Gardner, Russell
Harmon, Robert Holst, Tony King, and Robert Melton. I appreciate the
support of the Environmental Sciences Division at Oak Ridge National
Laboratory and, especially, of my husband and children.

Virginia H. Dale
Oak Ridge, Tennessee

August 2002
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Part 1

Introduction



1
Opportunities for Using Ecological
Models for Resource Management

Virginia H. Dale

3

1.1 Environmental Management

The roots of environmental management are diverse. One major origin is
the planning arena in which decisions are made about zoning, parcel size,
and adjacent land uses. Individuals involved in city and county government
typically have backgrounds in planning, and some combine that expertise
with an environmental perspective. Another major source of environmen-
tal management stems from an economic perspective. This viewpoint
focuses on costs of obtaining resources and maximizing the benefits
achieved. Renewable resources, such as timber or fish, offer an opportunity
for a long-term, stable supply of goods. A third origin of environmental
management is from a wildlife background. This perspective is epitomized
by Aldo Leopold (1953), who called for a land ethic that is based upon the
concept that humans are a part of a natural system and need to consider
how their actions affect the Earth. Such an ecological point of view requires
attention to the social, economic, and political arena in which environmen-
tal management occurs. To consider the opportunities and costs involved 
in environmental management, all of these perspectives need to be con-
sidered. An integrated approach to environmental management involves
planning, sustainability, and environmental ethics and considers the social,
economic, political, and environmental contexts.

The challenge of managing the environment therefore requires aware-
ness of the diverse goals that may exist for natural resources. Some people
value the environment for the economic gains it provides, such as from trees
that can be harvested or grasses that can be grazed. Other people measure
the worth of environmental attributes by the amount and type of recrea-
tional opportunities that they can provide. Recreational resources can be
quite diverse, and their use frequently conflicts with access to or economic
use of another resource. For example, a wilderness hiking experience is not
compatible with the use of off-road vehicles. Land and water are also valued
for their beauty. The vista of mountains, prairies, or sand dunes can provide
an aesthetic experience or the inspiration for songs, art, or prose. Novelists



often integrate the opportunities and conflicts of nature into their 
characters’ development. For example,Willa Cather’s descriptions of prairie
life convey both the bleakness and beauty of the landscape and the hope
that comes with each spring. Other people associate religious values with
particular places or resources. A site may have served as an ancestral
hunting ground or may house religious artifacts. Chief Seattle, leader of the
Suquamish Indians, reportedly wrote to the American Government in the
1800s, “The shining water that moves in the streams and rivers is not just
water, but the blood of our ancestors.” Some environmental resources have
scientific values, such as those watersheds that serve as long-term research
sites and support a unique set of data on changes in ecological attributes.
Other resources provide habitats for species, and as these species become
rare, these habitats are critical to maintaining biodiversity.

Taking into account all of these values in forming environmental 
management decisions is difficult. Until recently, the economic value of a
resource was typically given the most weight by planners. However, today
environmental managers realize that all values and ecosystem services must
be considered so future generations will have access to natural resources
(Costanza et al. 1997).

Sustainability is often touted as a goal for environmental management.
Sustainable development meets the needs of the present without compro-
mising the ability of future generations to meet their own needs (World
Commission on Environment and Development 1987). Ecological sustain-
ability is the capability of an ecological system or process to continue over
time without loss or decline. For instance, sustainable forestry practices
maintain forest structure, diversity, and production without long-term
decline or loss over a region. Sustainable water use provides for the water
needs of a human community without reducing water quality or quantity
to levels that might compromise ecological processes. Resource use can be
sustained locally over the long term with the help of external subsidies from
other areas, but this practice can result in degradation of the larger system.
Thus, sustainability needs to be viewed from a broad perspective in both
time and space. Sustainability is widely regarded as economically and 
ecologically desirable; in the ultimate sense, it is the only viable long-term
pattern of human interaction with the environment.

Having “sustainment of a system” as the goal of environmental manage-
ment is logical and even noble. A major challenge is the quantitative or
qualitative characterization of this goal or even of the intermediate steps
toward it. In a number of international arenas, this topic has been broached
with no definable goal(s) that can be applied universally, although advances
have been made [e.g., Costanza et al. (1997); Stork et al. (1997); Cairns et
al. (1993);Angermeier and Karr (1994); Lindenmayer et al. (2000)]. In most
instances, human society cannot go back to past levels of interactions with
the environment because it cannot be attained (e.g., a nonrenewable natural
resource may no longer be available). In other situations, even when
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restoration is possible, the financial resources might not be available, or the
economic or social stability of the area might be threatened by the change.

It is also necessary to recognize that every resource is not available in
any one place. Therefore, some governments have instituted laws to protect
water and air quality or endangered species and their habitats. These 
regulations typically apply to land owned by the government or to 
federally funded actions. As such, federal agencies are often the leaders in
developing tools for sustainable-management practices. Often, however, the
piecemeal protection of individual resources is not sufficient to retain a
unique and valuable suite of conditions. Thus, areas may be preserved with
the intent of sustaining natural resources, yet critical gaps in protection may
exist. For example, some of the territory required for long-term sustain-
ability of a species (like breeding grounds or winter forage sites) may be in
jeopardy of degradation or change.

Furthermore, in most countries, private lands cover a much larger area
than public lands (Figure 1.1), and few regulations of environmental 
management practices apply to private property.Typically, landowners base
their management on cultural traditions.Yet social, economic, or geographic
realities may restrict options for land use and management so that past
practices are no longer relevant. For example, as nations are split into new
countries, historic lines of commerce may be lost, requiring development of
new ways to relate to the land.This disruption is what happened to the lands
of the Masai in Africa whose traditional territories were divided up into
new countries.

Private landowners typically look to the practices of their neighbors,
government agencies, or nongovernmental organizations (NGOs) for

1. Opportunities for Using Ecological Models for Resource Management 5
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guidelines and advice on how to appropriately manage natural resources.
Yet, the agencies are often so busy that they cannot respond to an owner’s
request in a timely fashion. For example, in the state of Tennessee, there are
more than 300,000 parcels of forest land larger than 15 acres and only 33
state foresters to assist with the management of these lands. The lack of
environmental managers is quite bleak in developing nations. Individual
landowners frequently would like to manage their resources in an ecologi-
cally appropriate way, but lack the information or tools to do so. Thus,
resource owners often turn to other approaches to seek advice on how best
to manage their resources. One of the most effective ways to educate
landowners about sustainable land-use practices is to establish demonstra-
tion projects. For example, in the Brazilian state of Rondônia, the govern-
ment has established farmers who grow a mix of crops and use native
products in a way that can provide long-term support. However, looking at
other examples of environmental management is not always applicable,
because each situation is unique in its environmental conditions, socio-
economic and political constraints, and opportunities for resource extrac-
tion and use.

Ecological models offer a means to quantify definitions of sustainability
and to project the function, composition, and structure of sustainable
systems over space and time. Developing a model requires explicit state-
ment of the goals, inputs, and outputs of concern.The time frame and spatial
boundaries and influences must be chosen. In other words, the management
context and implications must be explicitly discussed and set forth. The act
of determining parameter values and boundary conditions of models is
valuable to the decision-making process. Models also need to be able 
to integrate information from several disciplines to address the specific 
constraints, conditions, and opportunities noted above. These tools need 
to address key resource management concerns, to be usable within the 
cultural traditions and economic and time constraints of the resource
manager, and to be made known and available to potential users. Integrat-
ing models into decision making requires developing flexible tools for 
environmental management and making them available and understand-
able to landowners and resource managers. For such applications, ecologi-
cal models need to be designed up front to meet these diverse needs.
However, applicable and usable models are not always available to resource
managers and, as a result, are not used in many instances in which they
could make a significant contribution to the decision-making process.
Therefore, this book is devoted to an exploration of the development and
application of ecological models for resource management.

One purpose of this book is to bring to the environmental manager’s
attention the diversity of models that can be used in management activi-
ties. Some ecological models require technical data and instruments, such
as remote sensing data or sophisticated computers. Some models build upon
previous information that has been acquired from ecological, historical,
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social, economic, or anthropological analyses. This volume will introduce
the reader to a variety of ecological models that have been successfully
applied to environmental planning. Demonstrations of the uses of some of
these models show the benefits that can be obtained from these types of
tools. The remainder of this chapter explores the different types of models
of environmental resources and sets forth the organization of the book.

1.2 Models

Models are tools that represent essential features of a system so that 
relationships can be analyzed within established boundary conditions.
Modeling may be used to simulate natural conditions and scenarios of
resource use. Analyses of models can be used to examine potential impacts
of a decision. Ecological models are a tool for environmental managers to
enhance understanding of both the complexities and the uniqueness of a
given situation and its response to management or change. Models allow
managers to summarize information on the environment, determine where
gaps exist, extrapolate across the gaps, and simulate various scenarios to
evaluate outcomes of environmental management decisions.

1.2.1 Types of Models
There are at least three types of models: heuristic, physical, and mathe-
matical (Dale and O’Neill 1998). Heuristic models tend to be relatively
simple but capture key relationships of the system. They can be depicted as
pictures, diagrams, words, or mathematical relationships. Sometimes scien-
tists call these “back of the envelope” models because they can be explained
in a small amount of space. Such models are appealing in that they are rel-
atively easy to understand. However, their simplicity may mean that some
of the important interactions in the system are not fully characterized.

Physical models are scaled-down versions of the real world, typically 
constructed in three dimensions, and are sometimes used to show changes
over time (the fourth dimension). Examples are microcosms, wind tunnels
(used to examine aerodynamic properties of airplanes, cars, and seeds), and
aquariums (used in studies of fish population dynamics). One interesting
example is the use of model streams built of fiberglass in which certain
chemicals can be added or the size, shape, and density of substrate 
materials controlled. Stream water is circulated in these models, and the
growth or behavior of fish or invertebrates is observed. The model streams
are designed for monitoring their interior at a height of 1m rather than
ground level of natural streams, which makes the experiments easier to
observe.

Mathematical models describe relationships via numerical formulations.
The chosen equations should appropriately reflect the constraints of the

1. Opportunities for Using Ecological Models for Resource Management 7



question at hand. The assumptions, form, and outcomes of the model need
to be realistic for the situation and clearly communicated to the user. Based
upon his experience in using models in courtroom situations, Swartzman
(1996) points out several elements of a mathematical model that allow
effective communication with decision makers.

• The model must make common sense. For example, a Leslie matrix
model (Leslie 1945) is commonly used to analyze population dynamics but
can project infinite growth. To avoid this unbelievable possibility being 
discussed in the courtroom, Swartzman (1996) introduced a density-
dependent fecundity term into the model.

• A model must be simple enough for the judges, lawyers, and jury
members to understand.

• Jargon must be avoided.
• The model and its projections must be clearly described; simple 

illustrative graphics are helpful.

These lessons are general enough to be applicable to mathematical models
that might be applied to environmental decisions. The act of modeling is
often called an art because there are many ways to express observed 
relationships using mathematics, and it takes experience, expertise, and 
creativity to appropriately capture complex interactions. Because of the
wider use and range of applicability of mathematical models, they are the
focus of this volume.

1.2.2 General Characteristics of Models
Models are a valuable tool for increasing understanding about environ-
mental interactions. They are quantitative and, when run in a deterministic
mode, are repeatable. They are able to integrate known information from
a number of different sources.They can also be adjusted to a desired spatial
and temporal resolution (e.g., a particular locality). However, the sophisti-
cation of numerical models often leads to a false sense of confidence and
may inhibit people from questioning the results. In addition, the use of such
models may be costly, time consuming, or require special expertise. Models
need to be validated by comparing projections to field data or historical
conditions, but such a comparison is not always done and may be infeasi-
ble in some cases. Backcasting and comparing model results to historical
conditions sometimes offers a useful way to validate a model.

The ability to simulate conditions without disturbing the situation makes
models particularly useful. Although the high variability of natural settings
can confound the interpretation of model results, much of the variability
can be controlled in their use, which enhances the potential for model
experiments and the testing of hypotheses.

Ecological models can be applied to a broad range of spatial and 
temporal scales. The specific environmental management issue focuses the
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scale of the question and also the type of model to be used. Environmen-
tal managers often deal with a single ownership, although it is recognized
that actions of adjacent owners must be considered (White et al. 1997) and
that natural boundaries are important.

Temporal scales of ecological models are highly variable. Some models
focus on processes that occur on the order of seconds to minutes while
others consider changes on the time scale of decades, centuries, or millen-
nia. Because most environmental management decisions are considered
over years to decades, this book focuses on models that run over that time
period. However, some ecological impacts are not apparent for many
decades or even centuries, which makes it useful to consider models that
can forecast results for a longer period. In any case, the time scale of a
model needs to relate to the time scale of the management questions and
their implications.

Many ecological models exist, and they deal with all media (land, water,
and air) and associated biota. This volume applies to a diversity of envi-
ronmental situations, but space is available to mention only a small number
of these models. The application of models is also discussed in several
volumes [e.g., Emlen (1989); Barnthouse (1992); Botkin (1992); Stalnaker
(1993); Jorgensen et al. (1996); McKelvey and Hull (1996); Jackson et al.
(2000); Akçakaya (2000); Akçakaya and Sjögren-Gulve (2000); Caswell
(2001)]. These sources should be consulted for further information and
insights. Modeling textbooks [e.g., Swartzman and Kaluzny (1987); Jeffers
(1988); Bossel (1994); Haefner (1996)] provide introductory explanations
of many aspects of ecological modeling. The textbooks are particularly
helpful because of their extensive examples. At present, no one place exists
where environmental managers can access the diversity of models that are
available to address the ecological aspects of environmental management
questions. The purpose of this book is to introduce the ways in which 
ecological models can be used for decision making and to explore ways to
enhance their use.

1.3 The Roots of Modeling for 
Environmental Management

1.3.1 The Beginnings of Ecological Modeling
The roots of ecological modeling for environmental management lie in
attempts to explain human population dynamics. The earliest explorations
of geometric progression provide a way to explain human population
growth (Hutchinson 1978). Recognition that an exponential growth of
people up to the sixteenth century would lead to an unrealistic estimate of
the people on the Earth in the future required rethinking the use of an
uncontrolled exponential growth curve.
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Verhulst (1838) discovered that the leveling of population growth could
be represented by “the logistic equation.” The term “logistic” has a rare
meaning of “calculation by arithmetic,” which may explain the use of the
term. Data from animal populations showed that exponential growth was
not often observed but that an “S” curve of population growth was more
typical (i.e., it could be calculated from the data). But the logistic equation
was not adopted in the analysis of population growth until studies with 
laboratory animals confirmed that a saturation point was typically attained.
Lotka (1924) expanded upon Verhulst’s work with the logistic equation to
come up with the formula that is still in use today.

Volterra (1926) expanded the use of the logistic equation to describe the
populations of competing species and developed the first published case 
of an ecological model being used for resource management. His model
results were applied to explain changes in the proportion of fish in the
Mediterranean Sea that resulted from the suspension of commercial 
fisheries during the war years of 1915 to 1918. Gause subsequently (1934)
provided experimental confirmation of these interactions.

A decade later, Nicholson and Bailey (1935) used finite difference models
to examine parasitism and predation (critical agricultural problems).
Difference models rely on discrete time steps rather than the continuous
time steps of differential equations. Therefore, difference equations are
closer to the data collected at regular intervals by biologists measuring 
population changes. However, the mathematical properties of differential
equations are more easily solved by analytical techniques so they quickly
become more widely accepted. Today, both types of approaches can be
implemented in computer models.

Building upon earlier applications, Hutchinson (1954) constructed math-
ematical models of population regulation to argue for the importance of 
feedback loops, which are integral to resource management. His insistence
on a rigorous approach to ecology led several of his students to invoke 
mathematical techniques. Robert MacArthur added a quantitative analysis
to the field of community ecology in the development of the concept of 
competitive exclusion (MacArthur 1958), which led him to the hypothesis
that competition determines relationships of species occupying the same
area (MacArthur 1960).

At about the same time Leslie (1945, 1948) developed a matrix approach
to examine changes in life stages over time, and that technique eventually
became a common tool in resource management. While working at the
Bureau of Animal Population at Oxford, Leslie used matrix algebra to
express age-specific relationships (Leslie 1945), explore logistic population
growth and predator–prey relations (Leslie 1948), and consider time lags
(Leslie 1959). Lefkovitch (1965) built upon Leslie’s ideas but classified indi-
viduals by development stage rather than age. This stage approach was also
used by Usher (1966) to classify trees. However, these matrix approaches
were not adopted by the broad ecological community for about 25 years.
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Part of the lag in the application of these ideas was the large amount of
computation required.

1.3.2 Development of Computers
The development and application of ecological models are tied to the 
development of computers. Computer availability and flexibility enhanced
the usability of models. For example, Caswell (2001) notes that the lack 
of computational speed hampered the adoption of the matrix models 
introduced by Bernardelli (1941), Lewis (1942), and Leslie (1945). Instead
of those approaches, life-table methods developed at about the same 
time (Birch 1948; Leslie and Park 1949) were more accessible and could
perform most analyses offered by matrix models without the use of 
computers.

The history behind the development of computers goes back for several
centuries. The abacus is an ancient manual arithmetic device first used by
the Chinese to add, subtract, multiply, and divide and to calculate square
roots and cube roots. It consists of a frame with moveable counters.The first
mechanical calculating machine was invented in the 1600s. During the
1830s, the English mathematician Charles Babbage developed the idea of
a mechanical digital computer, but the existing technology was not
advanced enough to provide the precision parts needed, and Babbage was
not able to secure funding to develop the device.

In 1930, Vannevar Bush, an American electrical engineer, built the first
reliable analog computer. Many improvements were made during the next
decades, but it was John Van Neumann’s idea that programs could be coded
as numbers and stored in a computer’s memory that hailed the next major
advance. This idea was used in developing the first stored-program digital
computer built in 1949.

The invention of the transistor in 1947 and related solid-state devices in
the 1950s and 1960s helped produce faster and more reliable computers.
The first computers represented numerical data by analogous physical
magnitudes or electrical signals, whereas later models used binary digits.
The move from analog to digital computers increased the speed of com-
putations. Subsequent miniaturization of computers was based on elec-
tronic advances in the 1960s and 1970s and led to the wider dissemination
of computers. The development of personal computers, the Internet, and
mass-storage devices led to a proliferation of hardware and software 
capabilities that are now basic to many ecological models used for resource
management. Today, computers are available and related to almost all
aspects of business, communication, and education. In fact, children’s games
examine population dynamics in a mathematically sophisticated manner. A
continuing challenge, however, is to include the most up-to-date ecological
understanding and required complexity in models and to get those models
into the hands of resource managers.

1. Opportunities for Using Ecological Models for Resource Management 11



1.3.3 Systems Ecology
The field of systems ecology developed a way to use computers to address
the complexity inherent in ecosystems. The technique also allowed for
mathematical representation of the flow of nutrients, water, and energy,
which were recognized to be a part of natural systems as the concept of
ecosystems began to take hold (Odum 1983). Systems ecology recognizes
the interconnectedness of ecology, and putting the ecological paradigm into
a computer model allows for quantification of these connections. Feedbacks
and lags can be considered. Both linear and nonlinear relationships can be
modeled. Thus, a systems perspective provides for a more holistic analysis
of ecological systems.

With the expansion of computing, there has been an explosion in 
the development and use of ecological models. Today, computers are avail-
able to many resource managers and decision makers, and many types 
of mathematical models contribute to understanding of environmental
management issues. Models are often available to describe ecological inter-
actions or to assess the implications of resource use. Yet deficiencies still
persist in the use by managers of mathematical models to understand or 
to project ecological interactions and effects of resource use. Simply put,
ecological models are not used as often as they could be.This book explores
why this is the case and seeks to remedy the situation.

1.4 Using Model Projections for Environmental
Decision Making

This book focuses on ecological models that are useful for environmental
managers, models that are concerned with the ecological aspects of the
values mentioned above. The models provide a way for managers to make
decisions about resources while incorporating an ecological perspective.
Models help to organize and track information in a way that would not be
possible otherwise.

Mathematical models are particularly useful in cases where field or 
laboratory data are not available, complete, appropriate, or directly appli-
cable to the decision being made. In these cases, results from models often
provide a valuable perspective on alternative decisions. Such model results
may be needed to complement existing information or to relate extant data
to conditions at hand. However, even when extensive data are available,
the complexity of the situation may require a model for interpreting inter-
actions or expanding results to larger spatial scales, longer time scales, or
higher levels of biological organization.

Effectively used, model results do not so much mimic data from the real
world as reveal our current understanding of the environment (Dale and
Van Winkle 1998). They can provide information regarding what the real
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world might and could do, but not necessarily what it will do. Some sort of
validation is useful to determine if the model produces realistic projections.

Model results always contain uncertainties because they are based on (1)
current understanding of interactions and (2) field and laboratory studies.
That is why we call model results projections (i.e., estimates of future 
possibilities) rather than predictions, something that is declared in advance
(Dale and Van Winkle 1998). Great caution is required in basing decisions
solely on model results. Models produce approximations to real situations
and are only as good as the assumptions upon which they are based.
Because these assumptions are typically specific to each situation, caution
must be used in applying a model developed for one circumstance to
another case. The appropriate application of a model has time implications
as well. Thus, a corollary to a dictum often adopted by modelers that
“Reality Is a Special Case” is that “Reality (t) π Reality (t + 1)” (Dale and
Van Winkle 1998). Until information is available to validate a model for the
situation at hand, model results should be considered with caution; they are
the logical extensions of existing data produced via a process that assimi-
lates and applies current understanding.

Current understandings of complex environmental systems, as reflected
in models, will rarely be adequate alone to provide simple answers to 
environmental questions. The caution required in interpreting model 
calculations is illustrated by an example documented by Christensen et al.
(1981) and Barnthouse et al. (1984). Under the scrutiny of legal proceed-
ings, two computer simulation models were developed to determine the
potential impacts of several power plants on fish populations. One model,
emphasizing a particular theory of population dynamics, concluded that
there would be little impact and that changes in the fish population could
be explained by natural factors. The second model, relying on a different
understanding of how fish populations interact with their environment,
concluded that significant impacts would occur. Both models were sub-
jected to intense scrutiny, but the difference in conclusions remained. Such
cases notwithstanding, model projections often remain our best source of
information for extrapolating limited theory and field and laboratory data
to the real-world decision arena.

Although some would argue that models should be used as a crystal ball
to gaze into the future, we think such use of models is an inappropriate goal.
Models should not be believed more than any other scientific hypothesis
(Dale and Van Winkle 1998). “Belief” suggests a faith or trust based on
incomplete information. Instead, models should be used to improve under-
standing or insight about the ecological relationships and management
implications. When the process of modeling inappropriately emphasizes
belief rather than understanding, the failure of a model to predict a specific
reality reflects, in part, unrealistic expectations.

The discussion and examples in this book build upon experiences in
applied ecology, where industries or agencies are looking for models to help
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environmental managers, regulators, and lawyers make decisions and
resolve conflicts. Often, incomplete information must be accepted, and 
decisions must be made with the best available information. In cases where
the scientific evidence is incomplete or contradictory, decisions are often
made without scientific input [e.g., as Wiens (1996) found in the aftermath
of the Exxon Valdez oil spill].

This absence of full information does not imply that there is no scientific
value in developing models in ecology. The process of a group of scientists
collaborating and sharing their expertise to develop a simulation model can
be a worthwhile scientific accomplishment, even if a working computer
code is not completed (as occasionally occurs). Development of a simula-
tion model is an integrative, interactive, and iterative process. Simulation
modeling is a powerful process for the synthesis of data, theories, and 
opinions over scales of space, time, and biological organization. It also is a
process for creating new insights and questions for new experimental
studies. New insights and questions often emerge even when models in
some sense “fail” to meet the expectations of their developers (Aber 1997).
Nevertheless, the ultimate purpose for many models is to use them in 
decision making.

1.5 Organization of Book

The goal of the book is to identify the necessary science and technology
investments and approaches that are required to increase the usefulness of
ecological modeling for management decisions. The primary focus is to
characterize and address the gaps between the state of the art in ecologi-
cal modeling and the state of the practice in using the outcomes of models
as decision aids for management deliberations. The assumptions underlying
this volume are that (1) ecological modeling offers value to those engaged
in the management of public and private lands, (2) the current use of 
models and model results falls short of this potential value, and (3) further
investment will improve the value of ecological models for management
use.

The material in this book is designed to be appropriate for a diverse 
audience who want to learn about how models can be useful for environ-
mental management. Students interested in environmental management
will find this book appropriate for critical evaluation of literature and an
introduction into the diversity of types of models available for environ-
mental management. Managers themselves will find this a useful resource
for evaluating the types of tools that are available and for placing the tools
they use into a broader context. Finally, scientists involved in developing
new methods for environmental management will find this book to be a
useful reference for determining the context of their inquiries and for 
elucidating questions important to address in environmental management.
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This introduction chapter lays out the need for models to address 
environmental management issues. It also discusses how human values and
patterns of resource use influence the need for tools to make appropriate
decisions on how to use the resources. It provides an overview of the 
history of modeling for resource management and sets the stage for the
diversity of models and approaches that are discussed in the subsequent
chapters.

The next three chapters present examples of successful applications of
models in very different fields:

• Models of endangered species, with wolf as a case study
• Ecological modeling as a component of an ecological-risk-assessment

process with impacts of entrainment and impingement on fish popula-
tions as an example

• Large-scale regional assessments as a class of models that uses a variety
of approaches ranging from geographic information system (GIS) to
landscape to economic models to examine the impacts of decisions, with
the case study focusing on the Southern Appalachian Assessment

Each of these “success stories” addresses some common questions. How
does the modeling effort appear to be a success? What aspects make this 
a success and what aspects do not? Together, these examples provide a
description of diverse ways that models can contribute to environmental
management.

The following section of the book presents five sets of paired chapters.
The first chapter in each set presents future challenges in the use of models
for environmental management, and the second chapter discusses ways to
meet the challenges. Although there is some overlap between the questions
and issues for each pair of chapters, this framework provides information
that is useful for the environmental managers as well as for those who
develop models. The five topics are:

• Barriers to the use of models in decision making—Questions here
include: What enhances or retards effective communication between 
modelers and decision makers? The pair of chapters evaluates oppor-
tunities and constraints in technology, bureaucracy, language, and cul-
tures of science versus management. The chapters consider the type of
information in models and what sort of model outputs communicate
information most pertinent to decision makers.

• Evolving approaches and technologies that will enhance the role of 
ecological modeling in decision making—How can models take advan-
tage of evolving technology to enhance the effective use of ecological
modeling in management? The pair of chapters discusses the stream of
information from data collection to models and then to managers and
how technology can be used to enhance flow. They consider the spatial
and temporal scales at which data needs are addressed and how data col-
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lection influences the type of questions that can be addressed. They
provide an impetus for the development of certain kinds of technologies.

• Data issues—This topic considers how information is collected and
what kind of information (at what scale of temporal or spatial resolu-
tion) is needed to go into models, what type of information is output
from models, how it is communicated to decision makers, how the deci-
sion makers use the information, and what type of information is
important to them. These chapters discuss the flow of information all
the way from the field situation to how it is used by managers. They
also evaluate the ways in which uncertainties and variation are con-
sidered at various stages in the process. The topic has some overlap
with the toolkit discussion, for toolkits are one way in which models
can improve the flow of information.

• The toolkit concept—This pair of chapters considers how a set of 
modeling tools might be pooled to facilitate the use of ecological models
for management.It discusses such concepts as how modules are built and
combined,how visualization tools can aid understanding and expression,
and what kind of information should go into a toolkit. It also evaluates
how models are combined in a meaningful way, for the toolkit approach
has implications for the types of science questions that can be addressed.

• Science and management investments needed to enhance the use of 
ecological modeling and decision making—Where is science investment
needed to enhance the use of ecological modeling in management? This
pair of chapters evaluates the current state of the science and what kinds
of scientific questions are important to address in a modeling framework
in order for models to be more useful for management. It also addresses
how the current and future availability of tools could change the sort of
science that is possible to be addressed in ecological modeling. It con-
siders science investment in terms of experiments, data collection, tools,
and what questions need to be addressed.

The last section of the book deals with the future use of models for 
environmental management. In one chapter, models are discussed as a key
component in providing environmental security for the United States and
the world.The final chapter examines the challenges for the future and what
the next steps may be in model development. It also reviews some of the
questions that existing models are not able to address and other limitations
of current models.

Together, these chapters provide an understanding of the need, basis, and
history of ecological models used for resource management and discuss how
different models can contribute to a better understanding of the effects of
ecological interactions on environmental use and management. It is our
hope that this discussion of the modeling process will increase the use 
of models in environmental management and facilitate the discussions
between analysts and decision makers. The ultimate goal, of course, is that
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wiser decisions are made that will help to maintain the sustainability of 
ecological resources.
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2.1 Introduction

The Federal Endangered Species Act is intended to conserve endangered
and threatened species and their habitats and to improve the species’ status
so that they no longer need protection under the Act. In the process of 
planning the recovery of threatened or endangered species, the U.S.
Fish and Wildlife Service increasingly uses demographic models to predict
population growth and risk of extinction, investigate the factors respon-
sible for species endangerment, and examine the relative effectiveness 
of alternative management options for species recovery. Demographic
models range from simple matrix models for estimating population change
(Getz and Haight 1989) to complex, spatially explicit, individual-based
models of population dynamics (Dunning et al. 1995). Such models require
at a minimum an understanding of the age, stage, and social structure of the
population and estimates of reproductive success and survivorship for 
different life stages. The purpose of this chapter is to describe an example
of the construction of a demographic model with application to questions
associated with the recovery and management of the endangered gray 
wolf (Canis lupus)population in the western Great Lakes region of the
United States.

The most common use of demographic models in recovery planning is
the prediction of long-term, range-wide extinction risks, a process called
population viability analysis (PVA) [see Boyce (1992a) and Beissinger and
Westphal (1998) for review].An endangered-species recovery plan contains
criteria for recovery (i.e., delisting) and reclassification (i.e., change from
endangered to threatened status) that specify goals for the size, distribu-
tion, and other attributes of the population. The results of a PVA inform
recovery planners who set the population goals. For example, Kelly et al.
(1999) and Ellis et al. (1999) describe applications of commercial PVA 
software in recovery planning for the endangered red wolf (Canis rufus)
and Florida panther (Felis concolor coryi) in the southern United States. In
other cases, such as the endangered piping plover (Charadrius melodus)



(U.S. Department of the Interior 1996), custom models have been built to
predict population trends and to help establish recovery targets.

Demographic models have also been developed to address specific 
questions about the management of an endangered species that arise 
during the implementation of the recovery plan. These questions usually
relate to potential threats, such as habitat destruction or any other natural
or man-made factor that might affect the continued existence of the species.
For example, Lamberson et al. (1994) analyzed the impacts of habitat patch
size and spacing on population viability and thereby helped direct the
design of forest reserves for the endangered Northern spotted owl (Strix
occidentalis caurina).

The modeling projects in this chapter address specific management ques-
tions that were raised during the recovery of the gray wolf. The questions
involved predicting the impacts of human-caused mortality, changing
regional environmental conditions, and disturbance on the persistence of
small wolf populations. In addition, the questions involved predicting the
relative performance of different strategies for controlling wolf popula-
tions. Our approach involved constructing a relatively simple population
model that was consistent with the current level of understanding of wolf
dynamics and was customized to address specific management questions.
Our model included the basic processes of wolf demography (birth,
survival, and dispersal) and the social structure of a wolf population. We
used the model to simulate population impacts of changes in demographic
parameters, and we used model predictions to infer how changes in man-
agement activities and environmental processes might affect wolf popula-
tions. While we used the same basic population model for all the projects,
we modified the model and developed distinct simulation experiments to
address each question separately. Our approach differs from other gray wolf
modeling projects, such as long-term PVA using commercial software [e.g.,
Rolley et al. (1999); Kelly et al. (1999); Ewins et al. (2000)] and analytical
wolf-prey models [e.g., Walters et al. (1981); Boyce (1992b)], which do not
address the population effects of wolf social structure.

2.2 Wolf Biology and Recovery Status

Wolves live in packs and defend exclusive territories (Mech 1970).
Generally, packs are family groups consisting of one dominant breeding
pair and their offspring (Mech 1970). In the western Great Lakes region,
midwinter pack size averages 4 to 8 wolves, about half of which are pups
(Fuller 1989). Because of territoriality, regional population density and
reproductive rate depend on the number and size of territories. Wolves are
not habitat specific, instead they can live wherever they find enough to eat
(primarily ungulates), provided killing by humans or disease is not exces-
sive (Fuller 1995; Mech 1995). Population turnover rates are naturally high,
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with six pups born per pack and more than half of pack members 
lost to mortality and dispersal each year (Mech 1970; Cochrane 2000). A
dispersing wolf may pair with one of the opposite sex and colonize a 
vacant territory or may join another pack and replace a missing breeding
member (Mech 1970; Rothman and Mech 1979). A wolf population can
cover thousands of square kilometers with several independent but inter-
acting packs. In the western Great Lakes region (Minnesota, Wisconsin,
and Michigan), midwinter pack territories average 150 to 180km2 (Fuller
et al. 1992). Range expansion is facilitated by great variation in dis-
persal behavior: some wolves establish territories and mate near their 
natal territories, whereas others move long distances (Gese and Mech
1991).

Although gray wolves once lived throughout the Lake States, European
settlers nearly eliminated wolves through intensive, unregulated exploita-
tion. By 1960, wolves were limited to the wilderness of northeastern 
Minnesota, contiguous to a large Canadian wolf population, and Isle 
Royale in Lake Superior (Mech 1970). Following protection under the U.S.
Endangered Species Act in 1973, wolf numbers and range in the Great
Lakes region increased. Yet in the core wilderness range within the Supe-
rior National Forest, Minnesota, precipitous local extirpation of white-
tailed deer (Odocoileus virginianus) caused a sharp decline in wolf numbers
in the 1970s until the remaining wolves switched to hunting less numerous
moose (Alces alces) (Mech 1986). The wolf decline was thought to be
spreading westward into Voyageurs National Park in the mid-1980s (Gogan
et al. 2000).Thus, while wolves were generally faring well by the 1980s, their
long-term persistence was still not certain throughout the western Great
Lakes region.

After determining that most wolf mortality near Voyageurs Park was
caused by humans, either accidentally or by deliberate illegal killing, biol-
ogists raised concerns about recreational disturbance impacts on the park’s
wolves. Interagency consultation with the U.S. Fish and Wildlife Service on
park development proposals in 1992 led to stipulations for a cumulative
effects model to assess the long-term fate of wolves in the park (Cochrane
2000). At the same time, wolves had moved into the largely forested region
of northern Wisconsin, but their fate was uncertain because they had 
colonized isolated areas with relatively low road densities within a human-
dominated landscape. To meet recovery goals in Wisconsin and Michigan’s
Upper Peninsula, wolves would have to be able to survive in nonwilderness
conditions. Modeling was seen as a useful approach to explore wolf viabil-
ity in human-dominated landscapes (Haight et al. 1998).

By the late 1990s, the picture for wolves was much more favorable, with
their range covering most of northern Minnesota, northern Wisconsin,
and upper Michigan (Figure 2.1). In 2000, the population in Minnesota
exceeded 2400 wolves (W.E. Berg and S. Benson, Minnesota Department
of Natural Resources, personal communication, 2000), and the populations
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in Wisconsin and Michigan each exceeded 200 wolves (U.S. Department of
the Interior 2000). The great increases in wolf numbers and range raised
new issues about controlling negative impacts from wolves, including depre-
dation on livestock and pets, which could be explored through modeling
(Haight and Mech 1997).

Because of the growth and recovery of wolf populations in the Lake
States, the U.S. Fish and Wildlife Service has proposed reclassifying the gray
wolf from endangered to threatened in the western Great Lakes region.
Full removal of this population from the federal list of endangered and
threatened species is expected to follow within a few years. When the gray
wolf is delisted, responsibility for wolf management will be transferred from
the federal government to the states. To facilitate federal delisting and 
to guide state governments as they prepare to assume wolf management
responsibilities, state agencies developed management plans with the
primary goal of ensuring the long-term survival of the wolf while address-
ing concerns about wolf range expansion into agricultural areas and animal
damage control. The modeling projects we describe addressed specific 
questions about managing wolves during the recovery process.
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Figure 2.1. Shaded areas show the approximate range of gray wolves in Minnesota,
Wisconsin, and Michigan in the year 2000.



2.3 Case Studies

During the period of wolf recovery in the 1990s, we worked with decision
makers and biologists to define and address five wolf management ques-
tions, in this order:

1. What conditions support or hinder the persistence of disjunct wolf popu-
lations in human-dominated landscapes (e.g., newly colonized habitats
in Wisconsin)?

2. What are the cumulative effects of regional environmental conditions
and human-caused mortality on wolf population size in a small park 
(e.g., Voyageurs National Park)?

3. How much disturbance does it take to cause reductions in a small wolf
population?

4. Is vasectomy a practical alternative for controlling or reducing the size
of a disjunct wolf population?

5. What wolf removal strategies are most effective and efficient for reduc-
ing wolf depredation on livestock?

Our management questions involved predicting the impacts of human-
caused mortality, regional environmental conditions, and disturbance on 
the persistence of wolf populations. In addition, the management questions
involved predicting the relative performance of different strategies for 
controlling wolf population size and depredation. We decided not to model
these environmental processes and control strategies directly. Rather, we
made a demographic model of wolf population dynamics and made assump-
tions about how these environmental processes and control strategies
affected the birth, survival, and dispersal of wolves. Then, we used 
the model to investigate the population impacts of changes in these demo-
graphic parameters. Finally, we interpreted the model results as inferences
of the population impacts of the environmental processes and control
strategies.

We constructed the wolf population model to represent key elements of
wolf demography and social organization. Because wolves live in packs and
defend territories, we decided to represent a wolf population as a collec-
tion of packs and to model the demography of each pack. Within a pack,
only one female breeds each year, and mortality rates are age dependent.
Furthermore, we were interested in the population impacts of human activi-
ties that affected breeding.Thus, we decided to use a stage-structured model
that kept track of the age, sex, and breeding status of wolves in each pack.
Juvenile and adult wolves disperse from natal packs in search of mates and
territories. Because of the great variation in dispersal behavior, we decided
to use a random dispersal process and did not represent territories as spe-
cific shapes on an actual landscape.
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In the sections below, we first describe the structure and parameters 
of the wolf population model and then describe its application to the 
management questions.

2.3.1 A Gray Wolf Population Model
We developed a demographic, stage-structured, stochastic simulation model
of wolf dynamics. The model was designed to simulate a wolf population
living in a human-dominated landscape with abundant, well-distributed
prey. The landscape was bounded by the assumption that it could support
a maximum of 64 pack territories. Each territory was classified based on 
the dominant land use (e.g., agriculture or wilderness). The number of 
territories and the land-use classifications varied with the objectives of the
application.

To simulate wolf life history, we created a stage-class model for the
dynamics of each pack.The model used stochastic difference equations with
a 1-year time step to simulate the mortality, dispersal, and birth of wolves
and the fate of dispersing wolves. Detailed lists of model assumptions and
demographic parameter values are given in specific applications in Haight
and Mech (1997), Haight et al. (1998), and Cochrane (2000). For illustra-
tion, we describe the parameter values used to predict the performance of
alternative wolf removal strategies for population size control (see Section
2.3.6). These parameter values represent 5- to 10-year averages of obser-
vations in north central Minnesota (Fuller 1989) and Wisconsin (Wydeven
et al. 1995).

Each pack was characterized by the number of wolves of each sex in each
of four stages, which were defined based on age and breeding status. Three
age classes for nonbreeding wolves were pup (0 to 12 months), yearling 
(12 to 24 months), and adult (>24 months). The fourth stage was defined
for the breeding pair, each of which must be at least 12 months old by 
the first of May. Because breeding was assumed to take place in March, the
minimum breeding age was 22 months.

The annual cycle of events (Figure 2.2) began in autumn with the tally 
of population attributes, including population size and the number of 
packs. The first demographic event was mortality in autumn and winter,
which represented losses from natural and human (accidental and illegal) 
causes. The number of wolves that died in each life-history stage was 
a binomial random variable with a mean that depended on wolf age.
Pups were subject to a 65% mortality rate, while yearlings and adults had
a 32% mortality rate. In other applications, the age-dependent mortal-
ity rates varied from pack to pack, depending on the land-use class (e.g.,
adult mortality rates were lower in packs in wilderness areas compared 
with packs in agricultural areas because there was less human-caused 
mortality).
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Dispersal took place in late winter and depended on the survival of the
breeding pair. If the breeding pair died, remaining pack members dispersed.
If one or both breeders were present, the number of dispersers from each
age class was a binomial random variable. Dispersal probabilities for pups,
yearlings, and nonbreeding adults were 25, 50, and 90%, respectively, so that
most nonbreeding wolves dispersed before reaching 4 years old (Gese 
and Mech 1991). We assumed that 20% of the dispersing wolves were 
long-distance dispersers that immediately emigrated from the area and thus
were lost from the population, based on studies demonstrating this type of
rapid, long-distance dispersal behavior in Minnesota wolves (Gese and
Mech 1991).

Each remaining disperser searched the area for a suitable site, which was
defined as a vacant site or a site with an available mate. Wolves could only
settle into territories by mating or becoming a territory-holding, available
breeder. To account for immigration from a population outside the area,
we assumed that six outside wolves joined this pool of dispersing wolves 
in the search for suitable sites. Each dispersing wolf and immigrant was
assumed to sample six territories at random with replacement [see Lande
(1987) and Lamberson et al. (1994) for other applications of this kind of
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search model]. The implication of this assumption was that spatial coordi-
nates and shapes of pack territories were not included. The probability of
finding a suitable site was one minus the probability of failing to find a suit-
able site within six trials:

where P is the probability of success, S is the number of suitable sites, T is
the total number of sites, and N is the number of trials.

A uniformly distributed random number was drawn for each dispersing
wolf and compared with the probability of success. A successful wolf was
randomly assigned to a site with an available mate, and if no mate was avail-
able, to a vacant site. An unsuccessful wolf was assumed to be lost from 
the population (e.g., the wolf died or emigrated). Thus, whether or not dis-
persing wolves settled into a territory and remained in the population
depended on the number of suitable sites.

A new litter of pups was born in spring if a breeding pair was present.
Litter size was chosen from a discrete probability distribution with a mean
of 6.5 pups and a range of 0 to 10 pups (Fuller 1989). The sex of each pup
was a Bernoulli trial with equal probability. If there was only one member
of the breeding pair present, the wolf held its territory but did not produce
a litter. Nonbreeding pack members could not mate without first dispers-
ing from their natal pack. Recent evidence suggested that parent–offspring
or sibling mating rarely, if ever, occurs (Smith et al. 1997).

Summer pup mortality was modeled as a binomial random variable with
a mean depending on the modeled scenario, such as incidence of disease 
or prey biomass available. Instead of defining a separate process for the
summer mortality of older wolves, we assumed that any older wolves that
died in the summer were accounted for in the winter mortality process,
which was based on annual mortality rates.

Following birth and summer pup mortality, the age distribution of each
pack was updated, and population statistics were tallied, representing a
typical autumn population census. The number of wolves by life stage of
each pack was used as the basis of the next annual cycle.

Using the demographic parameters described above, we tested the model
by comparing the growth rate of a simulated colonizing population with 
the actual recolonization of wolves in northern Wisconsin. The Wisconsin 
population grew from an estimated 34 wolves in 1990 to 248 wolves in 2000,
an average annual growth rate of 22% (U.S. Department of the Interior
2000). The simulated population started with 40 wolves in 4 packs and grew
to 244 wolves in 38 packs in 10 years, an average annual growth rate of 20%.

We also checked the model’s prediction of the relationship between 
population growth and mortality (Haight et al. 1998). The rates of popula-
tion growth and mortality observed over 5 to 10 years have been compiled
from wolf population studies throughout North America (Fuller 1989) and
show a strong negative correlation. Using a colonizing population of 40

P 1 1 S T N= − −( )[ ]∧
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wolves in 4 packs, we simulated the 5-year population growth under dif-
ferent adult mortality rates (10 to 50%). The rates of population growth
were negatively correlated with mortality and suggested that population
size stabilized with a mortality rate of about 35%, similar to the conclusion
of Fuller (1989) based on field studies. Additional model tests and sen-
sitivity analyses are reported in Cochrane (2000).

The software for the wolf simulation model was written by and is avail-
able from the two senior authors. Versions of the source code were written
in FORTRAN and Visual BASIC. The applications were performed on an
IBM300PL and other personal computers. We have used this type of model
for other social carnivores, including the San Joaquin kit fox (Vulpes 
macrotis mutica) in California (Haight et al. 2002) and the African lion
(Panthera leo) (Starfield et al. 1981). Population models with similar terri-
torial and dispersal mechanisms were used for northern spotted owl (Strix
occidentalis caurina) recovery planning (Lande 1987; Lamberson et al.
1994).

2.3.2 Persistence of Wolves in 
Human-Dominated Landscapes
Following protection under the Endangered Species Act in 1973, wolves
from northeastern Minnesota recolonized most of northern Minnesota and
parts of northern Wisconsin and northern Michigan (see Figure 2.1). The
landscape in this range was not wilderness but a mosaic of forest, agricul-
tural, and developed land under a variety of public and private ownerships
(Mladenoff et al. 1995). Logging and agriculture had created extensive areas
of young forest that supported large populations of white-tailed deer, the
preferred prey of wolves in this region. Colonizing wolves first settled in
forested areas with few roads and little human settlement. Later, wolves
settled in forested areas with higher road and human population densities
(Fuller et al. 1992). The wolf populations in Wisconsin and Michigan were
separated from the larger source population in northern Minnesota by large
areas of less-favorable habitat and Lake Superior. Further, much of the wolf
mortality was human caused, whether intentional, accidental, or indirectly
caused through the transmission of disease from domestic dogs (Fuller 
et al. 1992).

Because the management objectives of state agencies included protec-
tion of colonizing wolf populations, the agencies wanted to predict the fates
of small, disjunct populations under alternative assumptions about human-
caused mortality.To address this question, Haight et al. (1998) used the wolf
model to simulate a hypothetical disjunct wolf population. The model
assumed a maximum of 16 wolf territories divided into core and peripheral
ranges. The average annual mortality rate in the core range was 20%,
whereas the mortality rate in the peripheral range was higher (40%)
because of human-caused deaths. Haight et al. (1998) conducted a set of
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simulation experiments in which they varied the proportion of the 16 
territories in core and peripheral ranges and observed the 50-year occu-
pancy of that range by wolf packs. In the sensitivity analysis, they repeated
this set of experiments under different assumptions about pup and 
dispersal mortality and immigration.

These sets of simulations supported a favorable outlook for the survival
of small, disjunct wolf populations like those in northern Wisconsin and
Michigan. The results showed that the level of occupancy increased as the
number of core sites and immigrants increased. With pup and dispersal 
mortality rates that were consistent with disease-free and legally protected
populations, the model predicted that wolves would saturate a cluster of 
16 territories with as few as two core, low-mortality sites, regardless of immi-
gration rates. When pup and dispersal mortality rates were high, as few as
two immigrants per year helped maintain site occupancy in clusters with
four or more core sites.

These simulation results were consistent with observations of disjunct
wolf populations in the United States and Canada (Fritts and Carbyn 1995).
For example, during the past 60 years, a population of 40 to 120 wolves has
lived in and around Canada’s Riding Mountain National Park (3,000km2).
The park is surrounded by agricultural land, and the nearest wolf popula-
tion is 45km away. The population survived even though many of the packs
were vulnerable to human exploitation along the park boundary. Based on
empirical evidence and simulation results, Haight et al. (1998) concluded
that wolves can survive and thrive in networks of disjunct populations,
provided that they are linked by dispersal, human persecution is not exces-
sive, and prey are abundant. Further, they concluded that, with continued
protection from deliberate killing, wolf range will expand in human-
dominated landscapes where prey are abundant. These predictions were
incorporated into wolf recovery and management plans written by state
agencies. The results also raised questions about the need for population
control, especially where wolf presence conflicts with other valued land
uses.

2.3.3 External Threats to Gray Wolves at Voyageurs
National Park
Voyageurs National Park is a small (882km2) reserve of boreal and mixed-
deciduous forests and numerous lakes in the heart of wolf range on 
Minnesota’s Canadian border. In the 1990s, park biologists were concerned
that high levels of human-caused mortality among wolves immediately 
surrounding the park could combine with changing prey densities and
disease incidence to reduce or even threaten park wolves. Following inter-
agency consultations to evaluate the impacts of proposed park recreation
development, park biologists commissioned use of a cumulative effect
model to address their concerns. Rather than build the comprehensive,
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habitat-based model envisioned by park biologists, Cochrane (2000) used
the demographic wolf population model to predict the relative effects of
four environmental factors (prey availability, human-caused mortality,
immigration, and disease mortality) on the persistence of wolves in the
park.

To predict the relative impacts, Cochrane (2000) employed a full-
factorial experimental design with the four environmental factors at 
five levels each. The wolf population in the model was assumed to occupy 
a maximum of 15 territories, 3 inside the park and 12 surrounding the park.
The response variable was the likelihood that wolf population size inside 
the park fell below specified thresholds in any year before the 30-year time
horizon. Ten response variables were measured with population sizes from 
0 to 18 wolves in increments of 2. The level for each primary environmental
factor was specified in terms of the levels of one or more demographic para-
meters in the simulation model.The level of prey availability affected mean
litter size and the rates of dispersal and winter mortality; human-caused 
mortality affected the rate of winter mortality in territories outside the 
park; and disease mortality affected the rate of summer pup mortality. The
levels of immigration were 0 to 24 immigrants per year in increments of 6.

The results of this factorial analysis (Figure 2.3) suggested that disease
mortality is the most important factor affecting whether or not the park
wolf population would remain near its initial population size. Immigration
had the most impact on the likelihood that the wolf population in the park
would fall below a threshold of seven wolves. Human-caused mortality in
wolf territories outside the park had little effect on the number of wolves
in the park, except when the population was already very small under
extreme conditions of no immigration, very low prey biomass, and high
disease mortality. While changes in the demographic parameters associated
with alternative levels of prey availability had little effect on wolf popula-
tion size, prey availability had stronger effects in experiments where prey
determined territory spacing or sizes (results not shown). Thus, prey avail-
ability within foreseeable ranges had an effect on total wolf numbers
(through the number of territories that can “fit” within the small park) but
very little relationship with the likelihood of extirpation. It was easier to
maintain breeding pairs rather than a large population in the park, and
these breeding pairs were highly resilient to extirpation because of the
readily available pool of replacement breeders.

The results of this factorial analysis helped ameliorate concerns about
human-caused mortality of wolves outside the park while focusing new
attention on the spread of disease from dogs to wolves. In addition, the
model results indicated which environmental conditions would likely
enhance the security of the population. Those environmental conditions,
which supported the population’s reproductive capacity more than a 
constant, large population size, could be monitored in lieu of intensive 
wolf population sampling or trend interpretation.
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2.3.4 Disturbance Effects on Gray Wolves inside
Voyageurs National Park
In addition to human-caused mortality of wolves outside Voyageurs
National Park, biologists were concerned about the impact of humans on 
the behavior of wolves inside the park. For example, when disturbed by
humans, wolves sometimes move pups to alternative den sites and tem-
porarily ignore prey. While examples of these responses to humans have
been observed in protected areas, their frequency and impact on wolf
demography at this park are not known. Cochrane (2000) used the wolf 
population model to investigate how altered behavior of individual wolves
or packs, expressed as temporary changes in the demographic parameters 
in the population model, might affect the persistence of wolves in the park.
The purpose was to provide park biologists with guidance on the magnitude
and frequency of disturbance events that could affect wolf population size.

To predict the relative impacts of different types of disturbances,
Cochrane (2000) simulated a wolf population that was assumed to occupy
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a maximum of 15 territories, 3 inside the park and 12 surrounding the park.
The demographic parameters represented current regional conditions for
prey biomass, human-caused mortality, wolf disease, and immigration.

Cochrane (2000) defined 125 disturbance scenarios based on type of 
disturbance event and frequency of occurrence within the park. The five
types of disturbance events were loss of one, two, and three wolves; loss of
an entire litter; and displacement of an entire pack from its territory. The
25 frequency classes had average intervals between events from 1 to 100
years. Each disturbance scenario was simulated 1000 times, and the
response variables were the average size of the wolf population in the 
park after 30 years and the likelihood of falling below population-size
thresholds, as in the previous study.

The disturbance events had little effect on population size when the
number of years between events averaged 6 years or more (Figure 2.4).
When disturbances occurred with an average return interval of less than 
6 years, scenarios involving losses of litters resulted in the smallest wolf 
populations. The results in Figure 2.4 can be used to inform the develop-
ment of management guidelines for controlling disturbance events. For
example, to obtain a population of at least 24 wolves after 30 years, a litter
of pups cannot be lost more often than once every 6 years. The results in
Figure 2.4 are projections of average responses to simulated disturbance
events under current conditions, and we explained to park managers that
they should not expect to see such a specific or precise impact, given the
diverse factors affecting park wolves at any time.
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These modeling results must be linked to field research to resolve what
human activities cause the kinds and frequencies of disturbance that we
considered. Generally, if the primary management goal is maintaining wolf
numbers, then management actions should focus on protecting the integrity
of territories for sustainable use by breeding pairs rather than protecting
individual animals from human harassment. This quantitative analysis did
not address alternative and largely implicit goals of protecting wolves from
any behavioral changes caused by human disturbance or displacement
within a natural ecosystem (e.g., Forbes and Theberge 1996).

2.3.5 Vasectomy for Wolf Control
In the late 1990s, recovering wolf populations in Minnesota, Wisconsin, and
Michigan prompted state management agencies to consider strategies to
control wolf population growth. Population control may be necessary where
wolves colonize areas close to human settlement and conflict with other
valued land uses. Because killing wolves to control population size is not
acceptable to many people, vasectomy was proposed as a nonlethal control
strategy that might have wider public acceptance.

Vasectomy involves sterilizing a male wolf in the field with chemical 
sclerosing agents to harden and block the sperm tract without affecting 
hormones. The primary reason that vasectomy might be practical for con-
trolling wolves is that single pairs of adult wolves occupy large territories
(150 to 180km2 in the western Great Lakes region) and thus control the
number of offspring over a large area for 5 years or more. Pairs that fail to
produce young because of vasectomies or natural reasons may continue to
hold territories for years (Hayes 1995; Mech et al. 1996). Thus, by steriliz-
ing the breeding male in a territory, theoretically a manager could restrict
the number of wolves in that large area for years.

To evaluate and compare wolf control strategies, Haight and Mech (1997)
used the wolf population model to predict the effects of both vasectomy
and removal on the trends of a small, disjunct population. The hypotheti-
cal population occupied a landscape composed of a maximum of 16 wolf
territories equally divided between core (20% annual mortality rate) and
peripheral (35% annual mortality rate) ranges. The wolf management
strategies included periodic sterilization of all breeding males, sterilization
of fertile males caught in a random-trapping design, and various wolf
removal designs. Of particular interest was the effect of immigration from
neighboring unmanaged populations on the performance of the strategies
in the managed population.

Simulations suggested that the effects of wolf vasectomy in a small,
disjunct population are strongly related to the level of annual immigration.
With low immigration, periodic sterilization reduced pup production and
resulted in lower rates of territory recolonization. Consequently, average
pack size, number of packs, and population size were significantly less than
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those for an untreated population. With high immigration, periodic steril-
ization reduced pup production, but not territory recolonization and,
therefore, resulted in only moderate reductions in population size relative
to the untreated population. While periodic wolf removal produced the
same population size trends as sterilization, more than twice as many wolves
had to be removed than sterilized.

While sterilizing free-ranging wolves for population control has never
been attempted, the simulation results of Haight and Mech (1997) sug-
gested that for small, disjunct wolf populations, such as those that inhabit
much of Wisconsin, Michigan, and central Minnesota, vasectomy may be a
practical, cost-effective method of controlling wolf numbers. The method
would require handling fewer wolves than would lethal trapping, although
sterilizing captured wolves would require more highly trained workers.

Whether vasectomy would be effective or practical in larger populations
is unknown. The simulation results of Haight and Mech (1997) suggested
that, when turnover in breeding tenure is high, vasectomy is less effective.
However, lethal methods would also be less effective in such populations.
Thus, experimentally comparing sterilization and lethal control appears to
be worth trying even in larger populations.

2.3.6 Wolf Removal Strategies for Animal 
Damage Control
Wolf management planners in Minnesota, Wisconsin, and Michigan must
develop strategies that balance competing demands for wolf protection and
animal damage control. As wolf populations in these states increased in the
1990s, wolf range expanded into areas with farms and livestock, and wolf
depredations on livestock and domestic animals increased. For example,
from 1979 to 1988, an average of 26 Minnesota farms were affected, and 32
wolves were destroyed annually; from 1989 to 1998, an average of 66 farms
were affected, and 126 wolves were destroyed each year (Mech 1998).
As a result, many farmers and rural residents expressed concern about
expanded wolf range and increased animal damage, calling for popula-
tion controls or sport harvest seasons. At the same time, wolf protection 
advocates argued that depredation control should continue as a govern-
ment program but without a general harvest or limitations on wolf range
and population expansion.

Given these conflicting demands for wolf management in agricultural
regions, we used the wolf population model to evaluate and compare the
performance of three types of wolf removal strategies that were considered
by state management agencies as candidates to balance those demands.
The removal strategies included reactive management, in which wolves
were removed from territories following recent depredation; preemptive
management, in which wolves were removed from territories in which
depredation had occurred in 1 or more of the previous 5 years; and 
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population control, in which wolves were removed from all territories 
overlapping livestock production areas regardless of the depredation
history. We simulated a hypothetical 64-pack wolf population living in 
a landscape composed of equal proportions of farm and wild areas. The 
simulations were used to predict the relative performance of the three
strategies taken alone and in combination.The model predicted the number
of wolf depredations on livestock and the number of wolves removed out
to a 20-year horizon.

The most significant result was that, compared with no action, each
removal strategy alone cut depredation in half (Figure 2.5). Depredations
were reduced because each strategy focused on wolf removal in territories
overlapping farms. As a result, many farm territories were free of wolves
during the spring and summer, when depredation occurs. While wolf
removal focused on farm territories, wolves were not removed from wild
areas within the simulated region. As a result, the population was never 
in danger of extirpation. The number of removals varied greatly among
strategies and depended on the timing of removals. Under preemptive man-
agement, wolves were trapped and removed in winter before pups were
born. As a result, preemptive management removed far fewer wolves than
reactive removals or population control in which wolves were trapped 
and removed after pups were born (see Figure 2.5). Further reductions in
depredation were obtained by using two removal strategies each year,
which increased the number of farm territories that were free of wolves. If
the cost of wolf removal is proportional to the number of wolves removed,
the simulation results suggest that preemptive removal of wolves from farm
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territories in winter is a more cost-effective way to reduce depredations
than reactive or population control strategies.

2.4 Lessons Learned

In planning the recovery of an endangered species, models are typically
used to estimate the likelihood of extinction and to set minimum viable
population sizes for recovery targets. However, as demonstrated by our
applications to wolf recovery, models can also be used to address various
management questions that arise during the implementation of the re-
covery plan. In our studies, the management questions involved predicting
the potential impacts of human-caused mortality, regional environmental
conditions (external threats), and disturbance on the persistence of wolf
populations. In addition, the management questions involved predicting the
relative performance of different strategies for controlling wolf population
size and depredation.As a result of these applications, we learned a number
of lessons about management-oriented modeling (Table 2.1). Many of these
lessons are consistent with pragmatic guidelines that have been proposed
for interdisciplinary modeling projects (Starfield 1997; Nicolson et al.
2002).

A measure of a modeling project’s success is the degree to which the
results are considered in the development of resource management policy.
We found that working in teams that included both expert biologists and
managers (Rule No. 1) and carefully defining the management questions
(Rule No. 2) was absolutely necessary to fulfill this measure of success.
When we involved expert biologists and managers in each phase of model
construction and evaluation, the simulation results comparing management
strategies and predicting relative effects of environmental factors were
credible and informative. Furthermore, by carefully delimiting the man-
agement questions, we could better decide and defend which details of 
wolf demography and behavior were important to include in the model
(Rule No. 7).

Our partners understood that the purpose of our modeling exercises was
to predict the relative effects of alternative management strategies or 
different environmental scenarios. Framing our simulation results in rela-
tive terms helped our teams gain insights about the management problems,
which was more useful and reliable than attempting to predict popula-
tion attributes precisely under uncertain future conditions (Rule No. 3).
Thorough sensitivity analyses were then used to determine how robust the
rankings of performance or effects were to changes in uncertain parame-
ters of wolf demography (Rule No. 11). This approach is consistent with an
emerging consensus among people involved in endangered-species man-
agement that demographic models should be used cautiously in population
viability analysis because of concerns about the accuracy of predictions
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Table 2.1. Heuristics of pragmatic modeling to support management planning.
Rules Caveats

1. Work as a team with modelers, Requires full commitment and good
biologists, and managers communication skills

Continually reaffirm common understanding
of objectives and methods

2. The problem must be well defined first Begin from a system or big-picture
perspective rather than from the 
components

3. The purpose of pragmatic modeling is Stochastic modeling is well suited to 
to gain insights and improve strategic planning (such as setting priorities
management decisions, not to produce for regional endangered-species recovery) 
precise predictions or absolute answers but is not a panacea for site- and case-

specific risk assessments under high 
uncertainty

4. The project and models must be Be able to change directions (including
flexible and adaptable redirecting funding)

5. Use rapid prototyping and iterative Rapid turnover of preliminary results to
modeling with reevaluation of management engages managers in the 
objectives and process project and promotes continual focus on 

modeling relevance and iterative 
refinement of the objectives and approach

Be willing to throw out models that are not
working and start over

6. Models must be transparent or easily Be careful in using others’ models
understood and manipulated

7. Avoid filling models with extraneous Details or variations can always be added if
details; err toward simplicity and they become important to the objectives
transparency

8. Balance what is clearly known with Avoid concentrating on what is already
what must be hypothesized known while ignoring elements that are

relevant to the objectives but poorly
understood

9. Chose the model scale carefully to Generally, scales cannot be blended; if need 
match objectives be, build more than one model at different 

scales
10. If a simple model does not meet the All-purpose or comprehensive models do not

objectives, consider using a suite of work
models (each with a well-defined Modeling experiments built around scenarios
objective) can reduce complexity while exploring a 

wide range of conditions and parameter 
values

11. Sensitivity analysis is essential Be explicit about the assumptions and guesses
that inevitably must be made to develop a
model (virtual-world) representation of the
real world

Sensitivity analysis tests these assumptions
and provides essential perspective



(Beissinger and Westphal 1998). Rather than taking predictions of extinc-
tion risk or population size at face value to make a decision, demographic
models of population viability are better used to compare the effects of 
different management options with the goal of setting priorities.

We found it very useful to have a basic model that could be readily
adapted to alternative management questions (Rule No. 6), but only
because the scale and important factors were similar enough among our
projects that it was appropriate to use the same model structure (Rules Nos.
7 and 9).All our projects were concerned with small wolf populations where
stochasticity and social population structure influence population densities.
Each of our wolf projects asked such distinct questions, however, that 
different experiments, model adaptations, and output were required.

Our ability to address different management questions was enhanced by
developing case-specific versions of our computer code, not a finished
package that could be used in multiple ways (Rules Nos. 6 and 10). Our
attempt to create a user-friendly version of our model did not work because
the model kept changing to meet case-specific needs. The user shell rapidly
became obsolete and was not worth the investment. The development of a
simpler, educational version of the model may be useful, but this should be
a separate project with its own objectives (Rule No. 2).

We contend it would not have been useful to have a “standing” model or
box to be pulled out and plugged in to answer these management questions.
For the kind of management questions we explored, it was better to keep
a modeler involved and working hand-in-hand with biologists and man-
agers than to try to write a model that staff without programming ability
could use. We repeatedly revised elements of our modeling experiments
beyond the basic model structure. For example in the cumulative effect
experiments for Voyageurs Park (see Section 2.3.3), we tested different
algorithms for compensation between discrete mortality sources, linked
disease to different population segments, considered alternatives with and
without density responses in four demographic rates, and so on. In addi-
tion, in some of our projects we were able to quickly address questions
about model and experimental structures as they arose by producing 
preliminary results from model prototypes or iterative versions of the
model (Rule No. 5). Building a single, general model retaining all these
options would have been terrifically cumbersome, more time consuming,
and error prone.

Even with our “simple” model, the experiments were at times sufficiently
complex to be overwhelming, especially if all assumptions were challenged
and tested. We recommend that when modeling exercises bog down in
details or complexity or the next step becomes unclear, the modeler should
step back and look for ways to simplify the situation and get the next phase
started somehow. In other words, cut through the details to keep focusing
on what is important (Rule No. 7). Using an iterative or top-down model-
ing approach (Starfield and Bleloch 1986) was helpful, starting with the
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most important management issues and environmental factors (Rule 
No. 2). For example, in the cumulative effect model, we did not include the
mechanisms or human actions that drive the demographic variables in the
model (Rule No. 7; see also Figure 2.2). Hypothetical scenarios focusing 
on a limited set of presumed, key factors were a useful way to limit 
complexity while still exploring a full range of parameter values. Our results
indicated that only some of the innumerable environmental and anthropo-
genic conditions that could be linked to the key factors of wolf population
trends merit more detailed investigation.

The Voyageurs Park cumulative effect projects would have benefitted
from even greater interaction between park staff and modelers (Rules Nos.
1 and 2). Numerous conditions resulted in initially vague project objectives
and priorities: a project mandated by an agency outside the park, a long
lead time between project instigation and modeling, staff turnover, and
political pressures on park management. Further, we proposed a novel
approach to cumulative effect analysis to a staff with limited experience
with either modeling or wolves. In retrospect, it would have been helpful
to develop some initial analyses or model exercises to connect the new 
managers to the project and establish more clear objectives for the project
from the start.

One of the barriers we experienced with managers was their expectation
that the model would “solve their problem” or at least convince constituents
that managers were doing the right thing (Rule No. 3). Strategic modeling
helps management by revealing the relative importance of different factors
and the conditions under which the population is most vulnerable and
secure. It may also help identify thresholds for rapidly increasing risk that
suggest management criteria. However, modeling does not relieve man-
agers from establishing clear objectives under diverse political pressures or
making judgments under uncertainty. Stochastic modeling can provide
important insights, but does not tell managers whether or not to prohibit
specific human actions or even which management approach is “best” under
conflicting societal demands. We had to help managers understand that 
stochastic population modeling is experimental, not prescriptive. Further,
modeling is a process not a product, an interactive, adaptive activity that
evolves with the management objectives.

2.5 Conclusions

We illustrated a pragmatic approach to modeling that involved working
with expert biologists and managers to construct a simple population 
model that addressed specific management-oriented questions. The model
included the basic processes of wolf demography and social structures 
necessary to make accurate predictions. Simple simulation experiments
were used to determine the population impacts of changes in demographic

42 Jean Fitts Cochrane et al.



parameters, and the results of the experiments were used to infer how
changes in management activities and environmental processes might affect
wolf populations. This approach to modeling will help address new ques-
tions about how wolves are managed in the western Great Lakes region as
the population continues to recover and is removed from the Federal
Endangered Species List.This modeling approach should also contribute to
the recovery and management of other endangered species.
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Modeling Fish Entrainment and
Impingement Impacts: Bridging
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3.1 Introduction

Impingement and entrainment at cooling-water intake systems (CWIS) are
two sources of potential mortality for fish. Impingement occurs when fish
are trapped or pinned by the force of the intake flow against the intake
screens at the entrance of a facility’s CWIS. Mortality can be high, but
numerous technologies have been developed to successfully reduce at a
reasonable cost both the number of fish impinged and the mortality of those
fish that are impinged (Taft 2000). Entrainment occurs when fish eggs 
and larvae are taken into a facility’s CWIS, pass through its heat exchanger,
and are pumped back to the water body with the discharge from the 
facility. Mortality can approach 100% for sensitive species and life stages.
However, for many species, mortality for those eggs and larvae entrained
can be reduced when facilities are operated to reduce exposure of entrained
organisms to potentially lethal high temperature, to large changes in 
temperature, and to toxic chemicals (Dey et al. 2000; Mayhew et al. 2000).
Substantially reducing the number of eggs and larvae entrained, however,
is difficult to achieve at a reasonable cost for power plants with once-
through cooling systems. This cost difference between mitigation technolo-
gies for entrainment as compared to impingement, in combination with the
uncertain ecological impact created by entrainment, has led to a good deal
of the difficulty and controversy surrounding the regulations associated
with Section 316(b) of the Clean Water Act of 1972.

The entire 316(b) text from the 1972 Clean Water Act is remarkably brief:
“Any standard established pursuant to section 301 [regulating effluent 
limitations] or section 306 [describing effluent performance standards] 
of this Act and applicable to a point source shall require that the location,
design, construction, and capacity of cooling water intake structures re-
flect the best technology available for minimizing adverse environmental
impact” (USEPA 2000). The key terms “best technology available” (BTA),
“minimizing,” and “adverse environmental impact” (AEI) are not fur-
ther defined. Without a characterization of AEI, it is not known what to



“minimize.” As discussed below, either a general definition can be pro-
vided, or a process can be suggested to define the site-specific AEI. In 
either case, modeling plays a central role in linking scientific knowledge 
to a value-laden decision-making framework. A theme of this paper 
is to identify numerous choices possible in building this science–policy
bridge.

The U.S. Environmental Protection Agency (EPA) published 316(b)
assessment guidelines in 1977 that were remanded in court because of 
procedural issues. Nonetheless, state regulators essentially followed the
unofficial guidelines into the 1990s, with several hundred assessments of
entrainment and impingement performed during the 1970s and 1980s. In
the absence of EPA regulations clearly defining AEI, BTA, or an assess-
ment process, state and federal permitting authorities produced their 
own definitions on a case-by-case basis, relying on past decisions, adminis-
trative findings, scientific advances, and site-specific considerations. Several
recent papers trace the history of 316(b) assessments (Anderson and
Gotting 2001; Dey et al. 2000; May and van Rossum 1995; Nagle and
Morgan 2000).

Renewed interest in 316(b) assessments has been triggered by a 1995
consent decree that establishes a timetable for EPA to propose and take
final action with respect to addressing impacts from existing and new
CWISs. The EPA recently proposed a draft tiered regulatory approach for
its 316(b) rule making (Nagle and Morgan 2000). Tier 1 requires perform-
ing a screening analysis to determine the potential for impacts from entrain-
ment and impingement. Tier 2 requires a characterization of uses and
biological status of the source water body to determine the potential for
AEI from entrainment and impingement. Tier 3 requires studies to quan-
tify impacts from entrainment and impingement and to determine the
appropriate BTA. Modeling of impacts from entrainment and impingement
likely would be a component of 316(b) assessments only for those CWISs
requiring Tier 3 evaluations. This paper applies to facilities with such
CWISs.

The potential impacts of 316(b) regulatory controls on economics,
electricity reliability, and the environment are far from trivial (Veil 2000).
Consequently, there is renewed interest in the science underlying assess-
ments of entrainment and impingement, including constructive roles that
can be played by modeling. This chapter presents a forward-looking stra-
tegy about the central role of modeling in decision making involving impact
assessments on fish.An example success story is summarized in Sidebar 3.1.
Other modeling successes are detailed in Barnthouse (2000) and Lorda et
al. (2000).

Modeling is considered here in the broader context of value-laden deci-
sion making. “Value” refers here to specific management goals, manage-
ment objectives, endpoints, measures, and decision criteria. (See Sidebar 3.2
for definitions and examples.) We describe two roles for modeling, and
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Sidebar 3.1
More complex and realistic was not more effective
In the mid-1960s, concerns surfaced regarding entrainment and
impingement of young-of-the-year (age-0) striped bass by electric-
power-generating facilities on the Hudson River. These concerns
stimulated the development of increasingly complex models to 
evaluate the impacts of these facilities. Christensen and Englert
(1988) reviewed the history and compared the 11 models that were
developed over a 15-year period [also see Barnthouse et al. (1984);
Barnthouse et al. (1988); Barnthouse (2000); Swartzman et al. (1977)].

The earliest simplistic formulas, based on empirical data, proved
inadequate because of conceptual shortcomings, incomplete develop-
ment, and lack of data. By 1972, complex transport models based on
biological and hydrodynamic principles had been developed and
applied by scientists representing both the utilities and the govern-
ment. Disagreements about the acceptability of these models spurred
the development of even more complex models. The entrainment
models stimulated the collection of substantial amounts of field data
to define the spatial distributions and entrainment survival of early
life stages. As the difficulties of accounting for the movement of early
life stages based on hydrodynamic principles became more evident
and as more field data became available, simpler empirical modeling
approaches became practical and defensible. Both empirical and
hydrodynamic modeling approaches were applied during the EPA’s
hearings on the Hudson River power case (1977 to 1980).

The main lessons learned from the experience with modeling of
entrainment and impingement are that complex, mechanistic models
are not necessarily better than simpler, empirical models for young
fish (Christensen and Englert 1988). The hearing process became 
paralyzed by the complexity of the models and intractable scientific
issues relating to long-term predictions and density dependence.
However, the modeling activities clearly identified the need for
certain types of data, which stimulated the collection of such data,
albeit at considerable cost.As the field data became available, empiri-
cal modeling became increasingly attractive. While empirical models
required these data, they required a minimum number of assump-
tions, were easy to explain and defend, and could be inexpensively
run for different fish species and CWIS scenarios. They were particu-
larly useful in the settlement egotiation process during 1979 and 1980.
Refinements of these empirical models continue to be tools that are
used in current repermitting activities of these Hudson River power
plants (D.J. Dunning, New York Power Authority, White Plains, New
York, personal communication, December 2000).



suggest broad questions to consider prior to model selection, including both
technical and decision-making issues that should be addressed by all the
parties involved in a 316(b). We use a tree of aquatic-impact-assessment
measures and corresponding methods to summarize modeling approaches,
with the suggestion that modeling choices be made to balance scientific
standards and policy-making needs. We recommend EPA’s ecological-risk-
assessment framework as an approach for effectively guiding 316(b) assess-
ments and the role for modeling. Finally, we consider the challenges of
agreeing on management objectives, endpoints, measures, and risk criteria,
and we make five recommendations for 316(b) that provide a useful per-
spective for the role of modeling.
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Sidebar 3.2
Hierarchy of terms needed for 
environmental decision making

The EPA’s framework for ecological risk assessment (USEPA 1998,
2001) uses a hierarchy of five terms that we have adhered to through-
out this chapter. Whether or not this framework is used, specifying
the equivalent of these five terms is a critical step in any decision-
making process. A management goal is a general statement of the
desired condition or direction of preference for the entity to be 
protected. It is often developed independently of any specific risk
assessment, such as part of federal or state legislation [e.g., 316(b) 
regulations and guidelines]. A management objective is a specific 
statement about something one desires to achieve that includes an
ecological entity targeted for protection and a direction of preference.
It is commonly derived from a management goal on an assessment-
specific basis. An assessment endpoint (or just endpoint in this paper)
is an explicit expression of what is to be protected. It is defined by an
ecological entity and the entity’s attributes, ideally including spatial
and temporal extent.

The EPA defines three classes of measures. Collectively, these 
measures are used to describe an endpoint or factors affecting risk 
to that endpoint. Measures of exposure characterize the existence 
and movement of a stressor in the environment and its contact or
cooccurrence with the endpoint. Measures of effect describe a 
change in an attribute of an endpoint, or its surrogate, in re-
sponse to a stressor to which it is exposed. Measures of ecosystem 
and receptor characteristics describe factors that influence the 
behavior and location of ecological entities, the distribution of a 
stressor, and life-history characteristics of the endpoint that may 
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affect exposure to, or effect of, the stressor. Measures generally have
unambiguous operational definitions and are accessible to credible
measurement and monitoring or prediction. Selecting measures 
and estimating their values are the scientists’ primary input to risk
assessment.

A risk (or decision) criterion (or threshold, target, or benchmark)
is defined as the level or value for a measure above which (or 
below which, depending on the measure) is thought to result in an
unacceptable level of risk (or protection).The choice of measures and
associated decision criteria is always a value-laden technical judgment
(Barnthouse 1992; Shrader-Frechette and McCoy 1993).

Potential examples in the context of 316(b) assessments help make
this hierarchy of five terms more meaningful.

• Management goal—To preserve aquatic organisms and the ecosys-
tems they inhabit in waters used by CWISs

• Management objective—To preserve representative fish species in
waters used by CWISs

• Endpoint—Individual fish, cohort or year-class, population of 
representative fish species

• Measure (and associated decision criterion)
• Exposure: Daily intake flow (e.g., 2 million gallons per day),

proportion of water withdrawn for cooling purposes (e.g.,
25%), intake approach velocity (e.g., 0.5 ft/sec)

• Effect: Equivalent adult loss (e.g., 500 fish), fractional loss (e.g.,
5%), population decline (e.g., 5% per year)

• Ecosystem and receptor characteristic: Waterbody type; life-
history characteristics of the representative fish species

3.2 Two Roles for Modeling in 316(b) Assessments

The modeling process can play two roles in assessments of the effects 
of entrainment and impingement on fish. The first role is the meat and 
potatoes of modeling: hypothetical what-if scenarios. Examples of obvious
what-if scenarios are

• Comparing alternative levels of mortality resulting from entrainment and
impingement

• Evaluating alternative protection, mitigation, and enhancement (PM&E)
measures
Here the motivation is to characterize the potential impacts of mortality

resulting from entrainment and impingement per se and the potential 
benefits of different PM&E measures.



Three additional what-if scenarios provide examples of issues where
modeling can play a constructive role by placing potential population-level
effects of mortality resulting from entrainment and impingement in a
broader ecological perspective. The first involves comparing the mor-
tality from entrainment and impingement of early life stages with the 
fishing mortality of older fish. This comparison can demonstrate that the
population-level consequences of increased mortality of early life stages
(that experience high natural mortality) are likely to be substantially less
than the consequences of comparable levels of increased mortality of older
fish (that experience low natural mortality). The second example involves 
comparing the dynamics of fish species with different demographic charac-
teristics. That comparison can illustrate that not all fish species are demo-
graphically equal. Consequently, it is likely that they will not respond in the
same manner to incremental mortality of early life-history stages (i.e., those
life stages most commonly experiencing mortality from entrainment and
impingement). The third example involves comparing the consequences of
negative and positive extreme events (e.g., droughts and floods) and can
demonstrate that such events may result in either missing or dominant year
classes. Such perturbations to the age structure of a fish population can
influence its dynamics, making it more difficult for scientists to interpret
past trends or to predict consequences of mortality from entrainment and
impingement.

The second role for modeling, using the modeling process to com-
municate with and educate decision makers and stakeholders, can be 
part of the regulatory decision-making process itself. In the context of 
permitting electric-power-generation facilities under Section 316(b), the
decision-making process involves the values and objectives of all stake-
holders, only some of which deal directly with entrainment and im-
pingement of fish. This broader decision-making framework can be 
viewed as involving (1) information collection, analysis, and model de-
velopment and application; (2) development of decision models or cri-
teria; and (3) decision making (Figure 3.1) (Clemen 1991). As the decision 
stakes and complexity of an assessment increase, each of these three 
activities becomes more intense and challenging. Whether consciously 
or not, most 316(b) decisions involve all these activities. The process is 
iterative. As more is learned about a water body, decision options are 
discovered or limited (e.g., whether mitigation measures, such as stocking
or protecting wetlands, are allowed or whether a protective technology
actually works). In the course of the process, facility owners, regulators,
and stakeholders establish negotiation positions (e.g., the maximum
amount to invest in impingement or entrainment protection before mitiga-
tion is considered and how to cost mitigation measures). Communication
between key individuals in the first column of Figure 3.1 (typically scien-
tists) and key individuals in the third column (typically nonscientists) is
important.

3. Modeling Fish Entrainment and Impingement Impacts 51



The resulting modeling challenge is to effectively estimate and commu-
nicate to decision makers and stakeholders the risks and uncertainties 
associated with using models to estimate effects on measures associated
with specific endpoints. Those measures may include, as an example, some
combination of population-level effects, effects on commercial and recre-
ational fisheries, and effects on entire ecosystems. Each of these categories
of effects, however, must be framed in terms of specific endpoints and 
associated measures useful for decision makers and stakeholders. For any
given 316(b) assessment, the choice of a tractable set of species, of end-
points and associated measures, of models and methods of analysis, and of
how to present and interpret results all involve value-laden judgments
similar to those made for human-health outcomes. Such choices are
unavoidable in risk assessments. These choices are the bridge connecting
scientific understanding with value-laden policy perspectives. Because of
the relative lack of experience in characterizing and valuing ecological 
outcomes, 316(b) decisions cannot fall back on an accepted and narrowly
defined set of risk management protocols. Furthermore, the scientific 
understanding of the ecological world is inherently complex, dynamic, and
uncertain.
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as the decision stakes and complexity of the assessment increase.



Thus, a major responsibility of the modeling task is to help decision
makers and stakeholders identify which endpoints and associated measures
can be estimated and with what uncertainty and to provide the best esti-
mates possible (including uncertainty) of potential changes in these meas-
ures, given time and other resource constraints. Public policy decisions often
must make do with satisfactory models, not necessarily those that are sci-
entifically optimal. Hence, decision-making constraints and context, such as
the resources available and the alternative CWIS choices being considered,
should guide model development and use.

3.3 Difficult Questions That Must Be Confronted

Each time the need arises for an assessment of the impacts of entrainment
and impingement, the same question surfaces:What modeling approach (or
specific model) should be used? We recommend that this question not be
answered until the following more difficult questions have been confronted
and addressed by all the parties involved.

1. What is at stake in terms of alternative CWIS decisions? Answering
this question involves evaluating the values and objectives of all parties.
Estimating relative decline in single populations, broader ecological
changes, or recreational or commercial-fisheries impacts may each require
different modeling approaches. Values matter because, if an outcome is
highly valued, additional or more accurate information may become more
relevant, regardless of the magnitude of physical or biological change.
Further, decision making implies comparing solutions rather than problems,
so it is appropriate to ask, “By how much do alternative decisions change
the impact(s)?” Although some minimal baseline knowledge is always
needed, modeling for decision making requires only the information
needed to compare decision options, not to produce the most realistic
model. Finally, some model outcomes may require considerable judgment
for interpretation, such as potential shifts in the trophic structure of a fish
community.

The modeler has to provide the necessary information to distinguish
between decision options, including the selection of appropriate endpoints
and associated measures and decision criteria that reflect the values of the
various parties (Keeney 1992). While, in principle, endpoints and associated
measures and criteria are distinct from value judgments, in practice some
value judgments are implicit in their selection. We recommend the use 
of EPA’s framework for ecological risk assessment (USEPA 1998) as dis-
cussed below, although this framework still implies a rigid and unrealistic
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separation between technical assessments and the values and objectives of
the various parties.

2. What are the specific questions to be addressed in the assessment?
Risk of population extinction? Risk of decline in population size? Abso-
lute numerical losses? Comparison of mortality from entrainment and
impingement and mortality from fishing? Given that AEI has yet to be
defined big EPA and given the site-specific differences in water bodies and
fish species, the choice of endpoints and associated measures and decision
criteria is fundamental. Some decision makers and stakeholders lack suffi-
cient understanding of biological science to make sound choices. Hence,
modelers and other scientists need to help them define the objectives and
select the modeling approach, including the species selected for study and
useful endpoints and associated measures and decision criteria. This type
of open-ended and constructive process requires trust that scientists, regu-
lators, and stakeholders are jointly striving to avoid or at least minimize
predictable bias.

3. What modeling approach will most likely be accepted? For any given
316(b) assessment, several modeling approaches of differing complexity
and designed to estimate different measures associated with the same 
endpoint may prove helpful (i.e., the weight-of-evidence approach). As an
example, when the endpoint is fish populations, the minimum level of 
complexity, beyond estimates of the number killed by entrainment and
impingement, might be the number of equivalent adults lost. [Equivalent
adults lost represents an extrapolation of the number of fish killed by
entrainment and/or impingement at younger life stages (e.g., eggs, larvae,
and juveniles) to the number of these fish that would otherwise have 
survived to be adults (EPRI 1999).] Estimating a value for this measure
involves a model that is relatively easy for all parties to understand and that
can be used as a screening tool (EPRI 1999; EPRI in press). At the other
extreme of complexity, a probabilistic forecast of risk of population decline
that is made with a stochastic population-simulation model (e.g., Lohner 
et al. 2000) is an attractive measure because it more directly addresses 
the management objective of sustainability of fish populations. However,
even the simplest stochastic simulation models represent a relatively 
high level of sophistication for many regulatory decisions, making the
science–policy bridge all the more important. The level of complexity is
almost limitless with the stochastic individual-based modeling approach,
where the effects on individual fish of daily changes in temperature, flow,
water velocity, food availability, competition, predation, ambient pollution,
extreme weather events, and anthropogenic impacts (such as fishing) can
be modeled explicitly to estimate population effects (Van Winkle et al.
1993).

As model complexity increases, understandability generally decreases. In
addition, most 316(b) decisions will not be helped by increasing levels of
model complexity that do not more clearly differentiate among PM&E
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alternatives or reduce uncertainty (see Sidebar 3.1). Particular challenges
exist when trying to isolate causal roles for observed or predicted changes
that may be simultaneously influenced by fishing, pollution, or climatic
changes as well as by losses from entrainment and impingement. Here, too,
no fixed rules apply. Rigorous and systematic confrontations between 
critical questions, data, and models frequently are not possible (Foster and
Huber 1997; Hilborn and Mangel 1997; Suter 1993).

4. What data are/will be available to parameterize, calibrate, and validate
different types of models? Here again, the scientist has to decide whether
a possible increase in model complexity is consistent with the data avail-
able to guide that increase.

5. What resources (money, time, technical expertise, and software) are
available? These resources bound the tradeoffs between model complexity
and the effort to develop and apply a model. It may be more cost effective
to make a decision with considerable uncertainty when the cost of imple-
menting that decision compares favorably with that of reducing uncertainty
by additional study (Clemen 1991). That is, it can be advantageous simply
to act rather than to gather more information, even with considerable
uncertainty about the consequences of the decision. Such may be the situa-
tion when a CWIS has no fish protection devices for impingement but the
relative cost of determining the impact of impingement is high, and thus,
the decision is made to install fish protection devices.

Fish population modeling does not involve especially difficult mathe-
matics, and developing a model per se is not necessarily costly. However,
substantial resources may be needed to estimate parameter values (and
their variability), calibrate the model, perform sensitivity and uncertainty
analyses, document the model [including quality assurance/quality control
(QA/QC)], and interpret and present the model results in presentations,
reports, and other publications (Ambrose et al. 1996). Hence, site-specific
modeling as a response to the weakness of 316(b) regulatory language is
balanced against a considerable commitment of resources for industries or
agencies with little experience in assessing the impacts of entrainment and
impingement. There is a natural desire, then, on the part of regulators to
look for technological criteria, such as CWIS technologies [e.g., fine-mesh
traveling screens, cylindrical-wedge wire screens, and Ristroph screens; see
Taft (2000)] and operational performance standards (e.g., intake approach
velocity no greater than 0.5 ft/sec) or other less complex and superficially
less uncertain proxies, as a substitute in assisting decision making. This
predicament is characteristic of many complex decisions, not just decisions
in environmental policy or 316(b) (Payne et al. 1993).

The above questions reflect a top-down view of model selection. The
modeling approach selected needs to reflect what is viewed as constructive
by decision makers and stakeholders as well as by scientists. As a result,
modeling is not an ancillary part of a decision process that “knows” which
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questions to ask, but is an activity that can guide and shape the decision-
making process itself by bridging science and policy needs (Figure 3.2). The
questions also are not answered all at once. Instead, answers evolve through
the modeling and decision-making processes as more is learned about the
water body, fish populations, and technology options.

The pattern that has emerged for selecting modeling approaches in
316(b) assessments is to start with a simple screening model and to increase
in model complexity as the situation merits. This pattern makes good sense,
knowing that a decision needs to be made in a short time frame and that
perfect knowledge is neither required nor attainable in any case. This
approach has meant, for example, starting with models of individual losses
or fractional losses without including density dependence (EPRI 1999;
EPRI in press). The next-more-complex approach has been age-based or
stage-based matrix projection modeling, with or without density depend-
ence. Even more complicated and realistic modeling approaches have
emerged in highly contested cases where millions of dollars for retrofitting
cooling towers are at stake. The increased complexity may involve the 
modification of existing code, new computer codes, and new modeling
approaches (e.g., individual-based modeling). A similar tiered sequence 
of increasingly complex modeling approaches is typical in other fields (e.g.,
1-D, 2-D, and 3-D hydrodynamic and water quality models).
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Figure 3.2. Conceptual view of a proposed decision analysis framework for fish-
eries management, including risk assessment and risk management components
(Lane and Stephenson 1995, 1998).



However, more realistic and thus more complex models have not always
proved as effective as simpler models in contributing to the decision-
making process (see Sidebar 3.1). With the renewed interest in 316(b) 
decisions, modelers should carefully revisit the tradeoffs involved in
increasing model complexity.

The “stopping-time” problem for scientists is to judge when stake-
holders and decision makers can no longer benefit from additional data 
collection, analysis, or modeling. When to stop depends on the values at
stake (e.g., the low cost of modifying existing traveling screens versus the
high cost of switching from once-through cooling to closed-cycle cooling).
Scientists, particularly those involved in modeling, must also be sensitive to
recognizing when decision makers or stakeholders are effectively asking for
unverifiable predictions as a means of imposing a needed policy judgment
onto the science base. For assessments of entrainment and impingement,
the challenge is evaluating an often modest increase in mortality against a
background of high natural variability and other confounding factors. High
natural variability frequently negates the value of scientific information in
the decision-making process, such as occurred in attempts to attribute bird
mortality to the Exxon Valdez oil spill (Wiens 1996).

As far as resolving the most contentious debates between the parties,
scientists usually have no “silver bullet” to settle litigious disputes. The
many reasonable options scientists can provide may just reinforce some
stakeholders’ wish (on all sides of fish protection disputes) to make 316(b)
decisions through the courts. The only real solution for this dilemma is for
stakeholders and regulators to develop an environment of trust in which
models, endpoints, and associated measures and decision criteria can be
proposed, criticized, and modified in the decision-making process. Indeed,
this solution is what has happened with some site-specific 316(b) decision
making [e.g., Barnthouse (1988)]. For almost three decades, no “official”
316(b) regulatory guidance has been provided, but regulators nonetheless
have apparently often been able to make reasonable decisions.

3.4 Tree of Aquatic-Impact-Assessment Measures and
Site Specificity

At the same time that scientists are interacting with decision makers and
stakeholders, they are answerable to the scientific community for the
choices made. Thus, some kind of schematic organization of modeling
choices is required to indicate roughly where modeling complexity should
start and end, given the decision-making context. Such an organization of
modeling space is also a useful means for communicating among scientists,
regulators, and stakeholders the menu of options and the advantages and
disadvantages of those options.
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For 316(b), a tree of aquatic-impact-assessment measures (and corre-
sponding methods) is a useful way to visualize the variety of modeling
approaches that has evolved over the past three decades to assess the
impacts of entrainment and impingement at power generation facilities
(Figure 3.3). The two primary branches of this tree are predictive methods
and retrospective methods. Refinements to some of these methods continue
to be made [e.g., Heppell et al. (2000)]. Thus, availability of assessment
methods is not a limitation.

Predictive methods can be arrayed by level of biological organiza-
tion (i.e., individual losses, fractional losses, population projections, and 
ecosystem/community) (see Figure 3.3). As one “climbs” in the tree of
methods across levels of biological organization from left to right, the 
spatial and temporal scales of the assessment typically increase. Associated 
with this pattern is a shift from spreadsheet methods giving snapshots 
of individual or fractional losses to simulation models involving popu-
lation projections many years into the future. Density dependence (or 
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Figure 3.3. Tree of aquatic-impact-assessment measures (and corresponding
methods) used in assessing the impacts of entrainment and impingement on fish
[based on EPRI (1999)].



compensation) does not generally rear its challenging head until one 
is dealing with population projections (Van Winkle 2000). The “apples” on
the ecosystem/community limb of the tree represent assessment methods
that are “maturing” but that are generally viewed as not being sufficiently
“ripe” at present to be useful for decision making. In this way, the tree also
helps answer questions relating to complexity and realism versus usefulness.

Retrospective methods use data collected at a site to evaluate the 
character, function, quality, and/or integrity of the water body and/or to
evaluate whether or not a change in a population/community/ecosystem 
has occurred that may be related to the operation of the power plant (EPRI
1999) (see Figure 3.3). These methods are best applied to assess changes as
a result of power-plant operation at facilities that have been operating for
several years. Thus, the methods are most applicable for existing facilities
rather than for new facilities. However, monitoring and other studies at
existing facilities during the past three decades have resulted in large 
databases that provide a perspective and valuable guidance for assessing
the impacts of entrainment and impingement at new facilities (e.g., Mayhew
et al. 2000).

Site specificity explains why so many modeling approaches have devel-
oped for the same, relatively uncomplicated, issue of mortality resulting
from entrainment and impingement. Several factors contribute to this
history of site-specific assessments and decision making. Each assessment
of entrainment and impingement tends to involve unique features because
each ecosystem is unique with respect to its fish species and hydraulic and
water-quality characteristics. Technology choices also are site specific. For
example, a Gunderboom cannot be used where there are strong currents
or heavy natural-debris loads. In addition, the industry, decision makers, and
stakeholders (and their social or institutional constraints) tend to be site
specific and unique. A consequence from a regulatory perspective is that a
simple model and approximate data may be adequate for one 316(b) as-
sessment, while another superficially similar situation may require more-
complex models and additional data. It is also counterproductive to make
regulators and others force-fit their knowledge into a predefined mold to
maintain the appearance of uniform and fair regulations.

If site specificity is as important as we believe, then industries, regulators,
and stakeholders faced with overly rigid 316(b) rules may be forced to
codify into approved formats their understanding of the factors influencing
the impacts of entrainment and impingement at their unique site. Or, an
overly conservative approach (e.g., making dry cooling towers the BTA)
may also be a convenient way to evade assessing 316(b) impacts, including
the negative impacts of efficiency penalties and increased use of fossil
resources. Such “conservatism” may be just shifting concerns from the
entrainment and impingement of fish to concerns about energy costs,
increased use of fossil fuels, and environmental impacts of alternative
energy technologies.
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While the 316(b) language has been criticized for its lack of detail, the
site-specific nature of many fish population impacts may imply that any
comprehensive definitions of BTA and AEI will be equally generic. Hence
for 316(b), the scientific problem of assessing the impacts on fish of entrain-
ment and impingement may depend, in part, on local AEI definitions. The
scientists involved in modeling, therefore, may be implicitly or explicitly
tasked with both characterizing AEI and helping decide how best to assess
it on a site-specific basis. A decision analysis approach in which values,
endpoints, and associated measures and decision criteria are identified and
developed on a site-specific basis may be preferable to approaches that
assume no need for further learning (Gregory et al. 1993). Such an ap-
proach is also consistent with a broader perspective, that ecological deci-
sion making almost always depends on local biological context (National
Research Council 1986). At the same time, industry proponents of a 
flexible, site-specific 316(b) approach (Utility Water Act Group 2000) have
to recognize that a rule stating “take a local, risk-based approach” implies
an open-ended process and has its own risks.

A final factor contributing to site-specific assessments of entrainment and
impingement is that 316(b) determinations occur in a regulatory setting. In
this setting, the rules of engagement are dictated by lawyers who are likely
to respond differently than scientists to perceived advocacy opportunities.
Given that retrofitted natural-draft cooling towers can cost more than $100
million, the economics of BTA causes the assessments to be contentious,
litigated, and increasingly complex as cases remain unresolved for long
periods of time. The cumulative effect of the above site-specific factors
accounts for the surprising variety and uses of modeling approaches. We 
see this variety as a virtue, reflecting local decision-making practices. Such
flexibility can be open to abuse, but the EPA’s role also can be to monitor
decision-making practices to ensure global fairness and integrity. Clearly,
such a role is needed if detailed 316(b) regulations resist codification, as
they have for decades.

3.5 Decision Making and EPA’s 
Ecological-Risk-Assessment Process

To increase the effectiveness of science and modeling as part of the 316(b)
decision-making process, it would be constructive if assessments adhered to
an accepted overall risk assessment process. This recommendation means
that an adequate process would be defined for posing appropriate scientific
questions and for being able to adaptively learn from the answers. It does
not mean that all data, modeling choices, and other steps in the process 
are determined in advance. The EPA ecological-risk-assessment process 
provides such a framework (Figure 3.4). Alternative approaches are used
in other countries and by other organizations within the United States.
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McCarty and Power (2000) and Power and McCarty (1998) provide analy-
ses of these alternatives. We have focused on the EPA’s framework because
the EPA has responsibility for 316(b).

Although some of the EPA terminology reflects the toxicity background
from which the framework evolved, EPA’s definitions of key terms readily
generalize to other types of anthropogenic stress, such as the entrainment
and impingement of fish (see Sidebar 3.2). This approach does not repre-
sent a static black-and-white road map. Rather, it is a representation of a
dynamic scientific, social, and political process, a process involving individ-
uals and organizations with different backgrounds, values, and objectives.
Others have recently suggested using the EPA framework for ecological
risk assessment (USEPA 1998) for 316(b) assessments and for environ-
mental decision making in general (Dey et al. 2000; Gentile and Harwell
1998; Harwell and Gentile, Chapter 5, this volume).

As mentioned in the introduction of this chapter, the term AEI first
appeared in Section 316(b) of the Federal Water Pollution Control Act of
1972. The term was not operationally defined and thus, not surprisingly, has
since been defined in many different ways (Anderson and Gotting 2001;
May and van Rossum 1995). The EPA still appears to be “risk adverse” to
defining this term (EPA 2000). The term AEI is operationally defined,
however, by the EPA ecological-risk-assessment process, which involves
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specifying endpoints and associated measures and decision criteria on a
site-specific basis. Thus, a formal definition codifying AEI once and for all
may not be needed or even constructive.

In concluding this section, we should recognize that the entire approach
of site-specific, risk-based environmental assessments can be rejected.
For example, the Riverkeeper position on 316(b) is that the Clean Water
Act uses technological criteria, not environmental outcomes, to improve
wastewater-effluent quality. Thus, such criteria should be used to regulate
CWISs without exception (Riverkeeper et al. 2000). This rejection of a 
risk-based environmental perspective is a legitimate, if potentially costly,
response to the predicament of balancing regulatory effort and environ-
mental protection. The Riverkeeper approach explicitly notes the risk of an
open-ended, site-specific process being co-opted by the regulated commu-
nity (Riverkeeper et al. 2000). A credible approach to CWIS regulation,
therefore, may depend on a compromise between regulatory uniformity
and local flexibility that avoids such pitfalls.

3.6 Challenge of Agreeing on Management Objectives,
Endpoints, and Associated Measures and Decision
Criteria for 316(b) Assessments

Management goals have typically not been the focus of disagreement in
316(b) decision making (see Sidebar 3.2). For example, the goal of pre-
serving aquatic organisms and the ecosystems they inhabit in waters used
by CWISs is sufficiently broad and vague that all parties can safely agree
with it. As a result, such a goal by itself is of limited value for decision
making. Disagreement is common, however, when management objectives,
endpoints, and associated measures and decision criteria are selected to
make a management goal operational (see Sidebar 3.2).

For example, given a management objective that focuses on selected fish
populations as the endpoint, should the measure for the preservation of
these fish populations be in terms of the number of fish killed by entrain-
ment and impingement or the population-level consequences of these
losses (Anderson and Gotting 2001; May and van Rossum 1995; Utility
Water Act Group 2000)? If the latter, what population-level measure 
should be used? As described previously, two possible, but quite dif-
ferent, measures that could be selected from the “tree” of possible 
measures are the number of equivalent adults lost and the population 
projections of the risk of population decline over the lifetime of the power
plant (see Figure 3.3). The latter can be predicted only by using a stochas-
tic simulation model involving projections far into the future and will
appear by some parties to be too complicated and uncertain. However,
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other parties might reject substitution of an intermediate endpoint, such as
equivalent adults lost, that does not reflect the potential dynamics of the
population. All parties might agree to its use, however, if coupled with
requirements for monitoring and reconsideration at each 5-year repermit-
ting interval. Alternatively, the decision might be to make a more risk-
adverse decision rather than waiting until more refined knowledge is
available. That is the decision maker’s prerogative. While the scientist then
has little more to contribute, his or her prior input can critically influence
this overall decision process.

Regardless of the measures selected, the next step of agreeing on deci-
sion criteria for these measures is even more controversial. For example,
how many individual fish of a representative indicator species can be killed
by entrainment and impingement before some modification of the CWIS is
required? 1? 104? 109? Or what observed or predicted percentage reduc-
tion in year-class strength or in the adult population triggers the decision
that some modification of the CWIS is required to reduce losses from
entrainment and impingement? 1%? 10%? 20%?

Multiple answers to such questions are possible because they involve a
balancing of science, societal values, and politics (Keeney 1992; Lackey
1994, 1998, 1999). Such balancing becomes increasingly site specific if 
the objectives of the stakeholders differ substantially. In addition, no single
scientifically sound basis exists for specifying measures and associated risk
criteria. The answer could depend on the water-body type (coastal, river,
estuary, lake, or reservoir) and how that resource has been locally managed
and valued. The same population impact on an already highly impacted
waterway could be considered differently from that occurring on a pro-
ductive, previously unimpacted estuary. Indeed, clarifications of where, and
to what extent, such value judgments may matter should be a key policy
task.

3.7 Recommendations for 316(b) Assessments

Recommendations for guiding 316(b) assessments are emerging, especially
when the management objectives are focused on fish populations as the
endpoint (see Sidebar 3.2). These recommendations help place in a useful
perspective the role of modeling as part of any assessment of entrainment
and impingement. They also reflect an attempt to balance what is scientifi-
cally sound and what experience indicates will be accepted in the sociopo-
litical and legal process of 316(b) decision making.

1. We recommend that the 316(b) analysis plan capitalize on the 
considerable body of knowledge that has accumulated during the past 
three decades from assessments of entrainment and impingement and from
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monitoring. Experience has shown that potential impacts must be con-
sidered at different spatial and temporal scales and different levels of 
biological organization. Not all scales and levels need to be analyzed in
detail, depending on the severity of estimated impacts. Results of analyses
at each of these scales need to be considered in a weight-of-evidence
approach.

2. We recommend that estimated values for any given measure include
consideration of the normal variability in that measure (Ambrose et al.
1996; Coutant 2000). As in any risk assessment, scientific certitude is an 
illusion; thus, a precautionary approach is appropriate (Hilborn et al. 2001;
Schnute and Richards 2001). This precautionary approach allows establish-
ment of more conservative levels of acceptable loss when faced with higher
uncertainty.

3. We recommend that 316(b) decisions require continued monitoring 
of selected measures with reassessments at each repermitting interval
(Ambrose et al. 1996; Coutant 2000). This approach of adaptive resource
management is particularly appropriate when uncertainty is high, fishery
resources at risk are highly valued, and other negative or positive changes
(e.g., water quality or regional temperature regime) are occurring in the
system. The frequency of this monitoring and reassessment might be
relaxed in the future if additional data continued to support the conclusions
of the original scientific assessment of no AEI.

4. We recommend that analyses and model applications focus on 
relative risk (USEPA 1998) by comparing estimates of short-term impacts
(e.g., 5 to 10 years, as opposed to 50 to 100 years) of alternative manage-
ment actions and decisions and not on absolute or long-term impacts 
(Barnthouse et al. 1984; Van Winkle 2000). Emphasizing model predictions
of risk of percent reduction or quasi-extinction over the lifetime of a power
plant alone is not likely to be accepted. Nor are results of meta-analyses of
time series of data on spawning stock and subsequent recruitment alone
likely to be accepted (e.g., spawner-recruit curves and associated indices).
Both scientists and nonscientists have valid reasons and past experience to
be skeptical about such model predictions and analyses claiming to provide
an adequate basis for making site-specific decisions concerning long-term,
population consequences (Boreman 1997; Hilborn et al. 2001; Hutchings
2001; Rose 2000; Rose and Cowan 2000; Schnute and Richards 2001; Van
Winkle 2000). Scientists need to be aware when regulators or stakeholders
are expecting (or interpreting) more certain conclusions than science can
provide.

5. We recommend that, if a population declines over a period of years
during which losses from entrainment and impingement cannot be judged
as trivial, the responsible scientific conclusion is that to some unknowable
extent these losses may have contributed to the decline. Because of con-
founding changes in physical, biotic, and anthropogenic variables during the
same period, it will never be possible to prove that losses from entrainment

64 Webb Van Winkle and John Kadvany



and impingement caused the decline or that they had nothing at all to do
with the decline.

3.8 Conclusions

We have presented our ideas on how the process of modeling the impacts
of entrainment and impingement on fish populations can serve as a bridge
between science and policy as part of a decision-making process involving
industry, regulators, and stakeholders. Given the litigious nature of 316(b)
determinations, however, this ideal may not be possible or may be only 
partially successful. We want to point out, however, that, within individual
organizations involved in the decision-making process, initial agreement 
on how to answer the difficult questions that must be answered is rare.
Consequently, even within individual organizations, modeling can effec-
tively serve as a bridge between science and policy.

We have emphasized the importance of viewing the modeling process
from a top-down, decisions-and-values approach and not just a bottom-
up, find-the-best-model approach. We recommend viewing these two
approaches as complementary, with neither approach dominating. A
primary responsibility of regulators and resource managers is to make 
decisions, decisions concerning what to do (or not do), when, and how. Such
decisions commonly benefit if approached within an analysis framework
with explicit consideration of benefits, costs, and uncertainty of alternative
decisions. The discipline of ecological risk assessment emphasizes the
importance of defining endpoints and decision criteria. Definitions of end-
points and decision criteria, in turn, specify the objectives for modeling,
what models are most appropriate, and how and when the modeling process
and results might most effectively interact in the broader decision-making
process.

We have summarized EPA’s framework for ecological risk assessment
and their definitions of key terms (see Sidebar 3.2) to highlight how such a
systematic and rational framework can help put the 316(b) regulatory
process on a constructive path. Science (including modeling) contributes
primarily during the analysis component (see Figure 3.4). However, if that
is the only place scientists contribute, their support of the decision-making
process may be minimal. To be more effective, they also must be part of the
problem formulation and risk characterization components (see Figures 3.2
and 3.4). For the reasons discussed above, this broader influence is essen-
tial for 316(b) and for other ecological management decisions as well.
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Lessons Learned from the Southern
Appalachian Assessment
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4.1 Introduction

In the fall of 1994, the Southern Appalachian Assessment (SAA) was 
chartered to address a broad complement of issues regarding the uses and
roles of public land and resources in the southern Appalachian Highlands.
The overall objective of the assessment was to

facilitate ecosystem management by providing comprehensive, interagency, ecologi-
cal, social, and economic data as a foundation for natural resource management
[Southern Appalachian Man and the Biosphere Cooperative (SAMAB) 1996a].

In pursuit of this objective, the SAA sought to compile a compendium
of background information to define ecosystem conditions and to pursue
ecosystem management on public lands. The SAA compiled information at
the landscape scale, addressing all lands within the region. In many ways 
it plowed new ground in the conduct of regional interdisciplinary analysis
and in the use of collaborative methods to address controversial resource
management issues.This paper examines the processes and outcomes of the
SAA, with an eye toward identifying lessons that can be transported to
other public ecosystem management efforts.

The SAA can be viewed as a mechanism for applying scientific knowl-
edge to the full complement of ecosystem management issues in a specific
place. It therefore provides one model of organization in a broad spectrum
of potential science–management collaborations. Topics addressed by the
SAA were very wide in scope and were pursued in a descriptive fashion.
The foci of the SAA were on compiling information to define the status 
of a regional-scale system and making information available for the 
subsequent analysis of specific management issues. It was not focused 
on solving specific management problems or supporting specific decisions.
Rather, its intent was to frame the perspectives of resource stewards and
to enhance the quality of information available to managers.

The SAA was not strictly a modeling exercise but was a mechanism 
for compiling information through databases, models, and individuals’



expertise to create a broad knowledge base. Where appropriate, available
models were applied to great advantage. In addition, the SAA influenced
subsequent modeling in two ways. (1) It defined a set of critical issues that
needed to be addressed with models. For example, following the assessment,
national forest managers spent more effort analyzing forest-age structures
in their planning analysis. (2) It also defined needs for new models and 
provided impetus for subsequent model development and analysis. One
example is the development of landscape-level models for forecasting land
development in the Southern Appalachians (Wear and Bolstad 1998).

The introduction to the SAA report describes the effort as something
analogous to a medical checkup for an ecosystem. In many ways, this
metaphor captures the spirit of an effort designed as an anticipatory rather
than a problem-solving analysis. The outcomes of the assessment also need
to be viewed in this light (i.e., as a means to shed light on current condi-
tions, emerging trends, and potential emerging problems). Ultimately, the
success of an effort like the SAA needs to be evaluated in terms of its 
contribution to improving the overall quality of natural resource decisions.
This type of evaluation is difficult because many of the resource issues that
public land managers address are extremely complex, dynamic, and perhaps
intractable. The adaptive nature of ecosystem management suggests that
the management approach as well as the resource questions will change
over time. The SAA or any other effort of its kind is necessarily directed
at a moving target.

4.2 Motivation for the Assessment

Southern Appalachia has a strong regional identity related both to its
unique and diverse natural setting and its unique and, until relatively
recently, somewhat isolated culture. It is essentially a rural place with 70%
of the land area in forest cover and another 15% in agricultural uses
(SAMAB 1996d). While public ownership is small compared to western
parts of the United States, the 17% of the land that is in various federal and
state ownerships defines one of the highest concentrations of public lands
east of the Mississippi.

A convergence of changes and controversies had, by the early 1990s,
defined the need for a broadly inclusive ecological/social assessment in the
Southern Appalachians. Public land management, in general, and national
forest management, in particular, were becoming increasingly contentious
throughout the United States. During this period, management philoso-
phies were shifting toward landscape-level ecosystem management, but
specific ecosystem management strategies had yet to be defined. In addi-
tion, the integration of local economies and culture with the nation’s
economy and culture as a whole had led to an important set of social
changes [e.g., changing employment patterns and perspectives on resource
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management (Dunlap 1991)]. These changes, coupled with an increasingly
mobile population, resulted in population growth and demographic change,
largely emanating from only a few areas in the region. The resulting and
ongoing land-use changes, mainly low-density residential developments,
had and still have the potential to reshape the unique environmental 
characteristics of the region (Turner et al. 1996).

Concomitant with shifts in population and land use have been important
changes in local economies. The region’s agricultural production has 
declined as transportation systems have effectively integrated Southern
Appalachian agricultural markets with broader regional and national 
markets. The other two major land-based sectors, wood products and 
recreation and tourism, while still important parts of the local economy, have
experienced important changes in their structures. For example, the region’s
wood product markets now simultaneously focus on very high-quality 
products (e.g., harvests of furniture-grade red oaks and other fine lumber)
and on low-quality products [e.g., harvest of pulpwood for the production 
of both paper products and reconstituted structural materials (Haynes et al.
1995)]. The recreation and tourism sector has experienced an expansion in
demand for activities as well as a broadening of the tourism trade with new
foci on high-adventure and ecotourism trips.Timber harvesting and tourism
are not often complementary activities, so expanding demands for both
types of output have increased conflict between the two sectors of the local
economy. This conflict is borne out in public-land-management debates.

Social changes and economic growth have also had important direct
implications for the natural environment. Air pollution derived from other
regions of the eastern United States (e.g., the Ohio Valley and Atlanta 
metropolitan area) has impacted visibility and damaged high-elevation
ecosystems in the Appalachians (SAMAB 1996c). Additionally, forest
insect and disease populations have greatly influenced the structure and
function of forested ecosystems. The best-known historical episode is the
chestnut blight (Cryphonectria parasitica), which eliminated the dominant
canopy tree species and completely restructured the region’s forests in the
1930s [e.g., Hepting (1974)]. Since then, exotic insects, such as the balsam
woolly adelgid (Adelges piceae) and gypsy moth (Lymantria dispar), have
emerged as important forest pests that continue to impact the region’s
forest cover [e.g., Liebhold et al. (1992)]. Emerging exotic diseases portend
additional impacts. For example, the recent emergence of dogwood anthrac-
nose (Discula destructiva) has raised concerns regarding the viability of a
species that has direct tourist appeal as well as ecological significance
(Daughtrey et al. 1996).

Water knits together the region’s landscape and connects headwaters in
the Southern Appalachians with many growing population centers, includ-
ing Richmond, Atlanta, Knoxville, and Charlotte. In the headwaters, land
use and resource management influence not only the quality but also the
quantity of water delivered to these areas. As these southern metropolitan
areas experience rapid population growth, water indeed may become the
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most valuable resource commodity produced by the Southern Appalachian
region. Its in situ value is likewise high in terms of ecosystem function and
recreation appeal, and certain headwater areas are especially vulnerable to
damage from alterations, especially ongoing land-use changes (SAMAB
1996b).

These social and economic forces combine with a broad suite of bio-
physical interactions in forest ecosystems to define a varied and decidedly
complex environment for public land management in the Southern
Appalachians. While much research had investigated specific aspects of
these complex systems, the SAA was the first attempt to bring together a
system-level interdisciplinary assessment of all these issues.

Another important motivation for conducting an assessment was 
provided by changes in the form of the U.S. Department of Agriculture
(USDA) Forest Service planning. In the Forest Service planning system,
long-range plans require periodic updating, and the planning process is
designed to trigger new analysis whenever new resource issues emerge.
The constellation of issues described above, along with a fundamental shift
in public-land-management philosophy had, in the years leading up to the
assessment, indicated a need to revisit plans for all the national forests in
the region. The need for a comprehensive regional evaluation of resource
issues in support of national forest planning provided one of the most 
substantial motivations for conducting a regional assessment.

Shifts toward ecosystem management on the national forests also defined
a fundamental need for information on forest systems at a regional level.
Ecosystem management, an emerging and changing approach to resource
management, demands a new and extended complement of knowledge
(Gottfried et al. 1996). Defined as a hybrid of traditional resource man-
agement, conservation biology, and landscape ecology, ecosystem manage-
ment requires a broader scientific foundation for management as well as
information and knowledge compiled at broader scales (Christensen and
Franklin 1997). For example, effective decisions on a national forest may
depend on understanding the functional role of that national forest in its
broader regional landscape (Swallow and Wear 1993). This approach also
suggests a need to gauge disturbance regimes throughout ecosystems and,
therefore, a need for understanding the social as well as the ecological
context of natural resource decisions. Ecosystem management clearly
expands the information needs of resource managers. Modeling has a strong
role to play in integrating these multiple dynamics and playing out their
cumulative effects on resource systems.

4.3 Organization of the Assessment

While the USDA Forest Service had the strongest and most direct need 
for knowledge to support science-based ecosystem management, other
agencies had similar needs. Institutional barriers between federal agencies
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and between federal and state agencies are formidable and can provide 
a strong disincentive for cooperation, especially when natural resource
agencies’ budgets are in decline. Fortunately, a unique mechanism for 
coordinating the activities of agencies in matters regarding the Southern
Appalachians already existed. Chartered in 1988, the Southern Appalachian
Man and the Biosphere Cooperative was established to provide a mecha-
nism for developing cooperative initiatives between public and non-
governmental groups to address issues of regional interest (see SAMAB
2001). While the interagency agreement for SAMAB did not explicitly
commit agencies to any kind of specific support, it provided the essential
institutional framework for bringing together these multiple interests when
appropriate, and perhaps more importantly, it documented a common inter-
est in the Southern Appalachian region. This organization proved to be a
critical foundation for forming and conducting the SAA.

Through SAMAB, an executive team was convened to define the process
and to sort out logistical aspects of the assessment, including interagency
coordination. The initial step was to clearly define the geographic and 
conceptual scope of the SAA. The conceptual scope of the assessment was
developed through a series of public meetings. With a facilitated-workshop
approach, these meetings solicited input on the resource issues that needed
attention. These issues were then used to develop a set of specific questions
regarding resources and their uses in the Southern Appalachians. Once the
questions were defined, the executive committee, working through two
assessment co-leaders from the USDA Forest Service, grouped issues into
thematic areas and recruited assessment teams for each area. The four
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broad theme areas were: terrestrial, water, air, and social/cultural/economic.
Researchers, managers, and analysts comprised the teams.

As shown in Figure 4.1, the geographic scope of the assessment was
defined as a contiguous 37.4-million-acre area, primarily in the mountains
but also in the interspersed ridge-and-valley areas stretching from north-
ern Virginia to northeastern Alabama. Public ownership comprises about
17% of the land area in this region, with more than 90% of the public land
managed as national forests (Figure 4.2). The assessment addressed issues
at landscape and regional scales, necessarily evaluating both public and
private lands in the region.

Figure 4.3 shows the configuration of the various assessment teams, the
executive team, a public affairs team, and a writing/production team. The
assessment involved the efforts of more than 100 participants, representing
10 federal and several state agencies as well as various universities in the
region.
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4.4 Process

The SAA endeavored to bring together the best available knowledge to
address the assessment’s questions in a short time. From organization to
publication, the assessment took only 2 years to complete. Organizers of
the SAA took lessons from earlier regional assessments but had consider-
able latitude to design a process that matched the issues at hand. Four 
conceptual guidelines framed the resulting effort: (1) the assessment would
compile information, but it would not prescribe action or lead directly to
specific decisions, (2) the assessment teams would not conduct new origi-
nal research or compile new data but would use the best available existing
information, (3) efforts would be strictly limited to answering the specific
questions of the assessment, and (4) the process would be accessible to the
public.

The decision not to decide (i.e., designing the assessment as an 
information-gathering rather than as a decision-making process) had
several important implications. Most significantly, it meant that an environ-
mental impact statement and its attendant formal processes would not 
be required. This allowed the assessment’s leaders to fit a process to the
region’s needs and allowed for considerable flexibility in designing that
process, especially as it related to public involvement. Additionally, because
there was no explicit resource management outcome involved, constituents
could engage in the assessment’s process without engaging in gamesman-
ship intended to influence the outcome of a decision.

The decision to use only available information and not to collect and
analyze new data had two important implications. One was that the time
frame of the assessment was compressed, thereby reducing the time 
commitment of scientists to the project. By limiting the time frame, the
SAA was able to engage more scientists and perhaps scientists of higher
caliber than would have otherwise been possible. Another important impli-
cation was that the costs of conducting the assessment were lower than
would have been required had primary data gathering and analysis been
pursued.

Assessment teams addressed only the set of specific questions developed
through the public involvement process. Because the questions communi-
cated the specific objectives of the assessment to the interested public and
the participating agencies, they helped build trust between assessment
organizers and the public. By treating these questions as a de facto contract
(i.e., not engaging in unilateral change) the assessment organizers were 
able to define and control the limits of the scope of the SAA. Any change
to a question required approval by the executive committee. Building trust
was especially important in the Southern Appalachians, where 83% of the
land being analyzed was in private ownership and concerns regarding 
government agencies analyzing data from private lands could have been
substantial.
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The SAA developed a process that was accessible to the public. All 
meetings of science teams and the executive team were managed as public
meetings with advance notice and with mechanisms for discourse between
the interested public and scientists and analysts conducting the assessment.
This unprecedented approach to conducting the assessment’s activities also
served to build trust in the conduct of the assessment. Perhaps most impor-
tantly, it provided a platform for the discussion of complex resource issues
among a broad complement of interest groups.

4.5 Assessment Results

A project can be evaluated in terms of its products (i.e., the reports and
data sets) and its outcomes (i.e., perceptible changes in process, reductions
in conflict, and new approaches to on-the-ground decision making). Prod-
ucts are tangible and readily measured, while outcomes may be much more
difficult to pin down. In spite of being more difficult to measure, outcomes
are more substantive consequences of an effort like the SAA. While gov-
ernment reports have a propensity to gather dust, changes in institutions
and ways of doing business can have important and enduring effects on the
condition of land and resources.

4.5.1 Products
The initial product of the SAA was a five-volume set of documents 
and several data sets addressing the specific questions in each of the four
theme areas (Southern Appalachian Man and the Biosphere Cooperative
1996a–e). The reports summarized existing knowledge regarding ecological
and social systems within the region, a synthesis of data, and a summary 
of key findings. Five thousand copies of the four technical reports and nine
thousand copies of the summary report were produced and rapidly 
disseminated.The reports were also made available in a downloadable form
on the World Wide Web. These products were subsequently used by both
public resource managers and public interest groups to address forest-
planning issues on the region’s seven national forests.

It is implausible to provide a complete listing of the findings presented
in the technical documents. Resource conditions and trends were docu-
mented, and several emerging issues and concerns were identified. As a
sampling of these findings, consider that the SAA

1. Documented and quantified social demographic and attitude changes
in the region (SAMAB 1996d, pp. 17–70)

2. Documented changes in the economic structure of the region (SAMAB
1996d, pp. 71–76)

3. Identified the structure of timber supplies and demands (SAMAB
1996d, pp. 89–116)
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4. Examined the role of public lands in evolving timber markets (SAMAB
1996d, pp. 117–125)

5. Charted changing demands for recreation (SAMAB 1996d, pp. 169–
173)

6. Defined changes in recreation opportunities resulting from congestion
(SAMAB 1996d, pp. 159–162)

7. Charted changes in terrestrial habitats and the relative position 
of public lands in providing various types of habitat (SAMAB 1996e,
pp. 21–38)

8. Documented recent and anticipated changes in early-successional 
habitats (SAMAB 1996e, pp. 26–28)

9. Identified rare plant communities and their distribution by forest 
ownership classes (SAMAB 1996e, pp. 11–25)

10. Charted the effects of various health factors on forest ecosystems, such
as oak decline and gypsy moth (SAMAB 1996e, pp. 103–131)

11. Evaluated trends in forest vegetation caused by human and other 
influences (SAMAB 1996e, pp. 93–102)

12. Identified changes in atmospheric pollutants and their potential
impacts on forest ecosystems (SAMAB 1996c, pp. 53–62)

13. Examined the potential contribution of prescribed burning to particu-
late levels (SAMAB 1996c, pp. 21–26)

14. Defined the current and potential future effects of human activities on
the quality of water flowing from the Southern Appalachians (SAMAB
1996b, pp. 89–120)

15. Examined recent changes in the demand for water in the region
(SAMAB 1996b, pp. 121–132)

In addition to the findings presented in technical reports, another tangi-
ble product of the assessment was a suite of data sets addressing ecological
and social components of the region. These data sets were made available
on compact disks and on the World Wide Web (http://samab.org/data/
SAA_data.html). Planners as well as researchers made direct use of the
data sets in subsequent analyses.

4.5.2 Outcomes
Outcomes are difficult to measure for a process like the SAA, where the
objective was to improve the knowledge base for conducting ecosystem
management.To ascertain the types of outcomes that accrued, I interviewed
several forest planners and scientists in the region who were either or both
(1) involved in the SAA and (2) engaged in the forest planning that was
conducted following the assessment. This informal survey provided some
insights into the various ways these groups perceived, used, and valued 
the assessment. However, it should not be viewed as a representative
sample.
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National forest planners in the Southern Appalachians drew directly
from the assessment findings to conduct the initial stages of national forest
planning.These stages, collectively termed “the analysis of the management
situation,” are designed to set the context of the planning exercise by
placing each national forest in its physical, biological, and social settings and
to define the broad issues to be addressed by each plan. For planning 
conducted prior to the SAA, each of the seven national forests within 
the region had completed independent “analyses of the management situa-
tion.”The SAA provided the first coordinated ecosystem-level view of these
national forests that was clearly linked to their impacts on ecosystems in
the Southern Appalachians.

The results also provided a mechanism for coordinating subsequent
phases of planning across the forests and represented a substantial broad-
ening of scope in forest planning. By taking a regional and ecosystem
approach, the assessment allowed managers to develop a perspective on the
comparative advantage of the national forests for influencing both ecologi-
cal and economic systems. For example, the assessment showed that private
lands were generally providing adequate amounts of early-successional
wildlife habitat, while a scarcity of late-successional habitat was evident
(SAMAB 1996e, p. 27). A comparison of age-class distributions between
ownerships indicated that national forests had a comparative advantage for
producing the latter type of habitat. Likewise, analysis of timber markets
indicated that national forests had a relatively minor role to play in total
fiber production, but controlled a disproportionately large share of the
inventory of the highest-quality timber (SAMAB 1996d, p 117). This obser-
vation suggested a strong position of national forests in an important
segment of the local timber economy, and conversely it identified segments
where national forests did not have a strong position.

This coordinated approach to analysis both avoided the costs of dupli-
cate data and information gathering and improved the quality of data
brought to bear on that planning. It therefore seems probable that the 
SAA provided a more cost-effective approach to this information gather-
ing. More importantly, the SAA provided a means for considering national
forests within the context of the entire ecosystems and social systems within
which they reside, a critical first step in the design of effective ecosystem
management strategies (Christensen and Franklin 1997). It also provided
for the first time an integrated social/ecological knowledge base and 
database for use by forest managers and analysts.

Another important outcome of the SAA was that it established what 
Wondolleck and Yaffee (2000) have termed a “community of interest”
focused on Southern Appalachian ecosystems. Prior to the SAA, scientists,
planners, and the public at large had all addressed various, sometimes
common, issues regarding the Southern Appalachians but in separate and
generally nonintersecting spheres. The assessment, through its public
involvement process, brought these groups together to form a new broad
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community of interest, thereby focusing the attention of all groups on a
common set of resource questions.Perhaps more importantly,the assessment
provided a structured platform for discourse among these varied groups.

A community of interest often is ephemeral, and this one could easily
have dissipated at the conclusion of the assessment, but it has been main-
tained through two important mechanisms. One is an annual conference
still held by SAMAB to address regional ecosystem issues from both
research and management perspectives. The other is through the forest-
planning process. The USDA Forest Service adopted and extended the
SAA’s public involvement process for conducting national forest planning
in the region. In addition to using the same approach to public involvement,
the Forest Service also chose to conduct a coordinated planning approach,
in effect coordinating their ecosystem management plans at a regional scale.
The Forest Service formally defined the role of the SAA in defining “an
ecological approach to planning” in a notice filed in the Federal Register
(1996). The relationships between public interest entities and public land
managers established through the SAA have provided a durable and broad
platform for discourse on ecosystem management issues within the region.

Another outcome of the SAA, and one that may have far-reaching
effects, was the establishment of relationships between managers and
researchers in the Southern Appalachians. There have been three conse-
quences. One is ongoing consultations with researchers as planners
encounter new problems on their respective forests. Another is a com-
plement of management-relevant studies that have been established in 
the wake of the SAA. The SAMAB reports 19 research projects that 
specifically use data compiled through the SAA, and several other projects
are also under way (SAMAB 1999).A third outcome was the establishment
of the Southern Appalachians as a focal area for coordinated interdiscip-
linary research within the Southern Research Station of the USDA Forest
Service (USDA Forest Service 1997).

According to conventional wisdom, imitation is the highest form of 
flattery. Two assessments, the Ozark-Ouachita Highlands Assessment
(USDA Forest Service 1999) and the Southern Forest Resource Assess-
ment, have been spawned in the southeastern United States since comple-
tion of the SAA. In both cases, multiple-agency approaches have been 
used, and assessment organizers have modeled their approaches on the
SAA. For example, the structure of the public involvement processes and
science–management collaborations developed by the SAA have been
adopted in very similar form in both efforts.

4.6 Lessons

Several lessons can be taken from the efforts of the SAA. How well they
transfer to other efforts may be variable, but all should provide useful
insights into how to frame questions as well as how to approach science–
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management collaboration when addressing complex ecosystem manage-
ment issues.

Lesson 1. Effective ecosystem management on public lands requires 
meaningful collaboration among managers/planners, scientists, and the inter-
ested public. Ecosystem management can be viewed as a science-based
approach to managing natural resources, thereby requiring interaction
between scientists and managers. However, ecosystem management is also
a process that requires making difficult decisions (i.e., making tradeoffs)
involving substantial public assets and should therefore involve the full
suite of interested and affected parties. To leave out the public interest 
suggests (falsely) that mangers can isolate “scientifically correct” manage-
ment solutions to these complex problems. It is important to remember that
knowledge can illuminate the potential consequences of alternative actions,
but only rarely does it lead to an unambiguous conclusion regarding the
correct decision (Cortner et al. 1999).

The SAA developed an effective approach to the three-way exchange of
information. Important elements included (1) developing early public own-
ership in the process through an initial public scoping of issues, (2) settling
on a fixed set of questions to guide the assessment as it addressed issues
(this defined a tacit contract with the interested public and was a founda-
tion upon which additional trust could be built), and (3) providing complete
access to assessment deliberations through the use of a structured public
meeting format, again promoting trust in the process.

This lesson has implications for modeling efforts that are targeted toward
resource management. For the modeling results to be accepted, stake-
holders need to be involved enough to build ownership of the process. The
modeling process should be designed to address a specific set of questions.
The model should be available, and its documentation should be clear,
so that the stakeholders accept the modeling process. Access to modeling
decisions (e.g., defining inputs and forecast assumptions) seems necessary
to build trust.

Lesson 2. Where jurisdictions overlap, meaningful coordination of 
different government agencies can enhance, indeed may be requisite for, the
development of effective ecosystem management strategies. Because ecosy-
stem management addresses the structure and function of very large,
complex systems, it clearly defines a situation where considerable returns
might accrue to collaboration. Clearly, coordination of actions across mul-
tiple landowners and other institutional entities can enhance the quality of
resource management and the quality of ecosystems. However, federal and
state agencies often can only address portions of these systems in pursuit
of their different missions. The SAA formed an effective multiagency 
collaboration that was facilitated by a unique cooperative arrangement.
SAMAB links nine federal agencies in an institutional framework that 
provides a mechanism whereby efforts within the Southern Appalachians
can be linked to or filtered by other relevant agencies but does not bind
members to specific levels or forms of support. This type of organization
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allows for a place-based approach to agency activities that can greatly 
complement mandate-based activities through coordination.

Modelers should bear in mind that agencies at different levels of 
government may have responsibility for managing different components of
ecosystems. For example, national forests manage for wildlife habitat needs,
but state game agencies have responsibility for managing wildlife popula-
tions. For models to effectively inform management, the various parties 
who “own” components of the problem need to participate as partners in
informing the development and application of relevant model components.
Without this type of cooperation, decisions based on the model may not
have standing among the affected parties.

Lesson 3. Applying existing data, models, and knowledge to problems can
enhance and improve resource management efforts. Another way of stating
this lesson is that innovative management solutions do not necessarily
require innovative or new science. Creative application of knowledge to
these complex problems can be very productive. Given the adoption of
technology and findings from the SAA in forest planning that followed, it
can be argued that existing knowledge regarding ecosystems had not been
fully applied in these management and planning spheres. Researchers,
acting through assessments, can serve a very important purpose by 
translating and delivering information from science and by delivering the
knowledge in a form that can be consumed by planners and mangers.

An important aspect of this lesson is that the most effective application
of science to ecosystem management may not come through the standard
pursuit of science. Rather than specify and challenge hypotheses through
new investigations, scientists may provide the greatest service through the
review, synthesis, and distillation of existing knowledge. These types of
effort may not hold currency within the scientific community and, there-
fore, may discourage scientists from participating in ecosystem assessments.
This problem poses a critical challenge for both research and land 
management organizations.

This lesson implies that models that apply existing knowledge to current
problems may yield considerable benefit. A corollary to the lesson is that
modelers should avoid the common trap of solving the scientist’s problem
instead of the manager’s problem. Modeling efforts that link relevant
knowledge from different disciplines (e.g., economics and ecology) may be
especially beneficial to managers.

Lesson 4. The greatest return from assessment activities may be in 
derivative activities that follow the assessment activity proper. An integrated
management–science assessment or problem-solving effort can provide a
useful connection among scientists, resource planners, and managers. In the
SAA, these results took two forms. One was the establishment of relation-
ships between individuals. Planners working within the region developed
several contacts with scientists working in the region. Additional derivative
effects took the form of research projects developed either to address ques-
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tions raised by the assessment or facilitated by data sets compiled through
the assessment. Accordingly, there could be substantial returns to installing
a process for promoting and extending these types of relationships. In the
wake of SAA, SAMAB has continued to play an important role in enabling
dialogue within the broad community of interest that emerged from the
assessment (e.g., through its annual conference on Southern Appalachian
issues).

From the modeler’s perspective, an assessment activity offers an op-
portunity to thoroughly define a set of questions immediately relevant to
managers. The assessment proper calls for a short-run analysis that takes
advantage of existing knowledge. The follow-up to an assessment may be a
long-run effort to align research efforts with management needs.

4.7 Discussion

Bioregional assessments, as a relatively new genus of scientific inquiry,
provide a distinct and important set of challenges for the development and
application of models. Clearly, they address multiple problems in complex
systems where models could provide useful insights. By virtue of their 
connections to public interests and management challenges, bioregional
assessments have the potential to define the most important questions that
need to be addressed (i.e., they can focus the attention of scientists on the
questions that need to be addressed rather than on the questions that 
can be addressed). They also serve to define the critical linkages between
important causes and effects and between models of various disciplines.
Assessments such as the SAA can be viewed as meta-models. That is, they
take vast quantities of inputs from interested publics and a variety of 
data sources, process this input through computer models and the organic
computers of scientists and resource analysts, and yield a set of outputs 
in the form of both quantitative and qualitative findings. However, these
meta-models are far removed from the mechanistic and internally consis-
tent integrated ecosystem modeling frameworks that have been anticipated
for some time (Holling 1978). Instead, the assumptions, scales, and relative
certainties of the various components can differ widely within assessments,
and the lack of interdisciplinary integration may identify one of their 
greatest weaknesses (Johnson et al. 1999). Indeed, assessments may provide
their greatest service in pointing out the ultimate limits of current under-
standing, modeling, and approaches to ecosystem and social analysis for
addressing broad-scale and complex ecosystem management issues.

Perhaps it is best to view broad assessments as a necessary initial step in
defining the scope and structure of an integrated modeling framework that
could provide a comprehensive analysis of policy and management-relevant
questions at appropriate scales. Assessments may indeed be needed to both
define the critical questions and identify the links between modeling 
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components before such modeling could proceed. Scientists involved in
these efforts are likely to find many of their models incapable of produc-
ing information at scales that match the questions at hand. Accordingly,
broad assessments could and should encourage scientists to question and
redirect the focus of the questions they pursue in their studies and the
design of their models.
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5.1 Introduction and Organizing Frameworks

The issue of addressing barriers to the use of models in environmental 
decision making can best be considered in the context of (1) the organiz-
ing framework developed by the U.S. Environmental Protection Agency
(USEPA 1992) for conducting ecological risk assessments; (2) the asso-
ciated process for developing policy-relevant conceptual models of ecolog-
ical systems and their responses to stressors (Gentile et al. 2001); and (3)
the emerging analytical/deliberative process to engage scientists, decision
makers, stakeholders, and the public in bringing science to bear on envi-
ronmental decision making developed by a panel of the National Research
Council (NRC 1996). This chapter briefly discusses these frameworks and
considers several issues that need to be addressed to enhance the utility of
ecological models.

5.1.1 Framework for Ecological Risk Assessments
Ecological risk assessment is a relatively new field derived from evaluating
risks to human health from toxic chemicals (NRC 1983). The technique
combines the quantifiable terms of hazard (the inherent ability to cause
harm) and exposure (the quantity experienced by humans) into a proba-
bilistic assessment of health risk.

Recognizing that the human-health-based risk assessment framework 
of the NRC “red book” was inadequate to address the wealth and com-
plexity of ecological risk issues, the USEPA developed an ecological risk
assessment paradigm (Harwell and Gentile 1992; USEPA 1992, 1996, 1998;
Fava et al. 1992; Gentile et al. 1993; van Winkle and Kadvang, Chapter 3,
this volume) that has subsequently been widely used in environmental
assessments. Ecological risk assessment is the process of evaluating the 
likelihood that adverse ecological effects occur as a result of exposure to
one or more stressors. The ecological risk assessment framework provides
a systematic method for identifying, organizing, and analyzing diverse 



environmental information to produce a qualitative or quantitative state-
ment that assesses the magnitude and probability of adverse effects. The
risk assessment process can also be used less rigorously to provide a basis
for developing a relative ranking of potential risks. Relative risk assess-
ments can reduce the dimensionality of the problem, provide the basis to
prioritize research activities and allocate resources, and assign relative risks
among options [see Harwell and Kelly (1987); Harwell et al. (1992); USEPA
SAB (1990a,b)].

The framework for ecological risk assessments (Figure 5.1) has at its core
the elements of stress regime (exposure) characterization and ecological
effects characterization. The purpose of this paradigm is to provide a 
systematic framework for identifying and quantifying the causal pathways
linking anthropogenic or natural processes, their resulting environmental
stressors, and ecological effects.The stress regime characterizes exposure to
one or more stressors, including the temporal/spatial patterns and variabi-
lity of multiple natural and anthropogenic stressors (Harwell and Gentile
2000). Ecological effects characterization must address the inherent diver-
sity of ecosystems and the extreme range of scales (in time and space) that
simultaneously operate in ecosystems. These two elements of ecological 
risk assessments are analyzed through a three-step process: problem 
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formulation, analysis, and risk characterization. These steps can be viewed
as an iterative, highly interactive modeling process that evolves to address
the unique types of questions in each phase.

The purpose of the problem formulation stage (Figure 5.2) is to define the
spatial, temporal, and biological scope of the risk assessment. Problem for-
mulation involves an initial planning step that integrates scientific,
management, stakeholder, and public preferences into a clear statement 
of goals and objectives for the study. The problem formulation stage is 
centered on (1) identifying the at-risk components of the ecosystems and the
environmental stressors that may affect those components; (2) charac-
terizing stress–response relationships, including the spatial extent of the 
co-occurrence of the stressors and at-risk components; (3) selecting ecolog-
ical endpoints for assessing environmental condition that capture the health
of the system in a socially relevant context; and (4) developing conceptual
models that describe, qualitatively or quantitatively, the potential causal
relationships among human activities, societal drivers, environmental 
stressors, and co-occurring ecological systems.

What separates the ecological risk paradigm from other (e.g., human
health) risk paradigms is the challenge of defining the appropriate end-
points that reflect the intersection of scientific and social values. Evaluat-
ing ecological health requires a suite of ecological endpoints spanning
organizational scales (population, community, ecosystem, and landscape;
Harwell et al. 1990; Kelly and Harwell 1990; Harwell and Gentile 1992).
Ecological endpoints are ecosystem-specific and are selected to separate all
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possible ecological effects from those effects that are significant to the
ecosystem and/or to society (Harwell and Long 1992; USEPA 1992,
1998; Gentile and Harwell 1998). Criteria for selecting endpoints include
(1) identification of their ecological importance (e.g., important structures
and processes) or societal importance (e.g., economic or aesthetic species,
water supply, and flood protection); (2) consideration of organizational
hierarchy, including species, ecosystem, and landscape scales; (3) suscepti-
bility to the stressors of concern; (4) identification of critical structural and
functional attributes that can be used to characterize the state (health) or
change of health of the regional environment; and (5) signal-to-noise ratio
(that is, the ability to discriminate changes in endpoints from natural 
variability) (Kelly and Harwell 1990). Selection of ecological endpoints 
is critical for our purposes here, because each and every selected end-
point should be addressed in an ecological risk assessment. Consequently,
the most effective and, therefore, most used, models will be those that 
incorporate and provide output specific to the selected ecological 
endpoints.

Problem formulation addresses the critical issue of reference or 
benchmark conditions (Figure 5.3). Benchmarks are essential if scientists,
decision makers, stakeholders, and the public are to understand the 
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relationships among historical, present, and potential future environmental
conditions. That is, the reference conditions provide the context for 
evaluating environmental goals and the success or failure of management
to achieve those goals or desired ecological conditions (Harwell et al.
1999b). Again, a central objective for using models for ecological assess-
ments would be to project the state of the ecological systems vis-à-vis those 
reference, benchmark, and desired conditions. For example, the reference
conditions (Figure 5.3, rectangles) refer to both upper (minimal perturba-
tion) and lower (maximum perturbation) bounding conditions for the
essential ecosystem characteristics of concern for the assessment. For many
situations, the upper boundary may be unattainable (e.g., restoring the
Everglades to 1800 predevelopment conditions).The lower boundary could
represent the elimination of the habitat completely. The desired conditions
(Figure 5.3, ellipses) are meant to represent the ultimate desired goal to be
achieved (the target state of the system at the completion of restoration).
In many cases, the extant ecological condition is far removed from the
desired condition, and progress towards restoration would be indicated
more clearly if a set of intermediate conditions were established as bench-
marks or milestones for managers and scientists to assess the efficacy of
their actions and progress towards the goals. Note that benchmarks are
needed on both sides of the current condition to determine the direction
of response.

In addition, all states (reference, desired, current, and benchmark) have
both an ecological component and a stressor component. It is important to
note that nothing in this framework is meant to signify static conditions.
Rather, each benchmark or reference condition and the characterization 
of the actual ecosystem explicitly incorporate natural variability as well 
as processes like succession or other directional changes over time and
space.

The analysis phase of the ecological risk assessment focuses on develop-
ing and testing methods and models, conducting experiments, and analyz-
ing data to characterize stress regimes and to establish stress–response
models. The ecological stress–response relationships are essential to pre-
dicting ecological consequences from resulting changes in the stress regime,
which provides the risk manager and decision maker the ability to evalu-
ate, a priori, alternative management or remedial options.

Finally, risk characterization integrates stress and effects into a predic-
tive and probabilistic statement of the risks and uncertainties that is to be
used along with societal and economic factors by the decision maker. As
such, the risk characterization phase of the risk assessment, like problem
formulation, is a critical point of intersection among the risk assessor, deci-
sion makers, and the public (NRC 1996).

Thus, when viewed from the ecological risk assessment perspective,
modeling needs in support of decision making differ for the different 
phases of the assessment process (problem formulation, analysis, and 
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integration). The focus of problem formulation is on the development of
appropriate conceptual models (discussed below) that clearly describe the
potential causal linkages between the ecosystems and ecological attributes
at risk, the stressors potentially affecting these ecosystems and attributes,
the scientific bases for analyses, and the particular management issues 
being addressed. Quite different model needs exist for the analysis and
characterization phases. For the analysis and risk characterization phases,
model needs focus on the development, availability, and application of
quantitative models that address the selected ecological endpoints and 
can assess the condition of those endpoints in the context of reference,
benchmark, and desired ecological conditions. For these more quantitative
and predictive models that are useful for the analysis and integration phases
of the ecological risk framework, the central issue is the degree of confi-
dence scientists, stakeholders, and decision makers have in the model
results.

5.1.2 Utility of Conceptual Models
The term conceptual model can be viewed as qualitative or descriptive state-
ments or hypotheses concerning the nature of causal relationships among
human activities, the resulting anthropogenic stressors, and their impacts on
human and ecological systems (USEPA 1992, 1998; Barnthouse and Brown
1994; C. Harwell et al. 1999a; Suter 1999a,b; Foran and Ferenc 1999; Harwell
and Gentile 2000; Gentile et al. 2001). Conceptual models are an especially
important initial step in the analysis of multiple stressors and of the cumu-
lative ecological effects as well as in understanding the ecological conse-
quences of management alternatives at regional scales. For site-specific
environmental assessments, conceptual models should be developed as a
tool for describing the causal relationship between human activities, envi-
ronmental stressors, at-risk valued ecological resources, and their associated
ecological endpoints and measures. This tool can then be used for a variety
of management and communication purposes. A properly developed 
conceptual model effectively captures the scientific understanding of an
ecosystem and its response to natural and anthropogenic stressors. The
process of constructing a conceptual model can engage the scientific 
community in an important dialogue to articulate more clearly the indivi-
dual perspectives of scientists regarding how an ecosystem functions and
responds to stress. Assumptions and proposed relationships must be made
explicit and defended, and in the process, a consensus of the scientific com-
munity may emerge. The conceptual model can do much more, however. It
can be an extremely effective tool for communicating to nonscientists or 
to scientists who have not previously focused on the environmental
problem at hand. The communication function is very important for this
class of complex problems for the very reason that they are complex, and
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a well-presented graphical representation of the conceptual model can
make clear and transparent to all what is meant by particular terms or 
categories, what linkages are considered relevant, etc. If the conceptual
model development process continues through a relative ranking exercise,
then the graphic can readily show what linkages, inputs, system components,
etc. are most important and which are relatively minor. Further, if done
properly, the conceptual model development process can identify the 
most important uncertainties about the ecosystem. Finally, the conceptual
model can be an extremely useful management tool for thinking though the
potential efficacy of management options.

Our experience is that the success or failure of science in support of envi-
ronmental decision making, including models as one set of assessment tools,
fundamentally relates to the explicit definition of the ecological goals,
ecological endpoints, and reference ecological conditions for the specific
problem at hand. Conceptual models are very important tools in this
process, serving to facilitate the synthesis of existing scientific understand-
ing and, along with the active participation by decision makers and stake-
holders, to define the assessment questions and ecological goals. Two brief
examples will serve to illustrate these points. In the Everglades restoration,
a process of stakeholder involvement, directed at the Governor’s level, was
instituted to define spatially explicit goals for the assessment. This process,
in concert with scientific workgroups, translated those goals into specific
hydrologic, water quality, and ecological endpoints and performance crite-
ria that will be used to guide the restoration. Without a general consensus
on these points, the process would have stalled or been mired in litigation.
A second example involves a large superfund site where stakeholder 
participation was minimal. In this situation, scientists took the lead in devel-
oping a detailed set of temporal and spatial goals for both source remedia-
tion and ecological recovery that provided the benchmarks for judging the
efficacy of the assessment. The following is a list of specific issues relating
to this level of confidence in the decision context.

5.2 Issues Related to Confidence in Ecological Models
for Use in Decision Making

Here we will discuss criteria that, if satisfied, will reduce the uncertainty and
increase confidence when using conceptual and quantitative predictive
models. In so doing, we address one of the major barriers to the acceptance
of models in ecological risk assessments. The specific points are not neces-
sarily listed in any order of importance, but inadequate attention to one or
more points will increase uncertainty and thus create barriers to using
models. Conversely, addressing these points is one mechanism by which
uncertainty can be reduced and the barriers can be overcome.
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5.2.1 Generic Issue
How well does the conceptual model capture the understanding of the eco-
logical system and its stressors, both natural and anthropogenic? We, as cog-
nitive beings, are constantly creating a variety of mental conceptualizations
(models, if you will) of our daily activities. We use these to represent 
relationships among a variety of variables. The conceptual models used in
ecological assessments, like all models, are merely representations of reality
as we perceive it. As such, they are neither right nor wrong but a contin-
uum of representations of reality with varying degrees of uncertainty. The
more information and understanding we have, the better our “model” will
capture the essential features of our perceived reality. The purpose of the
conceptual model is to capture, in general terms, our understanding of the
complexity of critical ecological systems and the potential causal relation-
ships of ecological responses to environmental stressors. This approach 
is nothing new; in fact, we intuitively develop conceptual models prior to
constructing analytical or numerical models. What is unique is that, in this
process, the conceptual model is explicit and developed from a consensus
of scientists and nonscientists and, thus, is totally transparent. If done well,
scientists and nonscientists alike will have increased confidence that the
essential elements and relationships of the ecosystem are captured in 
the conceptual model, and that model will address successfully the goals 
of the environmental problem at hand. It is at this early stage of the as-
sessment process that one begins to identify the important sources of 
uncertainty. If the conceptualization is not performed adequately, then
there is a high probability that the assessment will address the wrong ques-
tions and the results will be unreliable at best and irrelevant at worst.

5.2.2 Aggregation
Is the model developed at the appropriate level of aggregation or disag-
gregation? Again, because of the complexity of ecosystems, any model, be
it conceptual or predictive, must reduce the dimensionality of the problem
to a manageable level, thereby aggregating details into more synthetic state
variables or processes. However, too much aggregation can lead to loss of
critical information about stress–effect relationships, or may lose the ability
to address key ecological endpoints of concern. Conversely, too much dis-
aggregation can lead to overwhelming information, unachievable data
needs, or losing the important results in a maze of details.Any of these cases
can lead to dismissal of a conceptual or simulation model as unrealistic.

5.2.3 Extrapolation
To what degree can the model be extrapolated? If a model was developed
for one system or one set of stressors, can it be used for another set of 
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circumstances? In dealing with this issue, it is helpful to separate the actual
extrapolation from the predictive outputs of the model. For example, some
hydrodynamic models can be transferred and used in different locations.
However, the predictive utility will be a function of the site-specific data
collected to set boundary conditions and to parameterize the model.
Similarly, for conceptual models, the structure and processes, both physical
and ecological, may be generalized, but ultimately the utility will be a func-
tion of how well site-specific parameters are represented, particularly the
exposure pathway and process components. For example, an ecological
effects submodel dealing with nutrient effects on seagrasses may be highly
generalizeable and applicable to several sites where seagrasses exist. Thus,
the successful extrapolation of quantitative models relates to the ability of
the model adequately to represent the problem setting and the steps used
in model calibration and validation to the specific issue at hand. In addi-
tion, extrapolation may be dependent on how successful the model has been
when used in other cases. If the model has been widely used for a class of
problems (e.g., hydrodynamics), confidence is enhanced that the extrapo-
lation issues have been addressed. If the model has not used for the types
of problems of concern, then an increased burden is placed on demon-
strating the applicability of the model.

5.2.4 Accuracy and Precision
How well does the model meet the decision-making needs with respect 
to accuracy and precision? Different decisions demand differing degrees 
of accuracy and precision. For example, selecting among different man-
agement options may simply involve ranking the risks of one option over
another, and that relative assessment is sufficient without a high level of
precision. In other cases, a comparison among options may require quan-
titative assessments with high precision and accuracy. For example, a 
water quality model used to predict the discharge concentrations of toxic
pollutants to comply with water quality criteria requires a high degree of
accuracy and precision. The issue is (1) to determine, a priori, the required
level of accuracy and precision for the particular decisions to be made and
(2) to assure that the models selected will meet the criteria. The key here
is that each decision has its own needs relative to model accuracy and 
precision and models must be tailored to meet those goals and needs.

5.2.5 Goals, Endpoints, and Benchmarks
How well do conceptual and simulation models relate to the specific 
ecological goals, associated ecological endpoints, and target benchmarks?
As discussed above, the identification of ecological goals is necessary 
if appropriate decision making is to result. That is, ecological goals are 
the articulation of societal interests in the environment, and ecological 
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endpoints are those decision-making attributes of the ecosystem that relate
to the goals. Thus, for a model to be used successfully, it must relate to the
environmental goals and address one or more specific endpoints; otherwise,
the model is simply irrelevant to the decision-making process, a situation
that occurs all too frequently. Similarly, the models must be able to relate
the results to the reference and benchmark conditions (see Figure 5.3);
otherwise, there is no way to evaluate the consequences or significance of
the results. Issues involved here include having a database that covers the
baseline ecological conditions (e.g., historical, reference, and pristine con-
ditions), a model construct that captures phase shifts in system states under
certain stress regimes, or models that can distinguish among alternate
benchmark conditions. If the model cannot reflect these characteristics, then
there is a significant likelihood that the model results will be misleading.
For example, if a model of an estuarine community does not include 
the discontinuous shift from one dominant benthic habitat to another (e.g.,
seagrass to hard bottom) associated with an environmental gradient, such
as sediment depth, then the model cannot reliably to assess impacts to that
ecosystem from a stressor that affects that gradient.

5.2.6 Model Complexity, Communication to Different
Audiences, and Terminology
How well do the models communicate complexity in understandable terms
to different audiences? Communication can be an important barrier to the
acceptance of models. There are two facets to the communication issue:
appropriately targeting the discussion to the audience and adequately com-
municating the complexity of the model basis and outputs. Audiences for
models may include scientists who are knowledgeable in modeling, scien-
tists and other stakeholders who are not familiar with models, and decision
makers. Similarly, models span a continuum of complexities from those that
are so complex that the details can only be understood by other modelers,
to those that are more accessible and understandable to decision makers,
to those designed to be policy friendly. The policy-friendly models often
have such user-friendly characteristics as (1) ease of changing inputs to
reflect different management options or scenarios and (2) outputs that are
visual and synthetic.

A critical facet of communicating models is to explain adequately the
basis or overall construct of the model and its component elements. In 
addition, one needs to explain the sources of data, their limitations,
the range of applicability, the important relationships built into the model,
etc. The results or outputs of the models should be transparent. One tech-
nique is to use visualization tools to make output relationships clear. In
general, the more attention placed on these communication issues, the more
the model will be used, and the more confidence will be generated in its
results.
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Finally, terminology can be an important barrier to model communica-
tion. It is important that the terminology associated with the model is
described in sufficient detail so that the user understands what is being said.
A generic problem is that modeling terminology (and, for that matter, risk
assessment terminology) includes many terms that have specific meaning
in their respective contexts but that are also used by others to mean 
different or less explicit things. Unless these terms are made very clear,
miscommunications and misunderstandings will inevitably ensue, clearly
creating another barrier to the effective use of the models.

5.2.7 Uncertainty
What are the uncertainties, and how are they characterized and communi-
cated to nonscientists? Scientists and especially modelers are used to
dealing with uncertainties, but managers and the public are not. Uncer-
tainties can arise from a host of sources, including inadequate understand-
ing of the specific system or stress–response relationship, inadequate
databases to parameterize the model, important relationships that are 
not included in the model or have lost their reliability through over 
aggregation, and natural variability in physical environmental conditions.
Some uncertainties can be addressed through improved data collection or
improved model development; other uncertainties cannot be reduced, such
as variability in weather events. In any case, the modeler must characterize
uncertainties in terms that are understandable to the various audiences and
must provide an evaluation of the significance of the uncertainties to the
decision to be made. For the ideal case, there may be many sources of uncer-
tainty, but the model outputs are so rigorous that the uncertainties would
not alter the conclusions. In other cases, the uncertainties are very signifi-
cant and may result in an incorrect decision; this result is common and is a
risk all decision makers face. Finally, how uncertainty is handled within the
model is an issue. For example, will the model use a Bayesian statistical
approach, use Monte Carlo simulations, or bound the range of potential
parameter values? This topic is much-debated and one that deserves equal
attention to how we explain the uncertainties. Therefore, the uncertainty in
risk assessments needs to be made explicit to the decision maker, and
models must have a truth-in-packaging aspect, in terms of both the uncer-
tainties and the analytical approaches used to quantify them. If both of
these elements are made explicit, then the decision makers can have far
greater confidence in the results.

5.2.8 Data and Extrapolation
What are the sources, reliability, density over time and space, and applica-
bility to the specific problem at hand of the data used in the model? A 
universal issue is the question of the appropriateness of the data used to
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develop, parameterize, calibrate, and validate the model. Models are 
simplifications based on sets of information, some of which are specific to
the ecosystem, ecological component, or stressor at hand. Some data are
derived from information on other systems, at other locations, or affected
by other stressors. Thus, there is a continual issue of how appropriate the
information used to develop the model is and how well it reflects the actual
response characteristics of the ecosystem and stressor of concern. If the data
sources and applicability are clear, documented, and relevant, then model
confidence is greatly enhanced. Data are often not site-specific to the
ecosystem or species of concern. For example, toxicological data on dose
responses often are based on one or two species of fish that can be tested
in the laboratory as a surrogate for toxicity to a fish species of concern in
the ecosystem but that cannot be tested experimentally. In that situation, a
case needs to be made on how well the tests can be expected to fit the
species of concern, based on, for example, physiological, taxonomic, or eco-
logical similarities. Likewise, data may be derived from another ecosystem,
such as taken at one lake but applied to another lake. Moreover, many times
data relate to one stressor, but another is being assessed, or there are 
multiple stressors involved. Again, the case has to be examined as to how
reliably the extrapolation can be made (in the context of resulting uncer-
tainties and the significance of those uncertainties). Confidence in results is
built when the case can be made that the important relationships are
broadly based to cover the specific assessment, such as through reliance on
first principles or through demonstration in other similar cases where the
information has been appropriate. A significant model barrier that con-
tinues to require considerable attention, but is beyond the scope of this
paper, is that of cumulative effects from multiple stressors [see Gentile and
Harwell (2001)].

5.2.9 Model Development
What are the model development costs in money and time; how long will
model development take; when will a reliable model be sufficiently ready
for decision support; and what is the value added by having the model?
Even when it is clear that a model would be useful for a decision-making
process, the question arises of costs and time delays in producing the model
and, thus, the decision. Some decisions cannot be delayed until adequate
model development occurs; in that case, other than relying on another
already developed model, there is little to be done for the initial decision
(although the case might be made to proceed with model development
anyway in order to have the tool available for future decisions or to refine
the initial decision.) In other cases, the utility of the model may be very
high, in which case the decision maker has to weigh the pros and cons of
delaying a decision. The value-added assessment basically relates to the
judgment that the model will substantively increase the likelihood of
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making a better or more-defensible or lower-risk decision. In other words,
the availability of the model, and any costs associated with delaying deci-
sions, need to be weighed just as uncertainties are weighed.

5.2.10 Scenarios and Sensitivity Analyses
Do the models have the ability to assess the efficacy of specific manage-
ment options? An important use of models is to assess the implications of
alternate management options or other changes in the system of concern.
Properly developed models can provide tremendous insights by being 
scenario friendly (i.e., able to be used in a straightforward manner to test
different input or parameter conditions). For example, a model being used
to assess the potential consequences of global change on a wetland ecosys-
tem would be much more useful (and therefore more used) if it is easy 
to change the specific weather drivers such as inter- and intra-annual 
variability in precipitation, combinations of elevated temperatures and
altered humidity, or potential evapotranspiration. Allowing pairwise com-
parison of model outputs of selected endpoints with scenarios that are iden-
tical except for one specific factor is a powerful tool for assessing
alternatives and for assessing the importance of one variable over another.
Sensitivity analyses, which examine the relative change in selected output(s)
with change in one or more variables, can be enormously helpful in identi-
fying important uncertainties or major research needs. Conversely, they can
also be important for identifying those aspects that do not greatly influence
the outcome. The more a model can be used for scenario and sensitivity
analyses and the more that visualization techniques are incorporated into
the model to illustrate the message of these analyses, the more useful the
model will be in terms directly relevant to the decision process.

5.2.11 Absolute versus Relative Results
Can the questions being asked of the model be put into a comparative risk
context? Generally it is much easier to be accurate in predicting a relative
result than an absolute one. That is, many times a model is more reliable in
comparing the relative risks between two options than it is in predicting the
absolute outcome for either option. Thus, the demand placed on a model
in a comparative risk assessment may be less, effectively reducing the
importance of uncertainties in the model results. Another way to look at a
comparative ecological risk assessment is as a special case of scenario analy-
ses, except that each major option may itself be examined in the context 
of a suite of scenarios. For example, if two alternate fuels were being con-
sidered for a power plant on a bay and the ecological risks being assessed
are associated with spills of the fuels in transportation to the power plant,
then the risks of each fuel type can be assessed with a suite of scenarios 
of the specific conditions of the fuel spills (e.g., different weather or tide
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conditions). The comparative ecological risk assessment in this case may
require quantitative predictions for each scenario, but with all other aspects
being the same, the fuels can be directly compared, and management 
decisions can be informed about their comparative risks.

5.2.12 Competing Models
If more than one model is available, how can differences be resolved? It is
difficult enough to build confidence in one model, but the presence of a
second or third model can either increase or diminish the confidence levels.
If models are independent but give similar results, confidence may be
enhanced. But if the model results are diametrically opposed, then the
burden becomes one of showing which (if either) model is reliable for 
the question at hand. For very complex situations, such as climate change
or projected hurricane tracks simulated by general circulation or regional
climate models, even the public has become used to differing results from
the differing models. Sometimes it is clear which advice to follow, and other
times it is not so clear at all (except after the hurricane hits). Such matters
tend to be resolved through experience, determining under what conditions
one model or the other is more reliable. But for something like global
change, waiting to see how things actually occur can be costly. Then, the
causes of model differences become very important, and research must be
done to resolve those differences.

5.2.13 Model Errors and Incorrect Decisions
What happens when a model gives what later is found to be incorrect results
and a incorrect decision is made? A serious concern for model usage by
decision makers is when some model, maybe not even the one to be used
for the present assessment, is found to have been poorly conceived and
parameterized and incorrect decisions were made, resulting in adverse 
consequences. This situation diminishes confidence in all models. It is an
inevitable consequence of living with decision making in the presence of
uncertainty that decision makers have to accept the risk of being incorrect,
and the model gets the blame. When scientists and decision makers use
models to give answers even when insufficient information and under-
standing exist, as often they must, an incorrect decision will sometimes
happen. The issue of transparency is very important here and can be
handled in a couple of ways. The first is to show explicitly how the other
model is constructed conceptually and then to clearly demonstrate the
assumptions and limitations of the model, including the major sources of
uncertainty. The second and more useful approach is to recognize that a
range of potential outcomes is possible and to provide an estimate of their
likelihoods as well as an estimate of what is the most probable outcome.
It is also important to remind decision makers that models are simply a 
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construct of reality and, as such, are not absolute; thus, presenting a range
of plausible outcomes is not only desirable but justified. Nevertheless, there
is a greater burden on the scientist to build a better model, to increase con-
fidence in the model, and to communicate the applicability and limitations
of the model in a more transparent manner.

5.2.14 Decision Context
What to do when being sued? The discussions of uncertainty, use of 
scenario and sensitivity analyses, extrapolation, and other issues discussed
above are all affected by the nature of the decision process. One obvious
case is where the model is to be used to produce predictions for an adver-
sarial or litigation process as opposed to being used by a decision maker to
choose among alternative options. Sometimes, the confidence burden is
much higher because an adversary can attempt to challenge the veracity of
the model. And models are ripe for attack by the very nature of the uncer-
tainties, extrapolation issues, complexity, and use for predicting results
outside the range of the experimental evidence. For example, it would be
easy to argue that data based on one species may be wrong when applied
to another, even taxonomically similar, species for the simple reason that
cases can be found where that extrapolation gives wrong results. On the
other hand, in many cases, a particular model is widely used in litigation,
even when it can be demonstrated to be misleading or inappropriate,
because of the precedent of using that model.

5.2.15 Library of Case Studies
How to build on other experiences? One important mechanism to coun-
teract some of the issues related to extrapolation, model inconsistencies, or
living with uncertainties is the development of a library, or at least a book-
shelf, that documents the use of complex models in complex environmen-
tal decision-making situations. Ideally, when a sufficient number of such
case examples are documented, a decision maker will have clear guidance
on the issue at hand and on the utility of models to address that issue. For
example, a wide range of models and their results (e.g., hydrodynamic,
stream flow, soil erosion, ecotoxicology, and ecosystem) have been incor-
porated into regulatory policy during the past three decades. The library
should include not just these successes but also failures, where wrong 
decisions were made or where models were found to be incorrect in their
predictions. Modelers tend not to publish failures, and, for that matter,
decision makers do not often publicize mistakes. Yet these outcomes are
often opportunities to reexamine critically the model construct and assump-
tions, resulting in a much improvement. The ultimate confidence in models
used in the decision processes will ensue when there is a sufficient record
of successes and clear guidance on what not to do.
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5.3 Summary

Several key criteria can be proposed for successfully using models in 
environmental decision making (Figure 5.4). We have found that the devel-
opment of a comprehensive ecological conceptual model in the problem
formulation stage of the risk assessment process is essential, especially for
complex environmental problems, such as

• Assessing how to remediate extensive contamination and ecotoxicity 
of heavy metals in the Coeur d’Alene watershed resulting from more
than a century of silver mining operations (CH2M Hill and URS Corp.
2001)

• Evaluating the risks of alternate management options for the Fire Island
barrier-beach ecosystem (U.S. Army ERDC and HGA 2000)

• Assessing the implications of the South Florida ecosystem restoration on
a broad diversity of ecosystem types (Harwell et al. 1996, 1999c; Harwell
and Gentile 2000)

• Exploring the security implications of environmental problems in the
Caribbean (Stark et al. 1999).

In each of these case studies, the criteria illustrated in Figure 5.4 were
applied successfully.

For predictive or more-quantitative models, particularly those applicable
for the risk analysis and risk characterization/integration stages, the first
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Ecological Conceptual Models — How well do they
• Capture the scientific understanding?
•   Identify the ecological systems and attributes at risk?
•   Define the ecologically and societally relevant endpoints?
•   Illustrate important stress-effect pathways?
• Capture the complexity of the problem with an appropriate

degree of aggregation and disaggregation?
• Communicate to the three audiences and achieve buy-in?

Doing the conceptual model correctly is a key issue
with respect to barriers to use in decision making.

Ecological Analytical/Simulation Models — How well do they
• Provide confidence in results?

Figure 5.4. Success criteria for conceptual and predictive models.



barrier to using models relates to relevancy issues, which are resolved when
the conceptual models are adequately developed. The second barrier to
model usage is confidence that the model will provide reliable results that
are sufficient for decision making; this criterion relates to a host of specific
details in model development, validation, and application. Each of these
details has to be addressed satisfactorily in order to overcome those 
barriers. But that in itself is inadequate, because experiences by decision
makers, nonmodelers, and stakeholders involving the use of other models
for other environmental assessments or resource management decisions
may greatly influence and bias their perspective of the barriers for the
assessment at hand. Barriers are diminished the more that models are 
successfully used and are perceived as having significantly improved the
decision-making process by making more correct, timely, cost-effective, or
defensible decisions. Conversely, the more models are used unsuccessfully,
or at least perceived as so used, the more barriers are raised for future
model use. For example, models that lead to the wrong decision, to a deci-
sion that does not hold up to adversarial scrutiny, to a decision that is too
costly, or to a decision that addresses the wrong problem decrease confi-
dence in the use of models in general. This vulnerability is not limited to
models; the same result occurs for other technological or scientific bases for
uncertain or bad decisions, ranging from decisions about the swine flu to
decisions about having pure oxygen atmospheres for Apollo capsules. But
models are especially at risk. By definition, they are approximations of
reality and, therefore, have inherent uncertainty, which in some circum-
stances can be substantial.Also, models are often presented as magical tools
yet are too obscure for the decision maker to understand, thus requiring
almost blind faith in their usage.

We are at a critical juncture in the use of models to solve environmental
problems. Unlike the historic regulatory issues of the 1970s and 1980s that
focused on local scales and point-source controls, environmental managers
and decision makers must be prepared to make decisions at the watershed
and regional scales and for periods that encompass multigenerational time
scales. The economic and societal consequences of decisions at these scales
are tremendous. To address this emerging class of environmental problems
effectively, scientists and decision makers must now begin to rely on not a
single model but a suite of models (e.g., climate, hydrologic, hydrodynamic,
ecotoxicological, population, community, and ecosystem) to provide the
necessary complexity to evaluate management options at these scales. By
directing careful attention to the issues discussed above, especially the
issues relating to confidence-building and to the communication of models,
and taking particular care to select the most appropriate and defensible
models in the first place, modelers and scientists can make great strides in
overcoming the barriers to understanding and using models in environ-
mental decision making.
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6.1 Introduction

Situations where the use of ecological models would be appropriate include
the implementation of regulations and plans, formation of regulatory poli-
cies and laws, resource management planning, purchase of land and other
private investment decisions, trade policy, environmental security issues,
the NEPA (National Environmental Protection Act) process, litigation,
land-use planning, education, and research. In any circumstance where the
issues are complex, influences and flows are unclear, feedbacks occur, or
outcomes are determined by multiple factors, models can be used to provide
clarity and help to discern the role of potential influences.

Although ecological models might be used in many situations to 
facilitate decisions being made about resource use, often models are not
used or are used ineffectively. Several barriers exist to the successful 
adoption and deployment of ecological models for decision making. These
obstacles can be organized into five generalized categories: communication,
organizational issues, risk aversion, logistical concerns, and the capability 
of models themselves. This chapter discusses these types of barriers and
presents conditions under which they might be expected to operate.
Primary questions to resolve in considering impediments to implementa-
tion of ecological models are, “Who are the participants?” and “What 
are the circumstances in which models are used?” That is, who are the 
model developers, who applies the model, and who are the decision
makers? What are the attributes of the problems? At what stages will the
model be used? Who will interpret the model results? Only by knowing 
the participants in the model formulation and in the decision-making
process and the dimensions of the problems can one determine the extent
to which the concerns addressed below are actual barriers to the use of
models. Therefore, the roles of the players in the decision-making process
as promoters or impediments to the use of models is discussed. Several 
solutions to the obstacles are presented in the following chapters that deal
with the following concerns:



• Evolving approaches and technologies that will enhance the role of 
ecological modeling in decision making

• Data issues
• The toolkit concept
• Science and management investments needed to enhance the use of 

ecological modeling and decision making

Together, these chapters present the current status of the use of ecological
models for resource management and suggest ways to enhance their roles.

6.2 Types of Barriers

6.2.1 Communication Barriers
The first and probably most discussed hindrance to the use of models in
environmental decision making is that of communication (Figure 6.1).
Unquestionably, language barriers exist, because the terms that modelers
use are not all common to everyday language and sometimes are even used
in very different ways than lay language. For example, ecologists consider
disturbance to be part of the natural order of an ecological system; whereas
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Figure 6.1. Types of barriers to effective environmental decision making.



in general terminology, a disturbance is an unnatural and disruptive event.
Similarly, modelers use uncertainty analysis to determine the influence 
on model output of a parameter, given the actual variation it represents,
but the lay definition for uncertainty is merely the unknowns. Some terms,
such as validation and verification, have become so confused in the model-
ing literature that there are calls to abandon them altogether (Mitro 2001).
Other terms have unique meanings depending on the application (e.g., to
a mathematician a vector is a quantity specified by its magnitude and direc-
tion; to a disease specialist it is a transport agent). Furthermore, the general
public sometimes adopts scientific terms but may use them inappropriately.

The call for improved communication skills among biologists (Cannon et
al. 1996) should be particularly heeded by mathematical ecologists and
others who bridge between models and decision making. Attending to the
need to define terms and avoid jargon is part of the communication process,
and educating others about the process of modeling is also important. The
specialized words used by modelers not only add to confusion in commu-
nication, but they can also make it seem as if modelers form an exclusive
clique.The specificity of language used by scientists contributes to the belief
that models constitute a special way of communicating and thus provide
value in their own right.

6.2.2 Institutional Barriers
How an institution is organized (or is perceived to be organized) influences
how information is received and dispensed and how open the organization
is to the use of new ideas or tools, such as models. For instance, in-house
expertise may be considered more valuable than out-of-house expertise for
a particular company, agency, or group. Such groups are not amenable to
the adoption of models that were developed elsewhere. The validity of the
high regard for in-house expertise is not always strong (or even tested), but
the outcome is that the best expertise may not be used or collaborative
enterprises are not pursued. This loss of opportunity is a barrier to the
implementation of particular perspectives and tools, including models.
Communication barriers largely involve language, but also depend on 
organizational structure.

The tension between centralized and decentralized expertise can also
become an obstacle in the implementation of models. For instance, some
Latin American countries have a strongly centralized government, but 
decisions about resource use are often made in a decentralized manner.The
monetary and political resources lie with the centralized government, but
tools, such as modeling, are not always deployed in such a way as to 
recognize the role of local decisions. Thus, the source of power and also the
location of the decision-making process should both be a part of model
design (especially inputs and outputs). Similarly, as alternative methods for
urban stormwater management are proposed in Germany (Mehler and
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Ostrowski 1999) and elsewhere, it is clear that economically and ecologi-
cally sound combinations of central and decentral measures will be a part
of future designs. Yet, present approaches, other than traditional combined
sewer systems, are limited because of use of existing planning tools, tech-
nologies, and stormwater-balance and pollution-load models.

Finally, changes in personnel are quite frustrating to the implementation
of models in a decision-making process. Often, it seems that just as one
supervisor, sponsor, or client becomes knowledgeable about a modeling
process and is comfortable with adapting it to particular issues, a new
person or organizational structure is put in place, and the learning process
must begin all over again or, even worse, is curtailed together. For example,
in the 1980s the U.S. Environmental Protection Agency (USEPA) stopped
work on modeling of integrated assessment as part of the investigation into
acidic deposition because a change in leadership caused the elimination of
several programs, including the one that supported this type of modeling.
But retrospective analysis of the National Acidic Precipitation Analysis
Program (NAPAP) targeted the lack of integrated assessment as one of its
key flaws (Russell 1992). The ongoing need to reiterate the value of models
is necessary within an organization, especially when changes in personnel
or structure occur.

Existing rules, regulations, and statutes of institutions often focus 
environmental decision making on concerns that may differ from the ones
a model would examine. The concept that a model provides clarity in
addressing ecological issues may be contrary to the philosophy that exist-
ing rules, regulations, and statutes provide the best means for an institution
to deal with its resource management concerns. Thus, current procedures
are sometimes a barrier to the use of models in brainstorming. Finally, there
are often jurisdictional and cross-boundary issues that impede the use of
models. For example, a model developed by one agency may not be adopted
by another agency, not because it is a poor or inappropriate model, but just
because it was not homegrown. Such jurisdictional boundaries often mean
that the best modeling tools are not widely adopted.

6.2.3 Risk Aversion
Whether an institution or individuals who are leaders in the institution 
are likely to use models partially depends on how adverse they are to risk.
The natural aversion of humans to risk is a barrier to the use of models in 
decision making. This avoidance is particularly strong when the risk seems
to be near at hand in space or time. The not in my back yard (NIMBY) 
attitude is so pervasive that it is now part of the lingo of siting of waste
(Rabe 1994). It is a part of human nature that people want to reduce or
avoid risky situations. On the surface, the use of models seems to imply
taking a risk for those who are unfamiliar with the tools. However, just the
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opposite is typically the case. Models allow explicit quantification of risks
and require that the relationships between component parts be set forth.
Making clear such values and relations means that the ramifications of 
decisions are more fully specified. Thus, risks are reduced.

Any part of the decision-making process that may be changed also causes
a series of risks. Modelers themselves are uncomfortable with errors inher-
ent in their inputs and outputs and spend much effort checking the data
that is part of the model or validating the model (e.g., by backcasting to see
if historical events can be modeled and investigating any discrepancies).
Another concern is that managers typically do not want to be in situations
where their power or influence can be undermined by a change in under-
standing. The use of models allows risks to be quantified and represented
in spatial and temporal dimensions that are meaningful to individuals.
Often, models allow the playing out of various alternatives, including those
that prove undesirable. For instance, one may project the use of resources
20 years into the future, even if an organization may not wish to go through
the steps of implementing how current policy would play out to that 
20-year vision. Models allow simulated resource use and management to
occur according to scenarios that might not be acceptable to management
or public concerns.

6.2.4 Resource Concerns
Resource concerns constitute a fourth generalized barrier to the use of 
ecological models and can often be traced to inadequate time and funding.
Both risk issues and resource hindrances in the use of ecological models in
decision making often arise from within institutions. Organizations may not
have the appropriate resources, in terms of people, facilities, or structures
that support the use of ecological models. For instance, qualified personnel
who understand the use of models, are familiar with the language of models,
or are able to envision the applicability of modeling results are frequently
lacking. Not everyone may have access to a computer or other equipment
required to run a model. They may not have been trained in the software
being used, or the user interface may be inadequate or downright user surly.
The time required for model development is often on the scale of years and
may be out of sync with the interval for which the tool is needed to make
decisions. Thus, sometimes models are used only if they can be adopted
from other situations (and therefore may not be appropriate for the given
application).

More often, a model is not used because of time constraints. A way 
around this barrier is greater forethought by those who fund the devel-
opment of models for environmental decision making so that the suite 
of models appropriate for the majority of decisions would be developed
beforehand and made available to both the scientific and the decision-maker
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audience when they need it. The funding required for model development 
is often a barrier because the need for data accumulation, conceptualization,
and development of a model is often not given enough value.

One metric of the low value given to conceptual models is how rarely
conceptual models by themselves are published in the scientific literature.
Typically, it is the application of conceptual models that is published. But
in actuality, the development of the conceptual model is often the more
useful task, and the applicability of the conceptual model to a variety of 
situations needs to be further explored. Data availability can also be a logis-
tical barrier to the use of models for resource management. Without the
requisite baseline data at the appropriate temporal and spatial scales, it is
not useful to develop or use a model.

6.2.5 Problems with Models
The last generalized barrier is the capability of the models themselves.
Often, the data are not available or are insufficient, the key processes are
not well understood, or the tools needed to develop a model quickly and
apply it to the situation are lacking so that the model is not developed
and/or adopted to the particular situation at hand. There is great hope,
however, that with expanding capabilities in technology, in the Internet, and
in databases and tools for model development this barrier will be overcome
quickly. Models may not be available that address the primary concerns of
resource managers. However, as more managers get involved in partner-
ships with those who develop models, pertinent questions are more often
considered, and models are specialized to address specific needs.

Another type of barrier to models is the potential for the abuse of
models, thus making it harder for legitimate models to be accepted. One
possible abuse of models is that they can show outcomes with convincing
realism (aka glitz) but can be totally bogus. An additional potential abuse
is concern about interactions that are not captured by a model. The holis-
tic perspective of many models provides opportunities for the arguments
about factors not included in the analysis to spin off into infinite hyperbole.
For example, insights gleaned from models of global environmental values
could easily be sidetracked by discussions about concerns in the inadequacy
of such models (Costanza et al. 1997). A third type of model abuse occurs
when data are extrapolated beyond the range of reasonable use. Data 
are often so sparse that relationships are not plausible or knowable. Such
extrapolation mistakes can be accidental or on purpose. The effect on the
model projection is the same. This potential barrier to the use of models
can best be reduced if the assumptions and sources of information for a
model are clearly specified.

The lack of independent review of models also constrains their effective
use. However, applying the peer review process to models is typically not
possible because the reviewer does not have access to the model. Instead,
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running models in a common environment may be the most effective way
to elucidate their behavior (e.g., Dale and Swartzman 1984; Rose et al.
1991). Of course, obtaining such a serious and credible review can be 
quite time consuming and expensive. A related issue is the absence of 
any formalized way to peer review models and of standardized ways to 
report models, how they were built, the assumptions made, etc. (Aber 
1997). Finally, the awe with which some model results are accepted is 
inappropriate. All models should be carefully evaluated and their assump-
tions, uncertainties, and sensitivities fully explained in the context of the
application.

6.3 Barriers to Specific Players in the 
Decision-Making Process

There are barriers to the use of ecological models that are specific to the
players that are a part of decision making. As mentioned earlier, one of the
key questions involved in developing a model is deciding who the partici-
pants are. In many situations, the key participants are modelers who typi-
cally have a science background; managers who have a science, engineering,
or a policy background; and stakeholders who have a diversity of back-
grounds but who almost always have a passion for the situation (Figure 6.2).
The experience of modelers has two implications. First, the science culture
exerts great pressure to publish new findings.This expectation may produce
a desire to develop a new model or to use a model in a new way so that the
results are worthy of publication. However, often it is the adoption of an
existing model with or without minor modifications that is most useful for
the situation. Second, science often focuses within a discipline rather than
being cross-disciplinary. This narrow focus becomes an issue in developing
models for managing environmental resources because, often, much can be
learned from crossing disciplines. For example, McMahon et al. (2001)
report on developments in network analysis that have built upon inter-
disciplinary approaches. They find that social network analysis is similar to
the analysis of trophic structure in ecological communities and of energy
flow and nutrient transfer because both deal with the problem of how 
to conceptualize and test interactions within complex systems. Also, it may
be that the ecological applications can benefit from the social-network-
analysis applications.

The barriers for managers largely relate to the background of that 
particular manager and the fact that decisions need to be made in a timely
manner. Managers typically are not familiar with the terminology and
approach adopted by modelers. This lack of background applies to the 
particular situation as well as to modeling language, such as uncertainty,
validation, scenario analysis, etc. Most models do not produce a single
answer, yet this is exactly what the resource manager is seeking. Thus,
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having modelers explain the value of depicting a range of variation around
mean tendencies is important to the broad adoption of models.

The barriers attributed to stakeholders largely come from this group
being so diverse. Conflicts in values and differences in background and
understanding often occur within this group. Furthermore, the group typi-
cally has extremely limited resources of time and expertise, restricting its
ability to spend the time necessary to learn about model application and
versatility. But sometimes stakeholder groups include experts who have the
knowledge and background to make a contribution to the use of models
and decision making. Other times, models are developed that facilitate
stakeholder interactions. For example, stakeholder opinions are an explicit
part of a cropping model for a Tasmanian agricultural catchment (Walker
et al. 2001). A model has even been used to demonstrate how stakeholder
contributions can be effectively integrated into the decision-making process
by building upon the capacity of grassroots conservation organizations, such
as local wildlife clubs in Kenya (McDuff 2001). Software is beginning to be
developed that provides stakeholders ways to use resources on the World
Wide Web for multicriteria analysis and decision making, critical examina-
tion of the underlying assumptions, and thus incorporating qualitative and
subjective considerations into quantitative factors for decision making [e.g.,
Zhu and Dale (2001)].
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Figure 6.2. The key participants in environmental decision making and their 
experience relative to the use of models.



6.4 Solutions

Various solutions exist to overcome the barriers presented above. The first
is collaborative decision making, which is an iterative process that involves
all the participants in a decision. Wondolleck and Yaffee (2000) discuss 
the barriers to the effective collaborative processes, several of which are
similar to the obstacles to effective use of models for resource management.
Successful engagement by stakeholders must involve the capability, trust,
collaborative relationships, understanding, joint fact finding, dealing with
conflict, will, and a learning organization (Wondolleck and Yaffee 2000).
The use of models in such collaborative decision-making processes typically
enhances the brainstorming ability of the interaction (e.g., Karacapilidis and
Papadias 2001). Furthermore, web-based models and toolkits [discussed 
by Bartell (Chapter 11, this volume) and Holland et al. (Chapter 12, this
volume)] should allow users to retrieve data stored in remote databases to
further document their arguments and to stimulate exploration for which
decisions best reflect their interests and intentions. Models permit various
scenarios to be examined and role playing, which allows alleviation of
potential problems in conflicting goals among the group. However, since
some groups may have incentives not to reach closure, they may be adverse
to the acceptance of model results, which can lead to a hesitancy to use
models at all.

A second major solution to these barriers is improved technology trans-
fer and greater communication. As the use of computers spreads, more
people become familiar with the language involved in model develop-
ment and use and with the conceptual background of models. Also, there 
is greater familiarity with the techniques of model development and the
data available for models. It will be interesting to see if the next genera-
tion that has grown up with the use of computer games will be more accept-
ing of a gaming approach to scenario exploration and simulation, which 
is basically a model. The types of developments discussed in this volume
(e.g., toolkits of models) should enhance the use of models in resource 
management.

Interestingly, the wide adoption by the general public of weather-model
projections, which are a part of every weather report heard on radio or 
television, was based upon initial efforts by small groups and individuals 
to commercialize the use of weather models. The development and use of
weather models went hand-in-hand with the acquisition of data for those
models. The mission of the National Weather Service is the same as it was
when first established under the U.S. Army in 1870: “to provide for taking
meteorological observations . . . and for giving notice . . . of the approach
and force of storms.” But its mission has been made much easier by the
advent of forecasting models, satellite data on clouds, and radar data on
precipitation. In early years, the meteorological reports were taken by
observer-sergeants at 24 stations and transmitted by telegraph to the central
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office. Flags were used to display the forecast. In 1948, the first primitive
computer numerical forecasts were made on the Electronic Numerical 
Integrator and Computer (ENIAC). In 1955 the Weather Bureau began
development of the Barotropic model, which became the first operational,
numerical, weather prediction tool. All weather forecasts begin with obser-
vations of weather conditions all over the world, and these observations are
now entered into supercomputers that use mathematical models of the
atmosphere to make predictions. Today the pollen count, air quality, ultra-
violet index, and water temperature are often a part of the weather report.
Thus, weather projections are based on a complex set of environmental
measures of the atmosphere, oceans, and land.

The weather-model example shows that it is useful to have research
focused on case studies of environmental decision making showing both
success stories and failures of how a given problem was addressed and
resolved. Such case studies show the delineation of issues of the scientists,
stakeholders, and decision makers and how models can be used.

A set of particular techniques can help deal with the barriers associated
with risk:

• Present variable results in an understandable manner.
• Design the model or tools in terms of the management decisions and

concerns. That is, characterize the risk in terms that can be applied to the
particular decision.

• Deal directly with risk. Although aversion to risk and decision making
in a risky environment are barriers that need to be surmounted, there are
often external forces that compel managers to act and thus address risks.
Thus, the USEPA has adopted a risk-based approach to environmental
problems that requires placing issues within a risk framework (USEPA
1992). [This approach is discussed by Van Winkle and Kadvany (Chapter 3,
this volume) and Harwell and Gentile (Chapter 5, this volume).]

The consensus-building approach of designing a way to deal with
resource management problems shares the risk between potential ad-
versaries. This consensus-building process is quite fragile yet doable as is
illustrated by the long-term interactions of the Applegate Partnership in the
Pacific Northwest. That community-based group is made up of representa-
tives from industry, conservation groups, governmental agencies, research
scientists, and residents who cooperate to protect and restore the health of
the 500,000-acre Oregon watershed and to provide economic and commu-
nity health (Shipley 1995). The Partnership strives to provide leadership in
facilitating the use of natural resource principles that promote ecosystem
health and natural diversity; to work with public land managers, private
landowners, and community members to promote projects that demon-
strate ecologically sound management practices; and to seek support for
these projects through community involvement within the watershed. The
Applegate Partnership successfully moved people from a point of gridlock
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to a common vision (Shipley 1995). Models are tools designed to increase
the speed and clarity of such interactions.

6.5 Remaining Concerns

The above discussion raises several concerns. One is the value of modeling
to decision making. Modeling and decision making are not parallel parts of
resource management. Rather, modeling is a tool that can be used in various
stages of management that informs a decision (Figure 6.3). Science is a part
of the process when scientific information is used, patterns of unknowns are
hypothesized, or the scientific method is adopted.

A second concern is the role of modeling at different stages of decision
making. The type of models adopted varies for different stages, and the
lessons that can be learned from such models are also different. In Figure
6.3, the ovals indicate where actions are required by the decision maker,
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and the rectangles suggest where models can be used. Thus, models can 
contribute to determining goals and values, characterizing conditions,
integrating information, forecasting, assessing and narrowing options, and
conducting postdecision analysis.

Another concern is who should be doing the modeling. Should only the
modelers be using them, or should the modeler’s goal be technical transfer
of the model to the decision makers and their staff? This conundrum can
be broken down along a continuum of scenarios:

• Modeling should be done entirely by the modelers.
• Modeling should be done by technical staff if the model is properly set

up, the staff has been trained, and there is a clear understanding of how
to use it and for what purpose (including presenting and interpreting
results).

• The model should be made a part of the decision maker’s routine 
operation.

There are situations for which each scenario applies. The ideal use of the
model should be that which is most effective for the management issue and
the state of the knowledge.

The final question is, How to establish a climate so that models are more
frequently and effectively used? One answer to this question is to establish
modeling capabilities and infrastructure within resource management
organizations so that, when the need for models arises, people are ready to
accept and implement the modeling approach. This infrastructure involves
hardware and software that provide the capability to resource managers
and even to stakeholders to run the models in the same way that the devel-
opers of these tools are able to do. It also involves education about the 
technology and language so that resource managers can read and under-
stand the analysis. Often, modeling assistance comes from outside groups.
A perspective open to the modeling process and results means that model 
projections are more likely to be accepted.

6.6 Conclusions

In this chapter, the discussion focused on situations in which models can,
should, or have been used as well as on how models helped or could have
helped the decisions. Our perspective is that models and sound science
should be used because they can improve the decision process or the like-
lihood of making the best decision with the available data and the under-
standing of the processes involved. Such an adoption of models will cost
more, take more time, and be potentially more complex, but it will improve
the management of natural resources and will save money and other
resources in the long term.
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7.1 Introduction

Habitat loss and fragmentation are ongoing and significant problems
throughout the globe (Turner 1996; Riitters et al. 2000). Future biodiversity
scenarios highlight the importance of habitat conversion to human 
land uses as the leading driver of biodiversity loss worldwide (Sala 
et al. 2000). Particularly disturbing is the habitat loss occurring within 
protected areas (Liu et al. 2001). Unchecked, current rates of habitat 
loss may have profound implications for future biodiversity (Pimm et al.
1996).

Given the magnitude of the problem, a case-by-case viability approach
to conservation may be impractical. Even conceptually straightforward
goals, such as the estimation of a species’ extinction risk within a fixed
period of time, are, in practice, exceedingly difficult to accomplish without
large amounts of accurately measured field data (Dennis et al. 1991; Fieberg
and Ellner 2000; Coulson et al. 2001). Confidence intervals on extinction
risks estimated via population viability analyses (PVAs) are typically so
large as to render the estimated value meaningless (Ludwig 1998). Brook
et al. (2000) examined the output of a number of different PVAs and 
concluded that these models do provide precise predictions of extinction
risk. However, their conclusions are unwarranted because their results
demonstrate that PVA models are on average unbiased, but not necessa-
rily precise for any one species. According to the analysis of Brook et al.,
individual PVAs are, in fact, likely to be imprecise for the single species 
targeted by the PVA (Ellner et al. 2002).

The viability approach is further limited by the difficulty of obtaining 
sufficient high-quality data across a large number of species. Scarce funding
for conservation may be better spent mediating direct causes of habitat loss
than attempting to elucidate subtleties of population demography across
many species. As a result of these problems, a broader-scale approach,
targeted at entire landscapes, may be necessary to maintain significant 
biodiversity in the future.



Approaches to landscape conservation have generally focused on 
either community representation or habitat occupancy. Representation
approaches use computerized optimization techniques to select a subset of
available habitats that maximize the number of species whose distributions
fall within the reserve network [see Cabeza and Moilanen (2001) and 
references therein]. Additional criteria, such as the total cost of land 
acquisition, may be included in the optimization (Ando et al. 1998). Habitat
occupancy approaches attempt to select a set of habitat reserves that 
will maximize habitat occupancy and hence minimize extinction risk.
Occupancy approaches typically focus on the maintenance of habitat 
connectivity to preserve potential recolonization routes after local popula-
tion extinctions.

Landscape conservation issues illustrate the need for new approaches to
deal with the complexity of resource management issues. Network theory
is a developing technique that uses recent advances in computer technolo-
gies. The discussion in this chapter of an applied problem that uses network
theory thus serves as an introduction to the evolving modeling approaches
for resource management.

In the remainder of this chapter, I discuss effects of habitat fragmenta-
tion on metapopulation survival and illustrate the importance of habitat
connectivity using a simple metapopulation model. I then develop a 
mathematical framework for studying dispersal networks in a landscape
and apply this framework to Mexican spotted owl (Strix occidentalis lucidia)
habitat in the southwestern United States.

7.2 Habitat Connectivity and Occupancy in a Simple
Metapopulation Model

The degree to which habitat may be interconnected via dispersal among
populations is a key determinant of species survival in fragmented land-
scapes. Therefore, understanding how connectivity changes as habitat is 
lost is important to conservation-planning efforts. As habitats are lost 
from landscapes, typically one observes that the remaining habitats be-
come increasingly isolated, a process referred to as fragmentation. From
percolation theory (Stauffer and Aharony 1985), we know that habitat 
connectivity in randomly fragmented habitats exhibits abrupt nonlinear
changes when the amount of habitat lost reaches a critical value (Gardner
et al. 1987).The situation is illustrated in the left-hand column of Figure 7.1.
If our goal is to walk from one side of the grid of habitat patches to the
other by crossing from one white (habitat) cell to another vertically or 
horizontally to one of the four nearest neighbor cells, then theory tells us
that the probability of doing so becomes vanishingly small when the amount
of habitat lost is about 60%. Thus, for species that exhibit metapopulation
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dynamics (Hanski 1999), the amount of habitat with viable populations can
decrease dramatically at this critical threshold in landscape connectivity,
possibly resulting in biodiversity collapse (see Figure 7.2).

Critical transitions in landscape connectivity have played an important
role in the conceptual development of landscape ecology. However, for a
number of reasons, the existing theory is quite limited in its application to
real landscapes. First, real landscapes do not fragment randomly. Rather,
forest fragmentation occurs in specific places, generally because these loca-
tions contain commercially valuable tree species, are highly suitable for
agriculture, or are near existing settlements. The effect of nonrandom 
fragmentation of habitats on population persistence can be dramatic. For
example, if we alter the fragmentation scenario so that all remaining habitat
patches form a continuously connected habitat, the threshold effect is 
eliminated (right-hand column of Figure 7.1). Simulated metapopulation
dynamics in these connected (spanning-tree) landscapes show a signifi-
cantly reduced impact of habitat loss (Figure 7.2). Thus, it is essential that
different patterns of habitat loss be understood before the theory can be
applied.

Another limitation with traditional percolation theory is that it applies
to regular grids or lattice structures and not to actual landscapes. Never-
theless, Keitt et al. (1997) showed how the basic concepts of percolation
theory could be adapted to the analysis of real habitat distributions. They
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Figure 7.1. Random and nonrandom patterns
of habitat loss. The left side shows random
habitat loss. The right side shows habitat
removed randomly, but with the requirement
that the remaining patches (white) form a
single, connected habitat cluster (spanning
tree).



introduced a graph-theoretic model for landscape connectivity, where 
connections between patches are determined by interpatch distances rather
than by adjacency on a lattice. They showed that critical transitions in 
connectivity occur not only for habitat loss but also as organisms’ dispersal
ability is decreased. In their study of Mexican spotted owls, they showed
that critical dispersal distances for maintaining immigration into habitat
patches were approximately 45km in the southwestern United States.
Dispersal distances shorter than 45km resulted in isolated populations.
They also demonstrated how these distances could be converted into
parameter estimates for a probabilistic dispersal function. An advantage 
of their approach was that it allowed not only quantitative measures of 
connectivity in real landscapes but also sensitivity analysis to determine
which patches were critical to the maintenance of immigration and gene
flow in fragmented landscapes.
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7.3 Landscape Networks

Percolation theory combined with graph models is a powerful step forward
for landscape ecology. However, these models do not, as of yet, directly rep-
resent or reflect rates of dispersal among patches. An extension of these
models is to include rates of movement among patches in the landscape.
I call these landscape network models. A landscape network is a mathe-
matical description of the functional relationships between landscape 
components, be they habitat patches, river segments, an agricultural mosaic,
or any other subdivision of a landscape that can be defined. The focus of 
a landscape network model is flow of energy, materials, and information
from one component to another. Typically these “components” will be 
discrete habitat patches, and we are interested in the flux of individuals
moving between different patches. We could subdivide the landscape 
into a continuum of points or perhaps into different habitat categories
rather than patches. For example, we might be interested in modeling the
movement of amphibians between aquatic and terrestrial habitat types.
Here, however, I focus on spatial landscape networks with discrete habitat
patches.

To begin with, imagine a scenario in which a landscape is subdivided into
a set of subregions. These subregions could be arbitrarily defined “cells”
in a grid or could be defined to map onto existing habitat patches. Let us
constrain this subdivision so that every point in the landscape falls within
one and only one subdivision. A typical scenario is an archipelago of forest
fragments embedded in a cleared, nonforest matrix. If we are interested 
in modeling the movement of a given species in relation to these habitat
fragments, then the quantity of interest is the number of individuals that
move between any given pair of fragments over some period of time, say 
a single generation. To do this, we need to label all the fragments. Let s0

represent the nonforest matrix and s1,s2,s3, . . . , sN represent the N forest
fragments. Given that dispersal among patches may be rare, it is appro-
priate to model these events as a stochastic process. In the simplest model,
we need to know three things: (1) the probability of dispersing a distance
x, (2) the probability that in leaving patch i we end up in patch j, and 
(3) the probability that we were in patch i to begin with. Dispersal data 
for many organisms [e.g., Kot et al. (1996)] indicate the probability of 
dispersing a given distance is often best fit by a function that decays as 
a power law in the tails. However, other functions may be appropriate,
depending on the dispersal mode and life history of the organism modeled.
If we assume that the organism disperses in a random direction and travels
distance x, then the probability of moving from patch i to patch j, given that
one starts in patch i, is

p j i p m p x p x j i dx| , |( ) = ( ) ( ) ( )
∞

∫
0
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where p(x,j|i) is the probability that an individual leaving from a point
chosen in patch i lands on a point in patch j after traveling a distance x
and p(m) is the probability that migration occurs at all. To get from 
the conditional probability p(j|i) to the probability of a transition from 
i to j, we must estimate the probability that the individual started in 
patch i. Then, p(i,j) = p(i)p(j|i), where p(i) is the probability the individual
was found in patch i.

The matrix of probabilities A with elements aij = p(i,j) defines a landscape
network. The network can be thought of as a graph (Harary 1969; Urban
and Keitt 2001) in which each patch is a graph “node” and connections
between patches are represented as graph “edges.” We can assign distances
to these edges, either as true distances between patches or as a “functional
distance” related to transition probabilities between patches. A convenient
measure of the functional distance is dij = 1/aij (i.e., the mean time between
immigration from i to j).

Estimation of pij can be accomplished in a number of ways. The dis-
persal function p(x) and the migration probability pm can be estimated by
tracking animal movements (telemetry) or by mark-recapture methods.
Once p(x) is estimated, the patch transition probabilities p(i,j) can then 
be estimated on the basis of a habitat map that provides the estimates 
of p(x,j|i). For more complex dispersal behavior, migration rates can be 
estimated directly through simulation modeling of the migration process.
The important point is that landscape network models directly incorporate
actual patterns of habitat fragmentation into the model structure, as
opposed to approaches that assume space is uniform [Hanski and 
Simberloff (1997) refer to these as “spatially realistic models”]. Thus, land-
scape network analysis is a powerful tool for analyzing real landscapes and
can be used as a basis for building more complex population viability
models.

As specified, the landscape network connected every patch to every other
patch, albeit sometimes with very low probability. The dense network of
connections makes graphical interpretation of the network difficult. A
feature that is much simpler to analyze is the spanning tree of a network.
A “tree” is simply a graph with no loops, and a spanning tree is a tree that
contains all nodes (patches) in the network. In particular, the minimum-
length spanning tree (MST) is an interesting feature of the network because
it identifies the “backbone” or connected core of the landscape. The
minimum spanning tree is the spanning tree that has the shortest total
length; that is, it minimizes

d ijij∀ ∈∑ MST
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Because the dij are defined in terms of immigration flux, the MST on the
landscape network identifies the core habitat supporting a metapopulation.

7.4 A Case Study

An example system particularly suited to landscape graphs is the spatial
population structure of the Mexican spotted owl. The Mexican subspecies
of the spotted owl is distributed from Utah and Colorado south to central
Mexico (USDI 1995). In 1993, the subspecies was listed as threatened under
the Endangered Species Act. A graph-theoretic approach was used previ-
ously to characterize owl habitat connectivity across four southwestern
states (Utah, Colorado, New Mexico, and Arizona) as part of a federally
mandated conservation plan (Keitt et al. 1995, 1997). The habitat distribu-
tion for Mexican spotted owls is highly fragmented in the Southwest
because suitable foraging and nesting sites are largely determined by topo-
graphic relief. Because of the arid climate and orographic effects, much
Mexican spotted owl habitat is divided into “sky islands” surrounded by
grasslands and desert. Juvenile spotted owls are known to disperse consi-
derable distances in search of vacant nesting territories. Thus it is highly
likely that dispersal success plays an important role in the genetic, demo-
graphic, and metapopulation structure of the Mexican spotted owl. Because
dispersal success depends principally on the time and energy spent search-
ing for suitable sites, the connectivity of suitable habitat patches is a prime
concern when making habitat conservation decisions.

Figure 7.3 shows a map of potential spotted owl habitat in the Southwest
overlayed by the minimum spanning tree of the landscape network. The
forest map was derived from Advanced Very High Resolution Radiometer
(AVHRR) satellite imagery (Evans et al. 1993; Evans and Zhu 1993). I used
mark-recapture data from juvenile owls (USDI 1995) to parameterize the
network. The minimum spanning tree highlights several types of patches.
Large “core” patches have many connections (high “degree” in graph-
theory parlance). These patches are almost certainly critical to survival of
the metapopulation. “Bridge” patches have few connections but appear
deep in the tree and sit between larger core patches. By “deep,” I mean the
minimum number of connections that must be crossed to reach a “leaf” of
the tree. Leaf patches occur at the ends of tree branches and have only a
single connection (degree = 1). Depth in the tree is a good proxy for patch
importance. A simple, iterative algorithm for ranking the patches is to
repeatedly remove the lowest quality (or smallest) leaf patch from the tree
until there is only a single patch. Patches are ranked in order as they are
removed. These rankings correspond well to rankings produced by patch
deletion combined with sensitivity measures. Model results (Urban and
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Keitt 2001) indicate that removing patches in this manner is nearly optimal
for the maintainence of metapopulations.

7.5 Discussion

Even though natural systems are complicated and difficult to predict, there
are a few lessons we can derive from the current theory. First, connectivity
of landscapes can strongly influence their capacity to support a metapopu-
lation (see also Hanski and Ovaskainen 2000). Thus, tools to analyze con-
nectivity patterns in landscapes are essential to effective management and
planning for metapopulation conservation. Landscape network theory, as
presented here, is one such tool. By protecting both core and stepping-stone
patches in a fragmented landscape, we can greatly increase the likelihood
that a species will persist. However, analysis of landscape connectivity is but
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one small part of an integrated conservation management process. Often,
the most difficult challenges involve formation of a consensus about the
true nature of the problem and the identification of data, protocols, and
analytical tools to be used as a basis for decision making. Fortunately, there
have been significant advances in decision-support tools and natural-
resource-modeling techniques (see Gustafson et al., Chapter 8, this
volume). Formal system modeling languages are now available that allow
both detailed specification as well as compact communication of the logical
structure of models used in decision support. Coupled with advanced mo-
deling techniques, these tools can provide substantial improvements in our
ability to manage complex ecological systems.
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8.1 Introduction

Understanding the effects of management activities is difficult for natural
resource managers and decision makers because ecological systems are
highly complex and their behavior is difficult to predict. Furthermore, the
empirical studies necessary to illuminate all management questions quickly
become logistically complicated and cost prohibitive. Ecological models
provide a means to formalize our conceptual understanding of how an 
ecological system works and allow us to check this understanding by testing
model predictions. Validated models can then be used to make predictions
about the effects of proposed management activities, giving decision makers
useful information that would not be available from empirical data.

In this chapter, we discuss evolving modeling approaches and technolo-
gies for ecological modeling and application to decision making. We begin
by discussing model conceptualization and design and showing how new
approaches to model structuring might enhance problem formulation in
decision making. We then discuss issues surrounding the construction and
implementation of ecological models after the conceptual development has
been completed and present evolving approaches that address these issues.
Finally, we discuss technologies for communicating the structure of and
output from models to improve their relevance and usefulness to decision
makers and the stakeholders in the managed system.

8.2 Model Conceptualization and Design

Perhaps the biggest problems facing decision makers are (1) forging a 
consensus about what the true problems are and (2) agreeing on the data,
protocols and analytical tools that will be used to produce the information



on which to base decisions. All parties must understand the structure and
limitations of a proposed model because models with the appearance of 
a “black box” will create suspicion and reduce cooperation. Modelers 
must clearly communicate to nonmodelers the structure and relationships
within the model, and provide a method by which participants can suggest
improvements to model design.

8.2.1 Approaches and Technologies
8.2.1.1 Logic-Based Model Specifications

Since the 1960s, ecological modeling has emphasized simulation of process.
Early implementations were procedural and based on flow charts. Later
implementations, trying to better cope with ecological complexity, have
tended toward object-oriented models based on the universal modeling 
language (UML) (Boggs and Boggs 1999) or similar semantic models for
object-oriented analysis and design. In either case, these implementations
are fundamentally process oriented. However, ecosystem evaluation based
on knowledge-based systems theory and logical abstraction shows promise
for improving the tractability of ecosystem evaluation (Reynolds et al.
2000). Logic-based networks, flowcharts, and UML are all semantic models
(Booch 1994), but logic-based networks are distinct from conceptual
models by having a formal grammar and syntax. Two examples of logic-
based approaches are fuzzy network models and Bayesian belief networks.

8.2.1.1.1 Fuzzy Network Models

Fuzzy logic networks are a powerful form of knowledge representation,
ideally suited to the abstract problems posed by ecosystem evaluation.
Similar in concept to a metadatabase, a knowledge base is a formal 
specification for interpreting information (Walters and Nielsen 1988).
NetWeaver is such a knowledge base, having a formal grammar and syntax
that makes the knowledge base an executable specification (Reynolds
1999). A NetWeaver knowledge base graphically represents the ecosystem
state as linked networks of propositions.Two key properties of a NetWeaver
proposition are its measure of truth (i.e., the degree of support for the
proposition) and its logical specification, which is graphically constructed
from operators (fuzzy, Boolean, and arithmetic), data, and other proposi-
tions. The implementation of fuzzy math in NetWeaver facilitates compact
and efficient representation of large, abstract problems. For example, a 
prototype knowledge base evaluates forest ecosystem sustainability as 
prescribed by the Montreal Process (Reynolds 2001). Also, fuzzy math 
provides a set-theoretic implementation of uncertainty (see Section 8.4.1.3)
as an alternative to the more familiar notion based on probability theory
(Zadeh and Kacprzyk 1992).
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Fuzzy network models (FNMs) for ecosystem evaluation are not a 
substitute for statistical and process models. Rather, FNMs are most 
valuable when used as logic frameworks for integrating the outputs from
other models. Consider a hypothetical ecosystem evaluation in which 100
statistical models were developed and applied to various dimensions of the
analysis and another 20 simulations of other system components were run.
A logic framework for integrating all these results might be useful. Because
FNMs are formal specifications for interpreting information, they are 
cognitive maps of the problem specification (Stillings et al. 1987). They help
identify questions to be answered, the relevant intermediate states and
processes, the information required, and how the results are related to 
each other. It is important to note that these logic networks are not just
specifications, but are themselves models that can be fed data and produce
interpretable output. Furthermore, in systems like NetWeaver, the specifi-
cation provides an intuitive, graphical explanation for the derivation of
results so the model is not a black box.

8.2.1.1.2 Bayesian Belief Networks

Another class of semantic models are Bayesian belief networks (BBNs)
(Ellison 1996). Bayesian belief networks are based on probability theory,
whereas FNMs are based on set theory. The practical implication of this 
difference is that BBNs are best suited to applications where the problem
is relatively narrow and well defined and most conditional probabilities are
known, while FNMs are best suited to applications where the problem is
broad and abstract and a significant proportion of the conditional proba-
bilities are unknown.

8.2.1.2 Data Visualization

Visualization of the relationships and interactions among variables can aid
model formulation and design. When the relationships among variables 
are clearly understood, model design and behavior will be enhanced,
and more realistic estimations and predictions will result. Most current sta-
tistical packages contain sophisticated graphics packages to allow two-
dimensional (2-D) projection of a three-dimensional (3-D) data space. True
3-D viewing is possible with specialized projection systems and eyewear
(polarized lenses, alternating liquid-crystal-display lenses, or virtual reality
goggles). It is possible to visualize the interactions of five variables in 
a 3-D representation with length, width, height, color, and animation. For
example, consider a representation of tree growth across a region with lat-
itude being length, longitude being width, average monthly temperature
being height, monthly growth rate being color, and time lapse as the ani-
mation. A good source for information on this topic is the Digital Visual-
ization Analysis Laboratory of NASA (http://dval-www.larc.nasa.gov).
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8.2.2 Translating a Conceptual Model into a Logic-Based
Specification
To translate a conceptual model provided by a domain expert (or set 
of experts) into a logic-based network model, we begin with a simple 
conceptual model, such as that described by Bormann et al. (1994) for 
evaluating the sustainability of forest ecosystems (see Figure 8.1). The key
concept of this model is that sustainable forest ecosystems can occur within
the overlap between what is biophysically feasible and what is socially
acceptable.

The model of Bormann et al. (1994) is easily translated into a logical 
representation (Figure 8.2), where each oval represents a logic network that
evaluates a proposition.The ultimate proposition of interest concerns forest
ecosystem sustainability, and this proposition depends on two premises: that
social values are satisfied and that it is biophysically feasible to maintain
the ecosystem in a specified condition. Each premise of forest ecosystem
sustainability is abstract, but can be further elaborated by using the 
concepts discussed by Davis et al. (2001). For example, the proposition 
concerning the feasibility of biophysical condition depends on premises
about maintaining suitable forest structure, composition, and ecosystem
processes. If this model specification was implemented in NetWeaver, which
is based on fuzzy math, the specification for biophysical feasibility could 
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Figure 8.1. Conceptual model of forest ecosystem sustainability [adapted from
Bormann et al. (1994)].



be stated as “the assertion of biophysical feasibility is true to the degree 
that structure, composition, and processes of the ecosystem are in a suit-
able condition.”

The premises providing support for or against biophysical feasibility and
social acceptability are still relatively abstract, but, in general, propositions
become progressively more specific and concrete as the logic specification
is extended to progressively deeper levels (see Figure 8.2). Continued
development of the logic structure by the extension of each logic pathway
would quickly produce propositions that could be evaluated by comparison
to data.

Both the conceptual model (see Figure 8.1) and its translation into a
logic-based representation (see Figure 8.2) are useful forms of model visu-
alization. The logic-based form is particularly intriguing because it seam-
lessly integrates symbolic and spatial reasoning (Stillings et al. 1987).
Indeed, when a logic network and its logical antecedents are viewed as
propositions and premises, respectively, knowledge-base architectures pro-
duced by systems like NetWeaver provide an intuitive visual representation
of a formal logical discourse (Halpern 1989). With respect to decision
making, the logic model provides an intuitive and unambiguous specifica-
tion of what is of concern, how elements are logically interdependent, what
data are required to evaluate the concern, and, perhaps most importantly,
how information is to be interpreted to arrive at a conclusion.
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8.3 Model Implementation

Simulation modeling has traditionally been conducted in the realm of 
high-level procedural computer programming, creating programs that can
be difficult to use and that produce complex output. Long time intervals
between the design of a model and its implementation tend to decrease 
its relevance and utility. Furthermore, the nature of the code produced
tends to make linking models problematic and prone to error. Emerging
approaches are beginning to overcome limitations in designing, coding, and
linking computer models, allowing more flexible implementation of models
to answer specific questions posed by decision makers.

8.3.1 Approaches and Technologies
8.3.1.1 Markov Models

Markov models represent one widely used approach that underlies many
ecological models. The main advantage (and also the main limitation) of a
Markov model is revealed in the definition of the Markov property: given
the present, the future is independent of the past. In such a model, no infor-
mation other than the present state is required to predict the future. Markov
models are therefore specified by some initial probability distribution 
of states, and a description of the probability of transition from any partic-
ular state to some other state at some future time. These transitions are
specified by a transition matrix (for discrete-time models) or a transition
probability-density function (for continuous-state models) of the probabil-
ities of transition from one state to any other state in one time period.

Because Markov models ignore past history, they are relatively easy to
construct from observations of a system. The major limitation is that, in
many cases, history does matter, and projecting the future based solely on
the current state may be quite inaccurate. For example, if a population is
far from demographic equilibrium, then age structure significantly affects
overall population growth rates. The effect of the “baby-boom” generation
(the generation born between 1946 and 1960) on future demographics in
the United States is a good example. Of course, one can extend the state
space of the model by including a sequence of past states within the current
state to make the Markov assumption more appropriate. However, this
greatly increases the dimensionality of the problem and reduces the advan-
tage of the Markov approach.

8.3.1.2 Agent-Based Models

Agent-based models are another class of models related to the Markov
framework. Agent-based approaches simulate the autonomous behavior 
of agents (individuals) by constructing rules governing the physiology 
and behavior of those individuals. As the agents act according to the rules
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(moving, feeding, mating, avoiding predators, respiring, etc.), they interact
with their surroundings and with other agents. Such models allow study of
the relationship between individual actions and complex ecological systems
(DeAngelis and Gross 1992).The models can be linked to geographic infor-
mation systems (GIS) and to models simulating other species.There are few
limits to the sophistication of these models. The state of individuals may
include location, sex, size, social status, and fat content, and the behavioral
rules may be related to environmental factors (e.g., temperature, water,
nutrient availability, and habitat condition), other agents, physiological
stress, environmental cues, or random actions. Model behavior can often be
compared directly with empirical observations.

As an example, an individual-based, landscape-scale model was con-
structed to simulate the interaction of dispersing American martens with
the spatial variability of energy (i.e., acquisition of prey) and mortality 
risk (by predation) associated with different habitat types (Gardner and
Gustafson in press). Movement decision rules vary with the physiological
state of the individual, such that martens tend to select habitats that mini-
mize predation risk, except when energy reserves are low, in which case they
select habitats that provide increased energy intake. Marten movements are
simulated on heterogeneous, grid-cell landscapes, and the movement paths,
percentage of dispersing martens killed or starved, and proportion of
martens successfully dispersing to a new home range are measured. The
agent-based approach is well suited to modeling the dispersal process
because it formalizes the behavior of an individual and allows the study 
of how that behavior interacts with the landscape structure produced by
management, disturbance, and development.

8.3.1.3 New Approaches for Dealing with Scale

A number of studies in theoretical ecology point to the importance of scale
in ecological modeling (Kolasa 1989; Rahel 1990; Levin 1992; Holling 1992).
Levin (1992) argues that “the problem of pattern and scale is the central
problem in ecology.” Kolasa (1989), Rahel (1990), and Holling (1992)
acknowledge that spatial scale and temporal scale are paramount to under-
standing community dynamics.

Two scale considerations constrain realistic ecosystem simulation. First,
ecological systems are comprised of processes that occur across a wide
range of spatial and temporal scales. At one extreme lie small-scale, short-
time-period processes, such as the collision of molecules. At the other
extreme lie large-scale processes, such as global population dynamics (and
associated movement patterns), that may span thousands of kilometers 
in space and decades in time. Studying one extreme or the other cannot
provide a comprehensive view of ecological systems. Second, ecological
systems have emergent properties that can only be described across multi-
ple hierarchical levels (O’Neill et al. 1989). Hybrid modeling frameworks
have been developed to explicitly resolve mismatches of scale.

8. Evolving Approaches and Technologies 141



8.3.1.3.1 Coupled Eulerian–Lagrangian Hybrid Models

Ecological-simulation approaches can be broadly separated into those
using an Eulerian-reference framework and those using a Lagrangian-
reference framework. In an Eulerian-reference framework, a modeler 
discretizes space into cells and then transports and conserves mass, momen-
tum, and energy through a grid of cells (see Figure 8.3A). The subset of 
ecological processes best simulated using an Eulerian framework occur
over small spatial scales and short time steps relative to both the spatial
scale of discretization and the time step used to model transfers across cell
boundaries. In aquatic systems, such processes can be averaged within cells
and dispersed among cells with a relatively small accumulation of errors.
For example, the accuracy with which a chemical transformation can be 
simulated is not substantially affected by changes in cell size as long 
as the cell size is large relative to the spatial scale of the process (see Figure
8.3A). This assumption appears to hold true for the simulation of chemical
transformations, microbial degradation, algal photosynthesis, and other 
biogeochemical processes that occur over relatively small spatial and 
temporal scales.

In a Lagrangian-reference framework, the modeler disaggregates reality
into smaller control volumes or particles (for brevity, we refer to both as
particles) and tracks the changes in the particles through space and time
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(see Figure 8.3B). The Lagrangian framework is required for the subset 
of ecosystem-level processes that violate Eulerian assumptions because (1)
the scale of movement of the simulated process is great relative to that used
in the Eulerian representation of the system or (2) movement dynamics
associated with the contrasting process are sufficiently complex that they
cannot be averaged into an Eulerian framework without propagating 
substantial error. For example, the effects of a highly mobile and abundant
fish species on chemical transformations in a lake cannot be averaged in an
Eulerian framework because fish schooling behavior and complex swim-
path selection prevent biomass from being accurately distributed into cells
at time steps. At the scale of discretization (1m3) used in this example, fish
may cross multiple cells in a single time step, or most of the fish may 
concentrate in a very small part of the physical domain represented by the
model grid. The scale of fish movement exceeds the scales of advection and
dispersion used to describe fluid motion and chemical transformations. This
example requires use of the Lagrangian framework (see Figure 8.3B)
because fish-movement capabilities are large relative to the scale of 
discretization. The agent-based models discussed in the previous section
also use the Lagrangian frame of reference.

These two modeling frameworks have been combined into a single,
unified framework termed the Coupled Eulerian–Lagrangian Hybrid 
(CEL Hybrid) Ecological Modeling System. The couple, a generic linking
program built on particle-tracking concepts, is the unique information 
transformation/translation module of CEL Hybrid models that allows 
the analysis to switch between the two reference frameworks without infor-
mation loss. Particle-tracking algorithms emulate the path made by a 
neutrally buoyant particle passively transported through a physical domain
represented as a 3-D grid. They interpolate discontinuous information 
represented in an Eulerian grid to intermediate points of interest to gene-
rate a nearly continuous Lagrangian pathway (Martin and McCutcheon
1999). Particle-tracking logic enables the modeler to use the strength of a
Lagrangian framework to maintain the integrity of individuals as they 
move through simulated space, while concurrently using the power of the
Eulerian framework to simulate the physicochemical environment and
other characteristics of the system over time and space. For example,
Goodwin et al. (2001) describe how fish-movement rules based on particle-
tracking logic can be programmed into a water-quality model, and Nestler
et al. (2002) describe the accuracy of calibration of such an approach.

Closer examination of the Goodwin et al. (2001) model illustrates how
dynamically coupled Eulerian-based and Lagrangian-based models can
overcome scale discrepancies (Figure 8.4). They used a specialized coupling
program, the Numerical Fish Surrogate (NFS) to simulate the sensory
inputs and emergent behavior (Warburton 1997) of adult blueback herring
(Alosa aestivalis), a cool-water fish species common in inland and coastal
environments. This species moves extensively within a hydrosystem and
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uses different habitats for spawning, rearing, feeding, and refuge, and 
no single model type is presently adequate to simulate its movement 
behavior. The Eulerian module is a 2-D (laterally averaged) water-quality
model that is used to describe hydraulic and water-quality time histories in
a grid framework. The Lagrangian module is a fish-movement model that
emulates swim-path-selection behavior by the blueback herring in contin-
uous space.The NFS is the coupling module that interpolates and translates
information between the Eulerian and Lagrangian modules so that the
strengths of each modeling reference framework can be effectively
employed. Coupled models offer the potential to increase the accuracy of
model predictions because an optimum reference framework can be used
for different sets of environmental variables. For the example in Figure 8.4,
the fit between modeled predictions and field data, summarized to the
nearest meter vertically, was R2 = 0.93. The best fit longitudinally, summa-
rized to the nearest 5-km-long segment, was R2 = 0.67.

8.3.1.3.2 Fractal Approaches

Other new approaches for dealing with scale exist. Nestler and Sutton
(2000) employed a type of fractal geometry tool, the angle measurement
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Figure 8.4. Visualization of output from coupled models. Open circles represent
virtual fish; shaded fills represent water temperature (°C); contour lines represent
selected dissolved-oxygen concentrations [mg/L (ppm)]; arrows represent velocity
vectors; bar charts indicate instantaneous fish responses to various environmental
factors for each movement direction. V = water velocity, TP = temperature, DO =
dissolved oxygen, and RD = random number.



technique, to describe changes at multiple scales in a regulated river to illus-
trate a multiscale analysis. They quantified how the distribution of energy
at multiple scales in a river cross-section was changed by impoundment.
The unregulated river channel possessed an evenly graded distribution of
subchannels, each characterized by relatively low energy. Some years after
regulation, the river had gradually changed into a high-energy main channel
flanked by small-scale subchannels. This multiscale change in channel-bed
form could not have been described with more conventional single-scale
approaches.

There are substantial advantages to multiscale analysis. First, it is a more
accurate representation of reality, so that the causes of and solutions to
environmental degradation can be more accurately determined. Second,
because scale is incorporated as a metric, different-sized organisms
(responding to features at different scales) can be evaluated in a single
analysis. By performing a spatial analysis as a first step, an investigator can
optimally size sampling or simulation to reflect the dominant scales within
a river system rather than impose an arbitrarily selected scale of analysis.

8.3.1.4 Declarative Modules

A well-recognized method for reducing conceptual and programming 
complexity involves structuring a model as a set of distinct modules with
well-defined interfaces. Modular design facilitates collaborative model con-
struction, allowing teams of specialists to work independently on different
modules. Modules can be archived in distributed libraries and serve as a set
of templates to speed future development.

The most common approach to model integration, which involves linking
procedural models through the use of distributed object formalisms, is
greatly limited by the fact that the various submodels are, by their nature,
overspecified as modules. That is, in the process of implementing a sub-
model in a procedural programming language, the modeler generally 
“hard codes” many choices, such as programming language, spatiotemporal 
representation, model control and input/output (I/O) interfaces, and 
computing paradigm (e.g., serial or parallel message passing). These fixed
aspects are extremely limiting and irrelevant to the essential dynamics of
the model. To improve flexibility, it is useful to develop a formalism 
for coding archivable modules that allows maximum generality and appli-
cability of the modules. This formalism can be accomplished through 
declarative module specifications containing only enough information to
specify the essential dynamics of the module and allowing a wide range 
of customized procedural implementations (Maxwell 1999; Maxwell 
and Costanza 1997a,b). This approach provides the high level of abstrac-
tion necessary for maximum generality, yet provides enough detail to 
allow a dynamic simulation to be produced automatically. The approach 
separates general specifications from site-specific specifications. Because 
only the universal blueprints are included in the module specification,
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the site-specific specializations can be delegated to a separate model-
configuration phase. Examples of declarative-modeling formalisms include
the Simulation Module Markup Language (SMML) (Maxwell 1999;
Maxwell and Costanza 1997b), the Integrated Modeling Architecture being
developed at the University of Maryland, and the Modelica modeling lan-
guage being developed by EUROSIM (Federation of European Simulation
Societies; http://ws3.atv.tuwien.ac.at/eurosim/).

As an example of a declarative module specification, consider the 
following SMML declaration representing a deer-population state variable.
The specification defines a set of input ports that will be linked to the output
ports of other modules with “link” statements and an equation that is used
to update the value of DEER_POPULATION in response to event notifi-
cations. An SMML-model declaration does not specify I/O configuration,
memory allocation, temporal dynamics, and spatial-grid configuration. The
code describing these aspects of the model is generated automatically at
the initiation of a simulation run based upon site-specific configuration
information.

·atom name=“DEER_POPULATION” type=“state”Ò
·port type=“input” name=“DEER_BIRTHS” /Ò
·port type=“input” name=“DEER_STARVATION” /Ò
·port type=“input” name=“DEATHS_FROM_PREDATION” /Ò
·dynamic event=“integrate” type=“code” Ò
·codeÒ ((DEER_BIRTHS-DEER_STARVATION)-DEATHS_FROM_

PREDATION) ·/codeÒ

8.3.1.5 Control Theory Models and Spatial Optimization Models

Spatial dynamics present difficult challenges to ecological modelers. A
central issue in computational ecology is linking the demand for biological
resources with the dynamics of those resources (Gross and DeAngelis
2001). These resources do not occur uniformly in space, and managers seek
some control over this heterogeneity (Hof and Bevers 1998). Given a
variety of criteria for managing a system, how should the “control” of the
system be applied spatially in order to optimize the objective?

A large body of literature deals with optimization of outputs that vary as
components of the system are controlled (Clark 1976). A comparable body
of literature for spatial problems is only beginning to be developed (Hof
and Bevers 1998; Jager and Gross 2000). Hof and Bevers (1998) provide
examples of spatial optimization on a spatial grid through the use of limited
state variables and mixed-integer programming methods to develop 
management solutions. Management objectives include designing species
reserves, maximizing biological diversity, and maintaining population sizes
above specific thresholds in stochastic environments. The computational
limitations in solving optimization problems are both discouraging and
encouraging. The size of feasible problems is severely restricted, but the

146 Eric Gustafson et al.



computational limitations have prompted the development of new analy-
tical and computational methods (particularly on parallel processors) that
are discussed later in this chapter.

Other approaches to spatial optimization include the combinatorial inter-
change technique to minimize spatial fragmentation (Loehle 1999) that
extends the stochastic search algorithms of Bettinger et al. (1997). This
approach cannot readily link to dynamic models to predict population
responses to fragmentation, but it is computationally efficient compared to
mixed-integer programming methods. A Markov-decision approach can be
applied to optimize landscapes for metapopulations (Tuck and Possingham
2000). This method allows simple dynamics of localized patches to be
included, but the size of the problem increases exponentially with the
number of states allowed. Other algorithms have been applied to attempt
to specify optimal spatial-reserve patterns for biodiversity conservation
(Csuti et al. 1997; Pressey et al. 1997), although they ignore population
dynamics.

8.3.1.6 New Methods for Developing Statistical Models

New techniques are also being developed to improve our ability to produce
ecological statistical models and to handle increasingly large data sets.
Traditional multivariate linear-regression tools are useful for finding global
effects, especially with sparse data sets. For data mining (finding previously
unknown, significant relationships between variables in large data sets),
there is no need to assume global structure. Local data can refine global
rules by adding conditions to global rules. The resulting regression is
thereby determined by local conditions. Classification and regression tree
analysis (RTA) uses iterative splitting of the data to develop empirical rela-
tionships between response and predictor variables without the restrictive
distribution assumptions of classical regression analysis. This approach
creates models that are fitted by binary recursive partitioning, in which a
data set is successively split into increasingly homogeneous subsets (Clark
and Pregibon 1992). Regression tree analysis is much more flexible than
classic statistical methods in uncovering structure in data with variables that
are hierarchical, nonlinear, nonadditive, or categorical in nature. Regression
tree analysis is useful as a means of devising prediction rules for rapid and
repeated evaluation, as a screening method for variables, as a diagnostic
technique to assess the adequacy of linear models, and for summarizing
large multivariate data sets (Clark and Pregibon 1992; Iverson et al.
1999).

Multivariate adaptive-regression splines (MARS) is a multivariate,
nonparametric regression procedure that builds flexible regression models
by fitting separate splines (or basis functions) to distinct intervals of 
the predictor variables (Friedman 1991). The variables and interactions 
to use and the endpoints of the intervals for each variable are optimized
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simultaneously by evaluating a “loss-of-fit” criterion. Multivariate adaptive-
regression splines also search for interactions between variables, allow-
ing any degree of interaction to be considered. It uses adaptive regression,
guiding the function being estimated by the local nature of the data. Where
RTA excels at detecting local data structure and marginal interaction
effects between predictor variables, MARS excels at detecting global and
linear local data structure, flexibly modeling relationships that are additive
or that involve interactions between predictor variables (Prasad and
Iverson 2001). The discontinuous branching of RTA is replaced with a con-
tinuous, smooth response surface. Multivariate adaptive-regression splines
provide an automatic, nonlinear stepwise regression tool that is particu-
larly useful where variables need transformation and where interaction
effects are likely to be relevant.

8.3.1.7 Providing Improved User Interfaces to Make Models Accessible

Ease of use is a key criterion for the acceptance or rejection of a model by
managers, and the user interface provides the biggest opportunity for the
modeler to improve ease of use. Most users of computer software now
expect a graphical user interface (GUI). When the GUI is designed to be
intuitive, consistent, and not redundant and to have a logical flow, potential
users will be more likely to explore the utility of the model (Jacucci et al.
1996). A large number of GUI-development software packages are avail-
able to aid the construction of GUIs for models coded in almost any high-
level language. A model GUI may also feature sophisticated graphical or
animated output of model results, making them more readily interpreted
and allowing more efficient evaluation of multiple model runs (e.g., see
Figure 8.4). Object linking and embedding (OLE) and dynamic data
exchange (DDE) are capabilities to embed or link data from one appli-
cation software within a file of another software package. Dynamic data
exchange might be used to link a spreadsheet model to a simulation model,
for example. Hypertext markup language (HTML) and other Web-oriented
code can be used to allow distributed modeling over the Internet. Spatial
models are often constructed with a custom user interface (e.g., ArcView
extensions).A common result of an enhanced user interface is an improved
likelihood that decision makers will apply the model.

8.3.1.8 New Computational Technologies

Our discussion has alluded to the limits of computational technology on the
development of ecological models. Computational science has combined
elements of computer science, information technology, scientific modeling,
and numerical analysis to allow new approaches to old problems previously
handled by approximations and to deal with new problems previously 
considered intractable. Distributed computing combines the computing
resources of separate machines that may be collocated or physically distant
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from each other. An example is a Monte Carlo simulation in which many
repeated stochastic evaluations are distributed to several machines and
returned to a single machine for collating and analysis. Any resource analy-
sis problem involving multiple independent simulations can be conducted
in this manner, with the main constraints being the control of the distribu-
tion of tasks to various machines and the load balancing required so that
the final compilation of results is not delayed by machines that are slower
than others. This method is appropriate to problems like the evaluation of
multiple alternative scenarios.

Grid computing is somewhat more complex, involving not just simulta-
neous use of processing power, but the heterogeneity of resources available
across a grid of machines (Foster and Kesselman 1999). An example would
be the activation of and downloading of real-time data from a remote
sensor, the automated processing of a query to a database for related 
data located on one machine, providing all of the assembled data as input
to a simulation on a second machine, and processing the output of the 
simulation for visualization and analysis on a third machine. The major 
challenge in grid computing is the development of a software interface
(middleware) to allow a user to analyze a problem without having to know
the details of where the software, databases, available central processing
unit (CPU) cycles, and other resources are located on the grid. The ideal
system would allow a resource manager to pose a question (with appro-
priate constraints) and the middleware to assign appropriate components
to different machines on the grid, automatically handling load balancing,
error checking, collating, and returning of the results to the user. For
example, a question might be posed regarding the effects of different land-
use patterns in the future of water demands in a region. The middleware
would request land-use history maps from a GIS database, send these to a
machine for spatial analysis, and conduct a simulation to project alternative
futures [as is done in the LUCAS system; see Hazen and Berry (1997)]. The
middleware would concurrently obtain information on water-use history
from a different database, correlate this information with land-use patterns,
combine the water-use and land-use simulations, and provide the results to
the user. Such middleware is well beyond current capabilities, but the soft-
ware technology needed is developing rapidly (see the GLOBUS project
at http://www.globus.org).

Alternatively, parallelization methods speed processing by breaking 
the problem into pieces that can be processed separately. Many ecological
modeling problems clearly fit within this framework, including problems
involving repeated simulations with alternative inputs, sensitivity analyses
obtained by varying simulation parameters, and uncertainty analyses
obtained by including or excluding certain model components or assump-
tions. Another benefit of parallel architectures is an improved ability to
model situations that are essentially parallel in reality. Ecological systems
are inherently parallel because many components vary concurrently in time
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and space, and interact at numerous scales. Developing appropriate paral-
lel implementations to model these interactions is quite difficult, and only
limited research has been conducted. However, the availability of parallel
architectures for ecological modeling allows one to conceptualize models
that may be considerably more realistic than strictly serial implementa-
tions would be. For example, Mellott et al. (1999) investigated parallel
methods for an individual-based predator–prey model and point out that
the parallel implementation involved quite different assumptions about
individual movements and interactions than were necessary in a prior serial
implementation.

8.3.2 Relevance of Advances in Model Implementation
for Decision Making
The advances in model implementation outlined above will enhance deci-
sion making in the long term by allowing modelers to improve the sophis-
tication and relevance of models. Public expectations of resource managers
are steadily increasing, requiring more-definitive abilities to predict the
consequences of management actions. Much of the information currently
needed by managers is not available because the models have not yet been
developed or provide inadequate information. This void exists, at least
partly, because of limitations in computing power or analytical and 
conceptual-modeling capabilities. A combination of technological advances
and improved dialogue between modelers and managers is needed to 
fully realize the potential of ecological models to enhance environmental
decision making.

8.4 Communicating Model Structure and Output

Managers are reluctant to use model results for making decisions unless
they are confident that they understand how the model works and that the
model, in fact, accurately produces the information they require. Models
that are perceived as an incomprehensible black box will not be widely used
by managers. Consequently, it is critical that an implemented modeling
system be adequately explained and communicated both to managers and
to stakeholders affected by management decisions.A number of techniques
are available to enhance the communication of models to decision makers,
making their structure and function more transparent.

8.4.1 Approaches and Technologies
8.4.1.1 Artificial Intelligence

Artificial intelligence (AI) refers to a branch of computer science focused
on problems associated with the acquisition, representation, and utilization
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of knowledge (Schmoldt and Rauscher 1996). One goal of AI research is
to program computers to produce seemingly “intelligent” behavior, and this
ability has several applications in ecological modeling. AI can provide an
“intelligent” interface with a model, providing context-sensitive help and
direction in using the model, and it can provide guidance in interpreting the
results. Communication of model characteristics can be aided by interfaces
that allow users to click on icons of model modules to delve deeper into
the structure and assumptions behind each piece of the model. Each icon
can be expanded to show the underlying knowledge used to describe the
associated process and the interactions between processes. Examples of this
kind of representation are the STELLA-based models (Hannon and Roth
1997) and the logic-based models mentioned in Section 8.2.2.

8.4.1.2 Gaming

Communication of model results can also be enhanced when simulation
models are used in a gaming environment to determine strategies that are
optimal for achieving goals. Game theory involves the mathematical analy-
sis of abstract models of strategic competition. Such models are often used
in military and economic planning and more recently in land-use decision
making. In these games, the rules are clearly set forward, but the ramifica-
tions of these rules are not always apparent even though (or perhaps
because) they are determined by feedback loops within the system. Some-
times unexpected or random events (such as storms) are simulated in the
models. It is critical that the permissible actions, information available to
each participant, and criteria for termination of the game be made clear.
Typically, there is no single way to win such a game. Optimal strategies
depend upon the goals of the player, and developing a variety of potential
actions may help determine appropriate strategies to attain the desired
outcome. The advantage of using a gaming approach in environmental 
decision making is that the options of decision makers can be set forward
without the expense or time involved in actually implementing such
options. The engaging nature of these games causes the user to become
more involved in thinking about the process and interactions than they
would without the gaming tool.

8.4.1.3 Dealing with Uncertainty

A key element of model communication involves appropriate attention to
the uncertainties in the data, model structure, and model projections.
Models always contain some errors and inaccuracies because they are 
simplifications of reality. One of the critical tasks in the use of models is to
identify sources of uncertainty and describe the effects of these uncertain-
ties on model predictions so that the output of the model can reliably
support decision making.

Two strategies are available for dealing with model uncertainty. Many
population models embrace and acknowledge uncertainty by selecting
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model parameters from a distribution of values instead of choosing a single
value for a parameter. With this strategy, a relatively simple model is run
numerous times (hundreds or thousands), producing a distribution of 
possible model outputs.The modeler acknowledges uncertainty because the
multiple model outputs are generally presented in a statistical form (e.g.,
20% of the possible outcomes result in a 10% decrease in population size).
In this context, the modeler presents the results in terms of the risk of a
certain event occurring. Unfortunately, probabilistic formulations of model
outputs may be confusing for decision makers because clear, unequivocal
answers are not provided.

An alternative to model-based risk assessment is the use of large,
comprehensive models that attempt to duplicate critical natural processes.
These models typically have lengthy run times, so that running them 
hundreds or thousands of times is not feasible. Additionally, these models
are typically used for regulatory purposes, where relative answers may be
insufficient. These models typically use engineering methods to optimize
model parameters and to confirm the performance of the simulation. While
it is not possible to remove all sources of error and uncertainty from these
models, efforts are generally made to optimize model performance, to iden-
tify model sensitivity to key parameters through Monte Carlo simulation
(in which certain model parameters are randomly changed), and to describe
the error structure of the model by comparing model predictions to
observed data. Error analysis helps the modeler identify weaknesses of 
the model or biases (particular scenarios in which certain state variables
may be systematically underestimated or overestimated). This explicit 
representation of uncertainties tends to enhance communication only for
modelers who are comfortable with large, comprehensive models (and not
necessarily for decision makers).

8.4.1.4 Model Standards

Effective communication of model results depends upon adherence to
certain standards in model development. Ecological models are used in at
least two ways, conceptual exploration (research) and projection (decision
making). Exploratory models are used to better understand complex
natural processes so that the driving variables and relationships between
variables can be studied. Exploratory models are often highly specialized,
and their accuracy is evaluated in terms of the statistical variation explained
by a model. Alternatively, models used in a regulatory context to support
decisions and determine policies are often developed and applied by the
engineering profession. Development of engineering models is usually
founded on a mathematical description of conservation of mass and
momentum principles. Model documentation and confirmation are critical
elements in establishing the credibility of a model and its application. It is
important that models, particularly those used in a regulatory context, be
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described in detail and that important steps in the development of a model
be referenced. This specification allows users of the model to trace the
development of its mathematical formulations and conceptual underpin-
nings to ensure that the model is properly applied. Such documentation
allows models to be categorized by application, dimensionality, spatial 
discretization strategy, solution scheme, and temporal strategy. Within 
each category, efforts should be made to standardize ecological models to
increase their ease of use and to increase their reliability. All model appli-
cations should undergo a rigorous, documented confirmation process
involving parameterization (estimating optimum values for model param-
eters), calibration (adjusting model parameters and model formulation to
match observed data with model predictions), and validation (verifying that
the model works correctly on a data set different from the data set used for
model calibration).

8.4.1.5 Visual Output

Visualization is a very powerful form of communication, as epitomized in
the adage that “a picture is worth a thousand words.” For models with a
spatial component, GIS provides tremendous communication potential by
placing model inputs and intermediate and final results in a spatial context.
A good example is a model predicting gray wolf habitat in the northern
lake states (Mladenoff et al. 1995). By showing the spatial distribution of
input variable values and the results of model calculations, the authors
make a compelling case for the utility and validity of their model.

The GIS also provides a framework for integrating information from 
different modeling paradigms.An example is the development of integrated
forest management models, where a GIS provides the integration for timber
optimization models and process models predicting wildlife habitat and 
biological diversity (Naesset 1997). The optimization model produces treat-
ment schedules for forest stands, the locations of which are tracked in the
GIS.A spatial model that can access the GIS can assess the potential effects
on wildlife when those specific stands are harvested. Finally, GIS can act as
a catalyst for stakeholder involvement (Cornett 1994). People find it much
easier to relate to visualizations of data and concepts than to text and
numbers. Because “seeing is believing,” spatial representations of model
results can lower skepticism and increase the involvement of stakeholders
in the decision-making process. Maps, animations, or virtual reality pictures
are understood by most users (Shepard 2000). For example, FORSYS (a
cooperative for forest systems engineering) is developing graphical systems
to represent the data gathered by the national forests to visually demon-
strate alternative management practices (McGaughy 2001).

While model and data visualizations may be very useful, there are limi-
tations. Just as graphs can be constructed in ways that are misleading,
the huge variety of color schemes available can cause the same data to be
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interpreted quite differently. Visualizations of results should take account
of the limitations and variations in human sight (Agoston 1987). Up to 8%
of some human groups are partially color-blind (color-deficient or dyschro-
matopic). Ecological model applications should use color schemes that
allow major results to be appropriately interpreted by these individuals
(Curnutt et al. 2000).

8.4.2 Communicating Model Assumptions and Results
for Decision Making
The development of high-quality ecological models will not contribute to
decision making unless they provide the information that managers want.
To build relevant models, the modeler must consult with managers or stake-
holders from the conceptualization stage through validation and use. This
level of communication will develop an understanding and trust in the
model by the users, giving them a full knowledge of its strengths and weak-
nesses, what assumptions were made, what shortcuts were taken, and how
all of these affect the validity of the model. If the managers are uncom-
fortable with some of the assumptions, they may collect the data needed to
fill in the knowledge gaps highlighted by the modeling process.This involve-
ment will instill a sense of ownership and trust in the model output.

8.5 Case Studies Using New Modeling Approaches for
Decision Making

Two case studies illustrate how intractable resource management problems
can become manageable through the use of ecological models.

8.5.1 Computational Fluid Dynamics Model for 
Fish Movement
Detailed fish swim-path selection at small scales can be simulated by 
coupling a computational fluid dynamics (CFD) model with a fish move-
ment model (NFS) to design fish passages around turbines in a hydroelec-
tric dam. The CFD model (the Eulerian-reference framework) describes
the physical domain as a fine-scale grid composed of multiple cells. The
CFD module provides discrete representations of the flow field (data are
presented at cell nodes or cell faces only), and the Lagrangian module 
provides the framework necessary for depicting movement of individual
fish (Figure 8.5).

The linkage between the CFD model and the NFS model is built with a
common engineering tool known as a particle tracker (described earlier).
With the coupled framework, a fish track can be envisioned as a sequence
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of position pairs comprising an initial and sequential position, with the
change in position determined by the sum of two different vector processes,
passive transport and volitional swimming. Over short time steps (a second
or less), a fish must be swimming headfirst into the current if its displace-
ment is less than what would be predicted by passive transport because fish
generally do not swim backwards. Conversely, if its displacement was
greater than would be predicted by passive transport alone, it must be swim-
ming with the current (Figure 8.6).

The simple logical progression presented by Figures 8.5 and 8.6 can
become the basis of an analytical or statistical procedure to unravel how
fish respond to hydraulic fields. Hydraulic information at nodes from the
CFD output can be interpolated to the initial position of each position pair.
With this information, it is reasonable to pose the two fundamental ques-
tions of fish swim-path selection presented in Figure 8.7: (1) What hydraulic
conditions determine whether a fish is oriented with or against the current?
(2) What hydraulic conditions determine the magnitude of volition swim-
ming once the fish’s orientation is known? Of course, the same logic applies
to each of the vector directions.

The swim-path behavior of the virtual fish can be summarized in various
ways to support decision making. For example, exit pathways of virtual fish
can be summarized as the proportion using a preferred pathway, such as
bypass system, versus a less-desirable passage, such as through the turbines.
Such predictive simulations can be used to select optimum fish passage or
fish protection designs or operations.

8. Evolving Approaches and Technologies 155

14

Lagrangian Reference FrameEulerian Reference Frame

Coupled Eulerian-Lagrangian
Reference Frame.

X

Y

Z

Figure 8.5. Merging CFD output data that uses a Eulerian reference frame with
fish-track data that use a Lagrangian reference frame onto a single geospatial 
framework creates a coupled Eulerian–Lagrangian frame of reference.



156 Eric Gustafson et al.

If total movement greater than passive
transport, then fish swims with flow:
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Figure 8.6. Hydraulic conditions interpolated to the position of the fish can be used
to transport the fish through the CFD grid as though it were a neutrally buoyant,
passive particle. The predicted location of the fish under passive transport can be
subtracted from the known position of the fish at the next time step. The difference
between the two distances represents the direction and extent of volitional swim-
ming by and the random velocity component of the fish.
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Figure 8.7. By comparing fish total displacement to passive transport, it then
becomes possible to ask two fundamental questions.



The use of CFD model output coupled to fish swim-behavior models is
relatively new, and methods are still evolving. Extensive model calibration
and verification must be made before the results of such analyses can be
used for natural resources management. However, in spite of challenges,
coupled models have the power to address major fishery resource man-
agement issues that currently are intractable (e.g., Figure 8.8).

8.5.2 Linked Multihierarchical Models for 
Decision Support
A second case study shows a new approach to integrating models to provide
decision support. All natural systems have numerous interacting compo-
nents operating at a variety of temporal and spatial extents. The historical
approach to modeling such systems has been to break the system down into
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Figure 8.8. Example of one frame from an animation based on CFD output (rep-
resented by arrows) coupled to a swim-path-selection model for a Columbia River
dam to assess the performance of a surface bypass collector. The collector attracts
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many simulated fish exit the dam by each possible route and how many remain in
the forebay (REM).The CFD was provided by Iowa Institute of Hydraulic Research
and was produced with the U2RANS model.



interacting subcomponents described by a dynamical system (typically ordi-
nary differential equations) and to connect these compartments by flows of
material among them (e.g., biomass and nutrients). However, this method
forces the modeler to use only one mathematical approach to structure the
system. New methods are developing to allow linkages among system 
components that take into account differing levels of detail to describe the
interactions between them. Advocates of this multimodeling methodology
argue that the use of a single modeling approach is inappropriate for prob-
lems spanning a wide variety of temporal, spatial, and organismal scales.
Multimodeling does not refer to multiple models representing the same
components of a system to determine the importance of additional detail.
Rather, it refers to using different modeling approaches for different 
components of the system and linking these different models to study the
interactions among the components.

One example of such a multimodel is the ATLSS (Across Trophic Level
System Simulation) project, constructed to aid analysis of the ecological
impacts of planning for the hydrologic restoration of the Everglades of
South Florida (DeAngelis et al. 1998). The ATLSS uses a mixture of
approaches based upon the inherent temporal and spatial resolution 
and extent of various trophic components, linked together by spatially
explicit information on the underlying environmental (e.g., water and 
soil-structure), biotic (e.g., vegetation), and anthropogenic (e.g., land-use)
factors.The linked components include spatially explicit indices (Curnutt et
al. 2000), compartment models, differential equations for structured popu-
lations and communities (Gaff et al. 2000), and individual-based models
(DeAngelis et al. 2000). Linking models that operate at very different spatial
and temporal extents is a major challenge, requiring a variety of spatial 
interpolation methods (Luh et al. 1997) and careful design of model inter-
faces (Duke-Sylvester and Gross 2002). The multimodeling approach can
readily be expanded to include economic, land-use, and human-population
impacts, although this will require careful error-propagation analysis.

8.6 Lessons Learned from Earlier 
Modeling Approaches

The application of ecological models by managers has sometimes fallen
short of expectations. An analysis of two examples may be instructive for
ecological modelers in general.

8.6.1 FORPLAN
The FORPLAN linear-programming (LP) model was the primary analyti-
cal tool used by the U.S. Department of Agriculture (USDA) Forest Service
for natural resource analysis and forest planning in the 1980s (Iverson 
and Alston 1986). However, FORPLAN fell from favor by the mid-1990s
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because three interacting factors collectively undermined the acceptability
of FORPLAN solutions.

The first factor was the rapidly increasing public interest and participa-
tion in natural resource management decision making (Behan 1990; Knopp
and Caldbeck 1988; Wondolleck 1988). The second factor was the agency’s
strategic mistake of reducing all major aspects of the problem to a single 
LP solution, making the models very large and often requiring dubious
transformations of information in the process. But the third factor, the diffi-
culty of explaining the derivations of FORPLAN solutions, was perhaps the
most problematic (O’Toole 1983). With enormous public interest in the
management implications of model solutions, this final factor was a fatal
flaw.The lesson for modelers with a stake in resource management is simple:
scientifically sound models are a necessary, but not sufficient, condition 
for successful model application in the modern public arena of resource
management. Increasingly, models are expected to explain themselves in
convincing and intuitive ways.

8.6.2 Habitat Suitability Index Models
Another example of a modeling approach that fell short of expectations 
is Habitat Suitability Index (HSI) modeling. Such models have been de-
veloped for a wide variety of wildlife species as part of a formal habitat-
evaluation procedure that was extensively applied by the U.S. Fish and
Wildlife Service (Verner et al. 1986). These models focus on providing a
simple, formalized method for assessing impacts on wildlife habitat. The
HSI models attempt to provide information useful to managers on the site
characteristics that affect the use of particular habitats by a species. The
models typically consist of simple relationships among habitat quality and
multiple characteristics, such as canopy cover, diameter classes of trees and
shrubs, tree stem densities, area of open water, and distance to forest cover.
The objective is to combine these variables to provide an overall index of
suitability.

The HSIs are based on local habitat variables, ignoring species interac-
tions except those caused by the indirect effects of related habitat variables.
Early HSI models ignored most landscape characteristics, making the
models inappropriate for situations where the sizes, shapes, edge effects, and
neighborhood relationships of habitats have a greater effect on habitat pre-
ference than local forest composition and structure. Because they are based
only upon habitat variables, they cannot take account of historical factors
driving local abundances, such as demography. Nor can they deal with the
absence of species resulting from interactions not described by the given
habitat variables, such as restrictions caused by pathogens. Considerable
effort to develop new methods to ameliorate some of these limitations have
been developed recently, making extensive use of remote-sensing methods
(Scott et al. 2001). Though inherently static entities, HSIs can also be
extended to include the dynamics of underlying environmental factors,
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taking account of different scales of species response both temporally and
spatially (Curnutt et al. 2000).

8.7 Recommendations and Conclusions

What do these evolving approaches mean for ecological modelers?
Advances in technology have progressively allowed ecological modelers to
focus more of their creativity and intellect on the formulation of models
(design and structure) and less on the mechanics of modeling (computer
coding and debugging). Furthermore, advances in the sophistication and
reliability of ecological models have attracted the attention of decision
makers, who hope that models may provide critical understanding that is
currently lacking. However, a gap remains between the models developed
by researchers to answer research questions and the predictive tools needed
by managers for sound natural resource management decisions. The ques-
tions of interest to researchers may not be directly relevant to resource
managers. Our strongest recommendation for ecological modelers who
wish to be relevant to managers is to talk to managers! Modelers often fail
to build relevant models primarily because their perception of the needs of
managers is flawed.

However, new technologies have the potential to revolutionize the field
of ecological modeling. Technology is beginning to overcome many of the
traditional barriers to linking models and dealing with the thorny scale
issues of the past. Technology provides tremendous efficiencies by making
collaborative model development easier and allowing model components
to be used in multiple ways. However, to fully exploit this potential, mod-
elers must constantly strive to think in new ways. It is now possible to con-
sider how technology can be used to model systems as they are understood
rather than to struggle to represent the system within the limits of the 
technology. This possibility presents great opportunity.

Ecological models will be increasingly scrutinized in the public arena.
They must be defensible (perhaps in court), transparent (in assumptions
and structure), and thoroughly documented and tested. Consequently,
modelers must give more attention to communicating with users, decision
makers, and stakeholders. The risks are high, but the needs for solid 
ecological models to provide decision support are growing and are critical.
The payoff will come in the form of better resource management decisions
and increased public support for ecological modeling research.
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9.1 Introduction

Environmental decision making can be viewed as a process that is based
on scientific data, with data and information flowing from the bottom up
and decisions coming from the top down. The data are synthesized into
information that can be used to make informed decisions (Figure 9.1). At
each step there is a transformation of data to information. Any gaps or
inconsistencies in this data flow degrade the foundation on which this
process is based. A smooth and integrated flow from data to decisions is
essential if informed decisions are to be effective and efficient. The theory
is that the more informed a decision is, the more likely it will be correct and
will produce the greatest benefit. The key to ensuring this smooth and inte-
grated flow is good communication among those who produce the data,
use the data in models, and analyze and apply the results of the models in
making decisions (Schiller et al. 2001).

Decision implementation can be viewed as a top-down procedure, where
the decisions are made at the top of an information hierarchy and flow
down, often through a different pathway than the information followed 
on the way up and to different people than originated the information/
data-flow process. This decision-making process is subject to influence by
political factors that may or may not be based on sound science.The knowl-
edge and abilities of the individuals at each stage of the process can be 
quite different (see Figure 9.1). For this whole process to work effectively,
information and data must be relative, succinct, and comprehensible by 
all of those involved. A breakdown of this communication process can
inhibit resource managers from making effective decisions based on sound
science.

The flow of data and information from the bottom up is often based on
a particular model of the working environment and varies by source. Basic
data may often be collected to answer specific questions, such as what the
level of dioxin is around a facility. This type of sampling takes place based



on a priori decisions and the spatial and temporal relevance of the sam-
pling regime. Because field sampling is often expensive, there is usually
some optimization of the regime to be economically efficient.The field data
are then passed on to modelers, who build a representation of the real world
that is used in the decision-making process. Unfortunately, the models that
define and frame this information may or may not be built specifically for
the needs of the decision makers and managers. Unsatisfactory decisions
and outcomes can result from information and models not directly appli-
cable to the problem.

Environmental assessment questions are often developed from existing
data (Berish et al. 1999). Using existing data may lead to poorly developed
questions, and developing environmental management decisions based on
these questions, existing data, and political subjectivity can lead to poor
decisions. Rarely are environmental management decisions made without
political considerations and inputs from the public (Walters 1986). As dis-
cussed by Dale (in press), the development of relevant questions, with
appropriate data feeding into the model, is a crucial first step.

Environmental managers often have a different background or experi-
ence than modelers do and are unable to help define explicitly useful
models. Modelers often do not have the political insight or desire to include
the decision-making process in an ecological process model. Sometimes the
difference in technical expertise that separates the environmental decision
makers from modelers is not the problem but a failure to communicate for
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a number of reasons. For example, at the U.S. Environmental Protection
Agency (USEPA), administrators in Washington, District of Columbia, are
miles away from the regional offices that collect data and implement man-
agement decisions. The individual regions are fairly autonomous, and 
solutions to problems used in one region may not adequately diffuse to the
other regions.The research done by USEPA through the Office of Research
and Development (ORD) provides a firm foundation for regulatory 
decisions made by the agency, but the time frame for the development 
of information through the research process sometimes lags behind the
needs of the regional programs to make decisions regarding resource 
management.

The technical expertise, background, and jargon at each decision level
may be so different that communication may not be optimal. Even though
the same language is used, the areas of expertise may not overlap enough
to provide for the best understanding of the problems and issues. This leads
to the requirement that some degree of communication and participation
is required at all levels of the information-flow hierarchy (Walters 1997;
Rogers 1998).

Data must be acquired that fit the modeling process. Models must be
developed that not only use appropriate data but also are designed to
answer the appropriate questions. Options for the decision-making process
should be included in the model. Ecological models often do not have
appropriate links to the decision-making process to develop scenarios that
aid in making resource-based decisions. Given that decision makers often
do not know the limitations of models and data, the quality and quantity
of data and information must be well documented for environmental
resource managers to make informed decisions.

9.2 Data and Modeling Issues

One example of a successful environmental management decision-making
process that included modeling was developed by a multiagency Regional
Ecosystem Office (REO). The REO assembled a six-sequence procedure
on how to address environmental conditions at the watershed scale (REO
1995). The REO analysis procedure is similar to USEPA’s Watershed
Assessment approach (USEPA 1996). The REO analysis procedures
include:

• Characterization of the watershed area to be studied
• Definition of key questions
• Data collection on existing environmental conditions in the watershed

relative to the key question
• Data analyses and making information available on baseline conditions
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• Interpretation and refinement of the information
• Development of recommendations for watershed protection for decision

makers

The process whereby questions are asked, data are collected and ana-
lyzed, and decisions made can go askew at many junctions. At the USEPA,
we have experienced several common pitfalls and see several common
areas to be addressed:

• Misguided conceptualization can result in imperfect or wrong questions,
and therefore appropriate models are not developed.

• Existing data may be used in place of appropriate data.
• Data are misused.
• Scale and statistical validity are ignored.
• Inadequate communication is practiced.

9.3 Model Conceptualization

The question and model-conceptualization phase becomes imperfect for
numerous reasons. The basic definition of a model is a simple representa-
tion of the relationship of items in the real world (see Chapter 1, this
volume). Models are used to simplify the real world and make it easier to
understand. The endpoint of many models is not the support of decision
making but clarifying complex relationships. Models often neglect major
parts of systems (basically linearizing them in the time–space domain of the
model) to achieve this simplification.

Solutions to environmental problems depend on the questions being
asked, available data for developing the model, and conceptual framework
built into the model. Conversely, existing data often frame the model and
the questions that can be asked (Figure 9.2). Often, a mismatch occurs
between the questions that need to be answered and the data that exist to
answer the question. Often the data that are available to the modeling
process do not directly fit the model. It may be temporally irrelevant, spa-
tially inappropriate, or acquired for a different purpose. The existing data
may be able to answer other questions than the desired ones. The solutions
are to (1) reframe the questions to fit existing data, (2) acquire more data
that are relevant to the questions, (3) reframe the questions and acquire
more data, and (4) find other tools or models that can integrate the needed
questions and existing data. It is often necessary to iterate through this
process to develop optimum solutions to the questions being asked. In a
recent volume edited by Peine (1999) several authors discuss how existing
data were used to conduct an environmental assessment, including limita-
tions dealt with, models used, and potential applications of the information
that was developed. In times of receding budgets for data gathering, the use
of existing data may become even more important.
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9.4 Existing Data and Misuse

Data can be misused or misinterpreted in a number of ways. Ecosystems
are complex with many interactions at various levels that vary spatially and
temporally. The complexity of interactions in ecosystems goes far beyond
that of genetic coding, but the interaction of the four base types in deoxyri-
bonucleic acid (DNA) provides an example of complex relationships than
can be developed from only four separate entities (see Sidebar 9.1). Usually,
field data or experimentally acquired data do not go beyond first-order
interactions. This simplicity can make it very difficult to interpret the mul-
tiinteraction processes that occur in the real world. Often, the sampling
regime is designed to linearize any other interactive effects in order to study
one process at a time in an isolated manner. Optimization of this type for
statistical analysis can reduce the information content and eliminate inter-
esting nonlinear effects that might occur. It is important to understand 
that data acquired in this manner will often affect the development and
parameterization of the models being used. Models based on these data
may not have all of the appropriate interaction in the model structure. The
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Sidebar 9.1
Definitions

Data and Information
Data exist as first-order information. This level represents unrelated
facts. Information is developed as data are related. The combination
of data and their relationships is information. Information flow up the
hierarchical chain to ecosystem managers must be focused into the
scope of things that the managers understand or the information will
be useless.

Communications theory
Claude Shannon of Bell Laboratories (1949) came up with a way of
measuring information that was based on the bandwidth needed to
transmit nonredundant data. Ecologists have adapted a form of this
measure (the Shannon–Weaver index) to measure diversity. This
index represents the most basic structure of data, namely the pres-
ence or absence of a given entity and the amount relative to the whole
of the entities measured. Information content is a representation of
data that has relationships to other data. This relationship can be in
time, space, or category.

Information content
The most basic information content of DNA expressed with the
Shannon-Weaver (SW) index is the representation of individual
nucleotides in DNA. This value is the sum of the logarithms of the
probability of four separate nucleotide bases (guanine, adenine, tyro-
sine, and cytosine, or GATC). The contextual informational content
of DNA is not just this simple index of the amount of GATC (first-
order information), but base-pair SW indices (second-order informa-
tion) and triplicate SW indices (third-order information) give further
informational content to DNA. Because triplicates of nucleotides
code for amino acids, the triplicate–triplicate SW indices give infor-
mation about protein coding. The informational content thus quickly
becomes a multiorder (interaction) phenomenon that can be difficult
to understand at much above the protein coding level. Higher-level
combinations of nucleotide sequences code for enzymes and other
complex biological compounds.

In the natural world, field measurements are often only first order
(quantity) because higher-order data measurements are usually diffi-
cult to make. Measuring all of the complex interactions in a swamp
or other natural system is out of the range of most biological studies.
By collecting pertinent and applicable data, models can be developed
that represent the complex nonlinear interactions that exist in the
natural world. Data collection must be able to support the level of
detail and interactions in the model.



development of models is also based on ecological theory and systems 
principles, which may help to account for interactions and multivariate 
relationships that may be hidden in linear representations of field data.
Model coefficients based solely on linear field data may force the model 
to behave in regimes for which it was not initially designed. At a minimum,
the time, space, and characterization of the data must be understood in 
the context in which the data were acquired. This placing of the data in a
contextual setting will provide a beginning to understand the caveats 
of the data/model/decision information flow. Know your data, know your
model!

In addition, at USEPA we find that more data are not necessarily better
data.With the Internet, we can easily become saturated with data and infor-
mation. Web sites abound with access to databases that can easily be down-
loaded to an individual’s computer. With such an abundance of data,
determination of the applicability of individual data sets to the modeling
and decision-making process can be difficult. It is important to understand
the ramifications of making decisions without good data. Is such a situation
any better than making wrong decisions with good data?

In the flow of data from field measurements to the resource manager or
decision maker, it is imperative that contextual meaning is carried along
with the flow of data. Many databases that have been in existence for a long
period of time may appear to be useful for things other than that for which
they were developed. An example is the STORET database that the
USEPA maintains. At first glance, the data would appear to be useful in a
geographic information system (GIS) context and could be used to display
water-quality information spatially.The database has locational information
in the attributes of sites where water-quality measurements have been
made. The accuracy of the locational information is often not well docu-
mented. This drawback, however, is not the major problem of using data-
bases like this in a GIS framework. The major problem is that the data do
not always fit any rational sampling model that would allow them to be spa-
tially mapped. The data are representative of individual sites with no spa-
tially integrated sampling scheme. Data are often measured to fulfill permit
requirements, enforcement activities, background sampling, and other ad
hoc schemes. Thus, it would be very easy for uninformed GIS modelers to
use STORET data in a manner that would give undesirable results. Other
legacy databases have similar problems.

The necessity of metadata cannot be overemphasized.At each step in the
data-gathering and modeling process, adequate documentation must be
recorded to provide a firm foundation for the data processing and the fol-
lowing decision-making process. Metadata can be streamlined by using a
form-based structure to record pertinent information at each step. The
metadata should always be carried with the data. These data about data are
often at least as important as the base data because they provide the context
of the base data.
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At USEPA, a model being used daily to determine the impact of various
factors on water quality is Total Maximum Daily Loads (TMDLs). This
model process is being used to help resource managers determine appro-
priate resource management decisions:“How much of a pollutant like nitro-
gen can enter a specific watershed on an annual basis?” The TMDL model
then helps guide regulators to develop permit limits for future nitrogen
point sources to the watershed. The TMDL model is not necessarily a pre-
scriptive-type model because management decisions are not built into the
model. It is an informational model that is used to prioritize and clarify the
water-quality impacts in a watershed. In this particular case, some existing
water-quality data (such as STORET) are appropriate to use based on the
developed questions. Thus, the reliability of field data is a key issue for the
environmental modeler because the statistical significance of the sampling
point(s) may never be known to the decision maker.

9.5 Scale and Variability

Natural systems contain hierarchies of scale in time and space. Events that
control ecosystems often occur as pulse events from the next higher system
(Odum 1988). These control pulses organize the ecosystem in a way that
maximizes energy flow and builds structure that can integrate these pulses
over time and space (Holling 1992). Models that incorporate these features
of differing scales in time and space and account for natural hierarchical
control processes are best suited for use in developing resource manage-
ment decisions. This type of model may be difficult to conceptualize and
parameterize. The data needed to support these models may also be diffi-
cult to acquire.

Often, real-world data measurements that do not conform to the normal
sampling distribution may be difficult to validate in a standard statistical
analysis. These data represent events or processes that exist on a different
time or spatial scale than the rest of the data. Linear (first-order) sampling
schemes tend to disregard or throw out data that is far from the median or
outside the normal distribution. Outlier data may not fit the standard 
statistical model, but their importance is hard to neglect. Oftentimes, the
events that do not fit within the normal 95% confidence interval are the
kinds of events that may control the rest of the system. Disturbance regimes
often fit into a hierarchical time and spatial scale that may be difficult to
measure within the time frame and spatial scale of field sampling. When
they do happen, they are sometimes overlooked or discarded because their
effect is far outside the 95% confidence interval of the sampling regime.
Understanding the relationship of “outliers” or other nonnormal data may
be very important in building a model to support resource decisions in an
environment controlled by disturbance.
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9.6 An Example

We would like to conclude this chapter with a condensed example of a 
successful environment modeling process currently underway in USEPA’s
Region 4.

Where are the best natural areas remaining in the southeastern United
States? In response to this question, which came from the recent USEPA
Region 4 administrator, John Hankinson, the USEPA began a project with
the University of Florida to develop a GIS model to identify potential
greenspace areas. The spatially explicit GIS model identifies areas of con-
servation significance and landscape linkages best suited for protecting a
regionwide ecological network. The project team had previously developed
the modeling protocol and the expertise for designing landscape linkages
and prioritizing ecological hubs at a statewide scale for the Florida Green-
ways and Trails model (Hoctor et al. 2000). This particular model under-
went significant public participation, comment, and peer review before
being finalized and is being used to help direct $300 million per year for
greenspace protection in the state of Florida. The USEPA Region 4
awarded a cooperative-agreement grant to the University of Florida
Department of Landscape Architecture to develop an ecological connec-
tivity model for the eight states in the southeast region. The purpose of the
regional project is to identify lands that would aid in the protection of water
resources, wetlands, and other natural areas. The following is a generaliza-
tion of the individual modeling procedures that were used to develop the
Southeastern Ecological Framework (SEF). Individual model steps more
closely follow the model development scheme than the generalization 
presented here (Sidebar 9.2).

Sidebar 9.2
Basic steps in model development and data needs
and inputs

Conceptualization defines the structure of the model. This is the stage
where state variables and processes are defined. Interactions between
the variables and the types of processes are developed from data and
information from field studies, general knowledge and understanding
of ecological systems, and decisions about the level of detail in the
model interactions. Data requirements for this step can often be fairly
general.

Calibration determines the coefficients for the state variables and
flow processes. Data requirements for this and the next step are
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usually the most stringent. To calibrate flows and storages, the data
must be relevant and accurate. There is a need to know more than
just zero-order flow information. Flow values relative to the interact-
ing processes are needed to develop models that are nonlinear.
Usually, the bounds of all of the flows are not well known. Events that
occur on longer time scales and at larger spatial extents than those
measured may have significant consequences on the model. General-
ized information or modeled data from a larger domain can be used
to help set the bounds of the model.

Verification checks that the model behaves correctly with the cali-
bration data. This analysis may require time-series data to adequately
verify that the model performs as it was designed. The data set used
to verify the model is usually the same as the data used to calibrate
it. This practice is used to ensure that the model structure is correct
and behaves in the same manner as the system being modeled.

Validation determines that the model behaves in the same manner
with an independent data set. It is bad modeling practice to validate
the model with the same data used to calibrate and verify the model.
A second, parallel data set is required to independently validate the
model. Often, when data are collected, the data set is split, and half is
used to calibrate and verify, and the other half is used to validate. Val-
idation data sets can also come from other studies of similar systems.
Ensuring that the temporal and spatial characteristics of the valida-
tion data set match the model and the previously used data may be
important to prevent domain errors. Validation is not always required
for a model to be used.

Prediction/analysis develops data and information that can be used
to support management decisions. The data derived from the model
must meet the same temporal and spatial conditions as the calibra-
tion data. Validation requires that the data be within the same data
frame as the input data; predictive results often go beyond the sam-
pling area or time. As long as the model and calibration data reflect
the appropriate temporal and spatial domain, the predictions with the
model will have relevance. Predictions outside the time and spatial
domain of the input data may not accurately reflect conditions in the
real world.

GIS maps are models!
Rarely does GIS information reflect a direct relationship to what is
on the ground. It is mapped through a model and has uncertainty in
its spatial representation and uncertainty in its categorical data. Maps
have a powerful visual impact even though they may not accurately
represent the reality of what is on the ground.
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9.6.1 Model Development: Calibration/Verification
The SEF incorporates the first uniform National Land Cover Data (NLCD)
set to be developed at a 30-m resolution for the entire United States 
(Vogelmann et al. 1998). The original ecological greenways model for the
state of Florida was done at a resolution of 147m. The SEF model was
developed for USEPA Region 4 (eight states: Alabama, Florida, Georgia,
Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee) at a
90-m resolution with a reintegration of the original land cover at 30m.
Fifteen additional data layers, such as significant ecological areas, important
habitats for focal species, federally and state-managed lands, priority eco-
logical communities, wetlands, roadless areas, floodplains, and important
aquatic systems at regional and statewide scales were used to identify areas
of potential conservation. Upland and riparian landscape linkages were
then incorporated at a regional scale to integrate the larger areas of eco-
logical significance into a regional network. Hubs with areas greater than
5000 acres were linked through an ecological-cost surface. The connecting
pathway among the hubs represents the lowest ecological cost in going from
one hub to the next.

9.6.2 Validation/Prediction
The validation of the model and GIS data layers has been primarily by peer
review of the model and inputs from various workshops and presentations.
The output of the model predicts where major landscape linkages could be
protected or preserved to maintain the optimal connectivity between exist-
ing natural areas in the southeastern United States.

The SEF represents the area in the southeastern United States that pre-
serves the best available land for a connected, large-scale ecosystem. The
inherent ecological processes that would be preserved within this network
provide a basis for watershed protection, biodiversity and wildlife conser-
vation, wetlands mitigation, land-use planning, road right-of-way planning,
wellhead protection, and many similar activities. The final ecological frame-
work provides a basic regional landscape and natural resource planning tool
(Durbrow et al. 2001).

The SEF only has value if it is used in natural resource planning and other
efforts to protect greenspace and natural systems. These decisions are often
at a local scale, such as county or watershed. Currently, efforts are under
way to engage various federal, state, and local partners, both governmental
and nongovernmental, to integrate the data and information developed 
in this project for resource management and protection efforts. For many
planning efforts, the multitude of data layers could be of little use without
a skilled GIS analyst to incorporate the data into the existing planning. So
resource decision makers can use the data and information more efficiently,
a simple GIS browser is being developed that will allow any user or



resource manager to view the maps along with pertinent information
related to the ecological framework. This combination of resource-based
data and simple map interface will allow all levels of users to use the 
information.

The information flow in this example begins with many large data sets
acquired from a variety of sources. Each of the data sets was determined
to be spatially explicit enough to be included in the model. Raw field 
data were processed at least once to derive the data layers used in the
model, although most of the data sets were acquired in a processed form.
The models were developed with input from resource managers and the
general public to get significant approval in the final product. As a result,
the final SEF product will be packaged to facilitate its use by all interested
parties.

In many natural-resource-planning projects, the real work is done 
at a local level. One of the important aspects of the SEF is that it was 
developed at a scale (30 to 90m) that could be used by local planners 
and resource managers. Several significant pilot projects using the data 
are under way and promise to provide excellent feedback for the final
product.

9.7 Conclusions

To have optimum choices for environmental decision making, managers
need information that is relevant and timely. Ecological/environmental
models are well suited for developing the information needed to make good
decisions affecting the environment. The essence of models is that they
distill the important processes and variables into a simple form that can 
be used to understand the system being modeled and to provide insight
about choices that might affect that system. The flow of data and informa-
tion from real-world situations to resource managers requires that all of the
people involved in the process communicate information in a timely and
relevant manner. It may not be necessary for each person in the hierarchy
of information flow and decision making to have a complete knowledge of
all the processes, but it is imperative that they understand the overall flow
of information and the caveats surrounding each step in the information
hierarchy.

Resource management decisions will be made even in the absence of
data, models, or relevant information. To achieve the maximum effective-
ness, decisions should be made with enough information to understand the
possible ramifications of those decisions. The best decision-making process
will have a clear definition of the problem and issues, pertinent and ade-
quate data, well-documented data flow, simple models with links to the envi-
ronmental decisions, clear communication between modelers and resource
managers, and stakeholder involvement in the process.
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10.1 Introduction: How Data Are Used in Models

Data are used throughout the modeling process, from initial identification
of the question(s) to model testing and refinement. Although the nature of
a specific model or set of models will determine the data required and the
manner in which data are used, the following discussion provides general
insights into the fundamental role of data in the modeling process. Our
purpose here is to describe the different roles of data, discuss criteria to
judge the appropriateness of data for a model, suggest that the process of
data collection and use is iterative, and emphasize the necessity of disclos-
ing the limitations of the data and models (Figure 10.1).

Brooks (1997) suggests a process for developing habitat-suitability-index
models that may be generalized to virtually all resource models. He iden-
tifies four primary phases: development, calibration, verification, and vali-
dation. More recently, Guisan and Zimmerman (2000) suggest a similar
process for habitat distribution models. Their four steps include: conceptual
model, statistical formulation, calibration, and predictions that are tested
against an evaluation data set. Similarly, we suggest there are five funda-
mental ways in which data are used in the modeling process:

1. formulation of the initial questions
2. development of the conceptual model
3. construction of the model
4. calibration/verification of the model
5. testing of the model.

10.1.1 What Is the Question?
The first question that a manager should ask before beginning a modeling
exercise is “What are the specific science and management questions that
are to be answered?” Clarity regarding the kind of information needed to
assist the decision-making process will improve the decisions and should 



be first and foremost in the modeler’s mind (Quigley and Cole 1997). Often,
data, perhaps from a monitoring program, drive the question. The question
to be answered will determine the level of detail necessary in the model.
Some high-level questions may require multiple models to answer. For 
each of these models, it is imperative that an answerable question be
defined.

10.1.2 The Conceptual Model
Once the question is defined, every ecological model should begin with a
solid conceptual framework (Guisan and Zimmerman 2000). Without an
adequate conceptual framework, no amount of data will provide the under-
standing necessary to guide management decisions (Johnson et al. 1999).To
identify ecological-monitoring indicators that reflect underlying ecological
structure and function requires well-developed conceptual models of the
resources of concern (Barber 1994; National Research Council 1990, 1995).
The conceptual model outlines the interconnections among ecosystem
resources (key system components), the strength and direction of those
links, and the attributes that characterize the state of the resources. The
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model should demonstrate how the system works, with particular empha-
sis on anticipated system responses to stressor input.The model also should
indicate the pathways by which the system accommodates natural distur-
bances and how the system may acquire resilience to disturbance. These
processes could be portrayed by illustrating the acceptable bounds of vari-
ation of system components and the normal patterns of variation in input
and output among the model elements (Noon et al. 1999). Typically, that
framework is grounded in existing data from either direct observation,
extrapolation from similar studies, or ecologically sound assumptions.These
data may include biological data about the organism and/or remotely
sensed data about the habitat as well as other biological and abiotic data
specific to the question. The conceptual model must address the question
while recognizing data needs and availability to construct, verify/calibrate,
test, and run the model. Once the conceptual model has been formulated,
data needs can be identified and prioritized, and the process of data col-
lection and model construction can begin.

10.1.3 Model Formulation and Construction
The conceptual model is then formalized into a set of mathematical expres-
sions or fuzzy logic and algorithmic steps.The data required for this process
typically pertain to parameter values for the mathematical expressions and
related geographic information system (GIS) data.

The growing use of spatially explicit models, usually based on GIS,
has led to a profusion of models in which observations of existing popula-
tions and communities are used to infer relationships among various geo-
graphic data sets and habitat requirements [e.g., Akcakaya and Atwood
(1997); Gerrard et al. (2001); Knick and Dyer (1997)]. Other spatially
explicit models, [e.g., Mann et al. (2000)] make predictions based on param-
eters that are determined from the biology of the organisms or communi-
ties. Parameterization of these models is typically based on data from
literature surveys or assumptions from ecological theory. Construction 
and use of GIS-based models, of course, requires geographic data sets.
While the use of spatially explicit models may complicate model building,
it can lead to breakthroughs in large-scale understanding or the incorpo-
ration of social and economic factors into previously limited analyses
(D’Erchia 1997).

10.1.4 Model Verification and Calibration
Verification is the process of confirming that the model performs as
expected. The data required to verify the model must include a reasonable
sample of input data and an associated set of experimental results or obser-
vations to compare with the model output. Calibration can generally be
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thought of as adjusting the model’s parameters to improve its ability to
predict the verification data set. If sufficient data are available, it is possi-
ble and common practice to use a portion of them to parameterize the
model and a second portion reserved to validate the model. This verifica-
tion is not a formal test of the model, merely an attempt to ensure that 
the model output fits the observations of the input used to construct the
model.

10.1.5 Model Testing
The purpose of model testing is to determine how well the model can be
extrapolated to conditions beyond those limited data under which it was
constructed. The data required for model testing are similar to those
required for verification/calibration. Whereas the verification data set may
be small, the purposes of testing are best served by larger data sets or mul-
tiple data sets that challenge the model over a broad range of conditions.
Generally, extrapolation is one of the motivations for using models to begin
with. For example, Mann et al. (2000) developed a deductive, GIS-based
model of threatened calcareous ecosystems (sometimes called cedar
barrens or slope glades), which was verified and calibrated against small
geographic data sets at Oak Ridge, Tennessee, and Fort Knox, Kentucky.
The model was then extrapolated to predict the distribution of these rare
communities across all of Fort Knox and across a much larger region 
(Missouri and Tennessee). Model testing compared the model’s predicted
distributions against known occurrences in these larger areas. As with most
analytical procedures, it is important to examine the limits of extrapolation
that result from the various components of the model, make appropriate
decisions about which model components give the greatest power, and dis-
close the limits of extrapolation to users of the model.

10.1.6 Model Limitations
Understanding the fundamental ways that data are used, as described
above, can inform the documentation of how the model may be limited.
In addition, assumptions and best professional judgments are frequently
substituted for field data throughout the modeling process. It is incum-
bent upon users to understand these assumptions as well as the strengths
and limitations of the underlying data. Clearly, any limitations on the 
accuracy or extent of the data will affect the output of the model, so 
such limitations must be addressed throughout the modeling process and 
should be understood by and disclosed to those who use the models or 
their results. This documentation should accompany the model in reports,
metadata, and meetings with managers to explain the modeling process and
results.
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10.2 Data Appropriateness Concerns 

Data appropriateness does not ask the question can these data be used for
this purpose, but instead asks the question should these data be used for
this purpose. To determine whether data should be used for a model, it is
necessary to understand the original purpose of data collection. There are
no cookbooks for determining when to use a certain data set except to say
that the data must not violate the assumptions of the model. The objectives
for collecting the data may not have been clearly articulated even if they
seemed clear to the project managers at initiation (Conquest et al. 1993).
Knowing whether a particular data set is appropriate for a given model is
based upon a clear understanding of the assumptions underlying both the
data and the model. The key to this understanding is achieved by evaluat-
ing the metadata, or “data about data.”

Metadata describe the “what, who, when, why, and how” of the data. The
importance of providing and using complete metadata with models and
data cannot be overestimated. Metadata are used to match up the assump-
tions and limitations of the data with those same factors for the model.
For spatial data, the Federal Geographic Data Committee (FGDC;
http://www.fgdc.gov) has developed minimum standards defining metadata.
Good metadata should contain a clear definition of source, units, underly-
ing assumptions, variability, scale, and resolution. Data limitations and 
qualifiers should be clearly stated or easily inferred from the metadata or
supplemental “README” documentation and should be visible to the
data user when accessing the data.

10.2.1 Source 
Metadata should address the following questions: Who created the data?
For what purpose were the data created? Were the data recorded in the
field? If recorded in the field, how were the data collected? Were the data
derived from remotely sensed imagery or other GIS data? Were the data
simulated output from a model? These questions help determine the appro-
priateness of a data set for a specific use, with the purpose of data creation
being the key constraint on wise data use. For example, the U.S. Environ-
mental Protection Agency’s (USEPA’s) EPA 303d (Impaired Water Quality
streams) data provide national coverage but were not designed to be a
nationally consistent data set. Individual states were not required to use the
same protocols and methods for identifying impaired waters, and so the
resulting data set is a mix of different reporting methods and different 
criteria for classifying stream reaches. Analysis of these data, therefore,
should not be used to describe national trends, and even summary infor-
mation could be very misleading. Furthermore, data with a spatial compo-
nent (e.g., latitude and longitude coordinates) may not have been created
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for pinpoint location mapping. The locations of the points may not be very
accurate. Complete metadata will include information on whom to contact
if there are questions about the collection, processing, and packaging of the
data.

10.2.2 Units
A clear definition of units used in data measurements and representation
is essential to proper data interpretation and use. Descriptive units may
include units of measurement including area, volume, temperature, etc., as
well as time-step definitions, such as minutes, hours, and days.

10.2.3 Assumptions 
Assumptions underlying data dictate reasonable use. What has been done
to the data? What has not been done to the data? Were the data collected
under normal conditions? Are these data representative of a certain place
or phenomenon? An understanding of the limitations of data and models
is essential to good analysis.

10.2.4 Variability 
Data variability, both inherent and that resulting from a sampling scheme,
should be clearly documented and quantified. It includes both spatial and
temporal variability. Knowledge of variability should guide the choice of
sampling scheme and direct the use and interpretation of existing data.

10.2.5 Consistency in Sampling
Changes in the data collection may compromise the use of the data or
change the underlying assumptions of the data. For example, if collection
of data on fish species was initially obtained by trapping or netting and later
by electrofishing, then assumptions about changes in population from the
initial to later times may be invalid (Cairns and Smith 1993).

10.2.6 Scale/Resolution 
A complete description of spatial and temporal scales and resolution are
necessary to determine the appropriate use of data. Scale refers to a defined
dimensional relationship between reality and the representation of reality,
while resolution is a measure of the ability of a device to differentiate a
value (Robinson et al. 1984). For example, a map depicting the world would
be a small-scale map, while a similarly sized map depicting a county would
be a large-scale map. Resolution is positively related to differentiating fine
detail at a given scale. Once a data set has been formulated, changing the
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scale and resolution of data results in a loss of information. As a general
rule, one should only compile data from larger cartographic scales to
smaller cartographic scales, except in special instances, such as using field-
collected data to validate remotely sensed data. In other words, one cannot
add detail to data, whether it is spatial, temporal, or spectral. This is espe-
cially true with remotely sensed data (Lachowski et al. 2000).

With the proliferation of desktop GIS applications, a wealth of spatial
data has become available at our fingertips. This abundance of data may,
however, be a mixed blessing:“The great advantage of map data—that they
are prepackaged and ready for use—is also their chief disadvantage”
(Fosnight et al. 2000). Data can be obtained and used quite easily; however,
the scale and classification might not be suited to a particular project. The
most frequent misuse of map data “is to incorporate them into databases
at scales for which they are not designed” (Fosnight et al. 2000). It is nec-
essary to remember that digital data have accuracies that are no better than
their source maps. For example, a 1 :1,000,000-scale digital elevation model
(DEM) is not appropriate for use at a 1 : 5,000 scale.

10.2.7 Projections 
The geographic projections of spatial data should be described in detail
within data documentation. Making assumptions regarding geographic pro-
jection can lead to inappropriate use of data and incorrect results. Spatial
data that are to be used together within the context of a GIS should be of
the same projection. Changing projections involves a resampling of data,
and information can be lost. Therefore, it is useful to know how many times
data have been reprojected and what methods were used.

10.2.8 Attribute Definitions
Good metadata should include concise definitions of data attributes. A
complete understanding of attributes is critical to determining the wise use
of data and the credibility of the results. Definition of variables can range
from simply a full name for a field that has been abbreviated, for example,
m = meters, to describing the criteria used for assigning a certain value, such
as, burn = parcel has burned for more than x amount of the time within the
y time period.

10.2.9 Data Limitations
Users must be made aware of data limitations. Some limitations on appro-
priate use may be inferred from the characteristics described above, while
others must be explicitly outlined within the documentation. While data
providers have the responsibility of disclosing information regarding the
known limitations of their data, the ultimate responsibility lies with the user
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to make educated decisions regarding the appropriate use of data. As
Arnold et al. (2000) point out, “Researchers and educators must sometimes
walk a fine line between explaining such limitations, and undermining the
perceived value of the information by detailing a long list of technical
caveats.”

In addition to dangers associated with the wide availability of digital data,
new dangers have arisen with the advent of sophisticated software pack-
ages, including desktop GIS, models, and statistical packages. These pack-
ages allow users who may be unfamiliar with the underlying algorithms to
execute complicated analyses with the click of a mouse, often leading to
inappropriate results, which could lead to poor decision making. To fully
understand the results, users must not only be aware of the limitations of
the data, but must also determine what is being done by the software and
the underlying assumptions.

10.3 Data Collection/Acquisition Concerns

The primary constraints on gathering appropriate, high-quality data are the
time and resources available for data collection and acquisition efforts. In
many cases, ecological models are constructed to guide management and
policy decisions that must be made quickly. However, the ecological data
required for the construction of models needs to be collected over a longer
time scale. Available resources, such as money, equipment, and experienced
personnel, can be a deciding factor as to whether data are collected by the
modelers, contracted to another organization for collection, or acquired
from an existing source. Often, to meet time constraints, data are obtained
from existing sources, incurring a serious tradeoff among data availability,
appropriateness, and quality.

The time, resources, and existing data available for a modeling project
can influence decisions about the structure and function of the ecological
model being constructed. All models are generalizations of the target eco-
logical system. It is hoped that they retain the key factors that drive the
system dynamics. However, the level of generalization can be constrained
by the time, resources, and existing data for the modeling effort. In cases
where management decisions must be made quickly, resources for data col-
lection are limited, or the existing data are at a coarse temporal or spatial
scale, the ecological model that is constructed must be very simple. Simple
models that greatly generalize the system are useful as learning tools to
explore the ecological system and potential management actions, but should
not be relied upon for strict quantitative predictions of ecological per-
formance. Simple models can also help focus future data collection efforts.
When additional time and resources are available for data collection or the
existing data closely match the desired extent and resolution, increasingly
rigorous models can be built to provide quantitative predictions. Remem-
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ber that even a well-parameterized model based on high-quality data can
give volatile results, especially if it is based on parameters programmed to
vary randomly in time and space or if it incorporates nonlinear process
functions with chaotic properties.The following sections discuss methods of
obtaining data and the issues that should be considered when using each
type of data collection.

10.3.1 Previous Data Collection Efforts
Obtaining data from existing sources can be a cost- and time-efficient
method, provided that the data are appropriate for the ecological model
being constructed. With the advances in Internet and file-sharing tech-
nology and increases in monitoring programs (Beard et al. 1999), exist-
ing data from a variety of sources have become increasingly available and 
inexpensive. However, available data are not always appropriate data. The 
following concerns should be considered when obtaining data from an exist-
ing source: species appropriateness, temporal and spatial scale appropri-
ateness, previous manipulations or analysis of the data, and measurement
error.

10.3.1.1 Species Appropriateness

Are the existing data representative of the species being modeled? Exist-
ing data may be available for the same or a similar species as the one being
modeled. A surrogate indicator species has characteristics, such as popula-
tion density or demographic parameters, that can be used, with caution,
as an index of attributes for the species of interest (Landres et al. 1988).
However, as models increase in complexity, it is more difficult to find sur-
rogate species that will accurately represent all of the characteristics of the
species of interest. Species that are close in taxonomy to the species of inter-
est are generally the best candidates for surrogate species. Even if the exist-
ing data were collected for the species of interest, intraspecific variability is
a concern. Species characteristics, such as habitat and forage preferences,
can vary across the geographic range of the species. For species with a large
geographic range or large variation within their range, the similarity of the
ecosystem’s and species’ traits between the existing data and those of the
species being modeled should be particularly examined.

10.3.1.2 Temporal and Spatial Scale Appropriateness

Care regarding temporal and spatial variability is particularly advised when
the variability is large. Two factors to consider when deciding whether to
use existing data for the model are the extent and resolution of the data.
Extent of the data is determined by the total spatial area of the data col-
lection and the total length of time over which the data were collected. Res-
olution of the data is measured by the smallest spatial area for which data
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were collected and the temporal frequency of the data collection efforts.
Ideally, both the extent and resolution of the existing data should match the
extent and resolution of the model. Increasingly, modelers are taking into
account spatial variation in ecological models. However, the variation or
heterogeneity of data collected in relatively pristine areas may be different
from that of more impacted systems (Stewart and Loar 1994). Further, the
heterogeneity of the area of data collection will influence the relative
importance of extent or resolution as the determining factor of appropri-
ateness. In areas with broad-scale homogeneity or large patches of similar
habitat, the extent of the existing data is more important than resolution to
capture the existing variability. However, when fine-scale heterogeneity or
small, interspersed patches pervade the area of data collection, the resolu-
tion of the existing data is more important than extent for characterizing
the variability.

10.3.1.3 Degree of Manipulation

It is important to be aware of the additional assumptions that are added to
the ecological model when data are obtained from an existing source. If 
raw field data are available, the additional assumptions added to the model
are related to the sampling design and protocol for the data collection. In
many situations, raw field data are not available from existing sources, and
the available data have been summarized or manipulated from their raw
form. Outliers may have been eliminated; data may have been smoothed,
averaged, or normalized; or only ranges of particular interest may have
been presented. Each of these processes would have been carried out on
the basis of some assumptions, routines, or preferences. The available data
may also be the output result of a previous ecological model. These char-
acteristics do not inherently make the existing data a poor choice for a
model, but it is necessary to know how the data were summarized or
manipulated because the effects of these processes may affect the model
and its results.

10.3.1.4 Measurement Error

Measurement error occurs when the measured sample does not accurately
represent the true value in the population. This error can result from either
lack of precision or bias in the data collection. With sufficient metadata, an
estimate of the measurement error distribution should be included or able
to be estimated. If the measurement error is known, it can be accounted for
in the model, or the sensitivity of the model to the measurement error can
be determined.

Overall, the decision to use existing data sources when constructing an
ecological model rests on an evaluation of sufficient and accurate metadata
associated with the existing data. Without metadata, it is not possible to
evaluate the tradeoff between using the existing data versus investing the
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time and resources necessary to obtain the new data. If existing data are
selected for use, the key to their success in a modeling project is the docu-
mentation and testing of the assumptions that are introduced to the model
by the data.

10.3.2 Spatial Data
Whether searching for spatial data for use as direct model input, calibra-
tion data, or ancillary data, one needs to keep the specific purposes of the
modeling effort in mind when selecting data. Generally, one will want to
start simple and add complexity as confidence is developed that the model
and data are a good fit. Using an additive process will help reduce or
manage uncertainty.

In addition to intended use, time and resources will also dictate data
availability. When time and resources are constrained, it is necessary to
work with data that are readily available; however, the danger exists that
scientific questions will then be guided by available data. There is, however,
a plethora of digital spatial data available for minimal or no cost. Valuable
sources of data include the literature (especially the methods sections) as
well as commercial, educational, and governmental data repositories. Many
of these sources are available on the World Wide Web. For example, gov-
ernment sources have satellite data dating back three decades and aerial
photography dating back six decades for much of the United States. Most
data available through federal agencies are free of charge or may carry a
small cost associated with reproduction and media. In addition, many states
offer impressive GIS collections. Good examples include the states of Utah,
Wisconsin, and Illinois. All of the federal land and resource agencies 
have websites and offer data for sale or free of charge via the Internet.
Web addresses have not been listed here because of their dynamic and
ephemeral nature.

Good metadata are of special importance with spatial data. The FGDC
was created to develop standards for data collection, analysis and dissemi-
nation. Specifically, they have been charged with “developing procedures,
infrastructure, and implementation for a national digital geospatial data-
base” (Lachowski et al. 2000). Further emphasizing the importance of
spatial data standards is the National Spatial Data Infrastructure (NSDI),
the role of which is to coordinate activities regarding spatial data standards
among federal agencies, state and local governments, and the private sector.

10.3.3 Remotely Sensed Data
The increased accessibility of remotely sensed data raises new data issues.
For example, the first major platform of the Earth Observing System
(EOS), the Terra satellite, has five sensors, including the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS). The MODIS receives informa-
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tion in 36 spectral bands (in contrast to 5 on the Advanced Very High Res-
olution Radiometer and 7 on the Landsat Thematic Mapper Plus) in three
nested spatial resolutions (250, 500, and 1,000m, depending on the product)
and images the entire globe daily (Running et al. 2000). Large data sets with
short time steps, such as MODIS data, require more effort in terms of data
management. Storage and access must be considered before acquiring the
data.

Plentiful data can be considered a mixed blessing because they allow 
for more powerful analysis but demand more planning for delivery, use,
and translation for the audience (Arnold et al. 2000). As a rule, it is wise to
keep a copy of all original data because important information may be lost
through processing and subsetting throughout the analysis.

10.3.4 Field Data Collection
If a review of existing data reveals a lack of applicable data for the model,
new data need to be collected, or the model structure needs to be modi-
fied. With the appropriate sampling methods and design, field data collec-
tion can obtain specific data for a modeling project. Although field data
collection can be more expensive and time consuming than using existing
data, being able to collect current species- or site-specific data at a relevant
spatial scale can reduce limitations of the data for use in the model. In 
addition, the expense and time length of the field data collection can sig-
nificantly vary, depending upon the data needed and the sampling design.
The following discussion represents some of the considerations for field
data collection. Sample design is an extensive topic in the ecological liter-
ature, so only a brief overview is presented here. Generally, these impor-
tant topics should be considered with a statistician during the modeling
process.

10.3.4.1 A Priori Concepts

A priori knowledge or beliefs about the functioning of the ecological system
influence the structure of the model, the data that are perceived as neces-
sary for the model, and the design of the data collection methods. A model
reflects the modeler’s perception of the system and the factors that are 
perceived to influence ecosystem dynamics. Although these a priori ideas
may not be explicitly acknowledged, they are assumptions in the model-
building process, and the modeler should be aware of potential biases.

10.3.4.2 Choice of Designs

The choice of design, whether sampling design or experimental design, is
an intricate topic that involves multiple decisions and tradeoffs. The deci-
sion between conducting an experimental design or a sampling design must
take into consideration data-collection objectives, the spatial and temporal
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scales of the required data, the populations from which data are needed,
and the feasibility of the alternatives. A statistician should be consulted
when making these decisions.

An experimental design, if done properly, can provide a defensible sci-
entific approach with controls for extraneous factors, and can hence be used
to test for cause–effect relationships among variables of interest (Platt
1964). However, experimental designs have their drawbacks: properly 
controlling for external factors may be complicated, expensive, or simply
impossible given the experimental situation; replication of the experiment
can be problematic in ecological situations, particularly when the spatial
scale is at the landscape level; and extending an experimental design to a
synoptic scope may not be feasible. On the other hand, sampling designs
are common in a wide spectrum of the sciences, and can provide informa-
tion on the populations of interest, as well as the distributions of and cor-
relations between key variables.

While data observed in sampling designs can provide insights into impor-
tant patterns and relationships in the ecological systems, these data cannot
be used to test cause–effect relationships. Sampling designs provide obser-
vational information on target populations, not cause–effect structures with
complete control for all auxiliary variables. Typically, it is too costly to
analyze for all auxiliary variables at all sampling sites. Lack of information
on these auxiliary variables may lead to incorrect conclusions because the
missing information can lead the investigator to spurious correlations,
apparent relationships that are really artifacts caused by the lack of infor-
mation on underlying factors. In general, consultation with an experienced
statistician is strongly recommended.

10.3.4.3 Sample Size and Sample Sites

Additional design choices must be made, whether the decision is for a sam-
pling design or an experimental design. The investigator must determine
what is an appropriate size and shape for the sampling unit. The sampling
unit may be the size of a quadrat or an individual tree or a plot or a part
of a landscape. The choice of the size must be based on the design require-
ments. Usually, the size of the sampling unit is driven by such factors as the
variables to be measured, the desired resolution of the data, the scope of
the study, and the existence of standard protocols that meet the data needs.
By using established protocols for data collection, data are more likely to
be comparable across different studies, the variability and/or distribution of
the data is easier to assess from previous studies, and variability between
field crews or laboratories can be easier to control. The necessary number
of sampling units depends not only on the time and expense of data col-
lection at each sample site and on the variability of the features of interest
but also on the type of design selected. Optimal sampling designs and
optimal experimental designs can reduce the number of samples needed to
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achieve the desired reliability, thus significantly reducing the cost of data
collection (while at the same time possibly increasing the complexity of the
analysis). For any specified experimental design, the optimum number of
samples is a function of the variability of the measurements, the minimum
effect size to be detected, the alpha level that is considered significant, and
the power of the test (the ability of the test to determine when there are
no significant effects) (Kirk 1995). However, different designs will be better
able to control for effects like external variables, differing target popula-
tions, spatial autocorrelation, and treatment effects (Cressie 1993). If the
variability is not available from previous studies, pilot studies, iterative sam-
pling, or test sampling can provide estimates of the variability of the fea-
tures of interest. Once the number of samples has been decided, the actual
samples must be selected probabilistically from the populations of interest.
The randomization method will already be determined based on the design
selected.

10.3.4.4 Protocols

Following standard protocols for field sampling can enhance the applica-
bility of the data to multiple modeling projects and can allow the estima-
tion of measurement error. By maintaining consistency in field methods,
data from multiple studies can be readily compared and combined in a
model. Although measurement error is inevitable in field data collection,
standard sampling protocols have generally been designed to minimize
measurement error. In many cases, previous studies have been conducted
on standard sampling methods to characterize the quantity and variability
of the measurement error.

Overall, the collection of field data is a necessary method of obtaining
data for modeling when sufficient and appropriate data are not available.
The expense and time can vary significantly depending on the data needed.
The key to successful field data collection is having a clear objective of what
data are necessary for the model. With specific data in mind, and with 
the help of an experienced statistician, an experimental or observational
study can be designed that will efficiently obtain the data with minimal
measurement error. In this case fewer assumptions are passed along to the
ecological model.

10.3.5 Data Simulation
Another method of obtaining data for ecological models is through the use
of computer simulation. Data sets with known parameter values make it
possible to test the accuracy of model outputs. Simulated landscapes have
been used to develop generalized ecological models of landscape processes
(e.g., With 1997). Simulated data are also useful for testing the sensitivity
of the model to assumptions related to the model structure or the data used
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in the model-building process, such as assumptions regarding measurement
error (Stoms et al. 1992). Like the previously discussed data collection
methods, simulating data introduces assumptions into the model. Choices
of parameters and data ranges to simulate, as well as the algorithms used
for simulation, are important assumptions and considerations. In situations
where there is not time for data collection and the ecological model is going
to be used as a decision tool, simulated data for a reasonable range of model
parameters can be used in a modeling process to gain insight about the
system. Although quantitative predictions of realistic system behavior may
not be possible, the relative importance of model parameters can be deter-
mined. This type of modeling process can then lead to improved data col-
lection of the key model parameters (Starfield 1997).

Sensitivity analysis (SA) is the study of how the variation in the output
of a model can be apportioned, qualitatively or quantitatively, to different
sources of variation. A large number of sensitivity analysis methods are
available in the literature (Beck 1987; Bedford 1998; Fürbinger and Roulet
1994). Each method has its advantages and disadvantages.The choice of the
method to adopt to perform an SA experiment on a model is, therefore, a
very delicate step that depends on a number of factors: the properties of
the model under study (linearity, additivity, monotonicity, etc.); the number
of input factors involved in the analysis; the computational time needed to
evaluate the model; and, last but not least, the objective of the analysis
(Saltelli et al. 2000).

10.4 Data Quality Concerns

Because data fundamentally influence the model through all steps of the
modeling process, it is critical to identify and quantify sources of error in
the data. Identifying the source of the error allows a modeler or manager
to correct or manage the data appropriately. In some cases, the target pop-
ulation for extrapolation can be adjusted to reflect problems with the data.

10.4.1 Sources of Error in the Data
Errors in the data can be of two kinds: sampling and nonsampling errors.
Sampling error is the topic of many sampling-theory texts [e.g., Cochran
(1977); Kish (1995)]. These errors are based on sampling only a portion of
the population rather than the entire population and on the fact that we
are not certain of the relationship between the sample data and the popu-
lation of interest. In addition, modeling errors, including incorrect specifi-
cation of the probability distribution of the population and incorrect
assumption of homogeneity of variance, can affect the model results.

Sampling errors include such issues as field measurement error, analyti-
cal errors, recording errors, coding errors, field-crew variability or drift,
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temporal variability of sample measurements at a field site, and spatial 
variability of quantities to be measured in the field. Sampling error can
sometimes be estimated, most commonly by the use of properly designed
quality-control programs with duplicate samples and/or replicate measure-
ments. For example, the Forest Health Monitoring Program has successfully
used quality-control data in pilot and demonstration projects to estimate
the comparative magnitude of measurement error and hence to assess
whether specific measurements were reliable enough to use in further
program fieldwork. (Riiters et al. 1991.)

Nonsampling errors are all errors that are not sampling errors, generally
attributable to the manner in which observations are made and encom-
passing many of the practical problems of implementing a sample design.
Sources of nonsampling error include nonobservation, exclusion of certain
groups or subgroups, inclusion of inappropriate sites, difficulties with defi-
nitions, and differing interpretations of class information. Quantifying non-
sampling errors can be difficult and expensive because it requires multiple
observations of the same phenomena. For this reason, nonsampling errors
often go unnoticed. The most reasonable approach to nonsampling errors
is to employ a good statistician to design the experiment or sample frame
and to use an experienced researcher as an auditor. The Environmental
Monitoring and Assessment Program (EMAP) and the Forest Health Mon-
itoring Program are good examples of the careful use of a well-designed
sample-site selection method based on rigorous probability-sampling tech-
niques, and both have demonstrated the ability to adjust sample weights to
handle nonsampling errors (Overton et al. 1990; Palmer et al. 1992). When
using other people’s data, it is imperative to have good metadata to assist
in determining whether the source of the data is considered to be reliable.
Quality-control data can provide information on the reliability of the data
set, but are often difficult to acquire, even when they exist. Statisticians may
sometimes be able to use such metadata to evaluate the data or (in rare
cases) assess the validity of data points. As one example, the USEPA’s
Direct Delayed Response Project (DDRP) had a quality-control compo-
nent sufficient to allow evaluation of individual data points so that each
point in its soil chemistry database has a quality assurance (QA) flag indi-
cating the quality of that data point (Van Remortel et al. 1988).

If no QA data or metadata are available, it may be impossible to deter-
mine the validity of any point, even apparent outliers. Still, in some cases,
the data may be determined from the metadata to be from a single well-
defined population. In such a case, standard statistical techniques may be
of use for checking the data and assessing outliers. However, such is gen-
erally not the case with synoptic data or data collected over long time spans.
Plots of the raw data can also be extremely useful. However, care must be
taken because the data may represent a mixture of distributions, so that
simple assessments based on normality (or other common distributions)
may lead to problems.
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When only summary statistics are available, one must be acutely aware
of how the data were collected. Hilborn and Mangel (1997) provide an
example of using summary data while assuming a normal distribution.
In their example, when the raw data were correctly fit to a negative 
binomial distribution, a very large change in management action was 
recommended.

Additionally, calculating descriptive statistics may provide quantitative
parameters to describe the observed patterns in plots of data. It may be
useful to know how the sample mean and variance are related. Some infer-
ence of the underlying probability distribution of the data can be gleaned
by calculating the coefficient of variation (CV), which is sometimes a useful
measurement for displaying the variance-to-mean ratio. If the variance
increases as the mean increases but the CV does not, this can indicate 
that the distribution may be log-normal rather than normal. The CV may
become unstable when data are near the detection limit.

10.4.2 Outliers
One benefit of plotting the data is that outliers may become more evident.
In descriptive statistics, the univariate descriptions of mean, mode, standard
deviation, etc., may also help identify outliers. Once identified, outliers can
be removed from the data set. However this must be done with caution,
because outliers sometimes indicate real properties of the data, such as dis-
tributional asymmetry, or can be an “exception to the rule,” which, upon
further investigation, leads to new information or deeper understanding of
the phenomena under study. It is always best if removal of the outlier can
be justified on a basis other than its simply being an outlier. The existence
of good metadata can greatly assist in this decision process. While there are
quantitative methods to deal with outliers, there is always some subjectiv-
ity involved with the process (Little and Rubin 1983). In the multivariate
case, some care must be taken to identify outliers because the outliers may
not be identified with univariate methods over a series of variables. Robust
methods to deal with outliers may use other statistics besides the mean and
variance, such as the median and median deviation (Cressie 1993). In 
any case, managers should employ professional statisticians in developing
models and particularly in the identification and removal of outliers in 
multivariate analysis.

10.4.3 Missing Data and Imputation
If outliers were removed or observations were simply not recorded, there
will be missing data. There are several approaches to dealing with missing
data: delete the record, with some loss in the quantity of information; delete
the point while preserving the remaining information in the record; use a
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weighted estimate from a subsample of observations in which the data are
present are used; adjust the definition of the target population; impute 
the missing or removed data points; and explicitly model the missing data
(Little and Rubin 1983). The third and fourth methods approach the
problem from a sampling-theoretic paradigm, while the fifth and sixth
approach the problem from a modeling perspective. A statistician familiar
with the data-gathering method should be consulted for recommendations
and analysis if missing values are an issue. The last two methods attempt to
model the missing data, and one or more assumptions must be made as to
the underlying probability distribution of the data. Simple imputation has
subtle problems, which are not apparent at first glance. For instance, in the
simplest case of imputation, a mean value may be estimated. Although this
process may not appear to affect the sample mean, it may still affect the
estimate for the population and may bias the sample variance (Chernick
1983). Little and Rubin (1983) provide several situations under which data
may be missing and suggest imputation techniques to deal with them. In
some cases, multiple imputation methods (Little and Rubin 1987) provide
better ways of modeling the data without directly imputing individual
missing data points. Note that some statistical analysis techniques are rela-
tively robust to missing data. For example, the mixed models methodology,
such as is incorporated in SAS PROC MIXED, is robust to random missing
observations in a multivariate, repeated measures context (Littell et al.
1996).

10.4.4 Autocorrelation 
Autocorrelation occurs when samples (in either time or space) are more
like neighboring samples than distant samples. In such a case, the unit 
of measurement (either time or distance) between sampling events is an
important predictor variable. In the temporal sense, this variation in simi-
larity may be caused by an autoregressive process, where the data are cor-
related but the correlation decreases as the time between observations
increases. Autoregressive processes in environmental data can be even
subtler because they may have seasonal patterns embedded within them.
Time plots can sometimes help to show such features. Assuming that data
are normally independently and identically distributed, when in fact they
are not, can cause serious errors in hypothesis testing and extrapolation.
The existence of spatial dependence acts to reduce the degrees of freedom,
in effect decreasing the number of independent observations (Cressie
1993). This loss in degrees of freedom will increase the confidence intervals
of a prediction and reduce the ability to extrapolate model results. Meta-
data may reveal whether autocorrelation is a problem. For example, the
pilot data of the Forest Health Monitoring Program showed researchers
how far apart to place subplots and measurement points within subplots for
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measurement categories, such as PAR (photosynthetically active radiation)
and understory diversity, so that implementation plots could avoid spatial
autocorrelation problems (Riitters et al. 1991).

10.4.5 Extrapolation: Information versus Data
Extrapolation requires that the structure and the variability in the data have
been modeled by an understandable set of relationships, and that these rela-
tionships will be valid for the population as well as the sample. In short, we
are attempting to convert data into information. For example, one use of
the modeling effort may be to calculate the results of what-if scenarios.
Models implicitly assume that the conditions under which the model was
constructed will be the same as those under which the what-if results will
be obtained. While this assumption is common and necessary for decision
making, some aspects of the data quality may make such extrapolations
more difficult. Instead of attempting a treatise on extrapolation, we attempt
to describe particular qualities of data that may compromise a manager’s
ability to make decisions based on model results.

Uncertainty in both the model structure and parameter values may
inhibit the ability to extract information from the modeling effort. During
an analysis of the effects of parameter uncertainty on model output results,
it is advisable, if possible, to separate the variation in the data caused by
process (e.g., temporal variation in survival rate) from its uncertainty to
other causes (e.g., sampling variation caused by finite sample size). Some
techniques for accomplishing this, and the rationale behind it, are given in
Gould and Nichols (1998), Steward-Oaten et al. (1995), and White (2000).
Multiple working hypotheses are encouraged (Hilborn and Mangel 1997),
yet some circumstances require a single modeling approach. In such
instances of single model formulations or when a final model formulation
has been selected, sensitivity analyses, propagation-of-error studies, or
similar methods of parameter checking are a necessity. If maximum likeli-
hood methods are being used, a profile of the parameter likelihood can also
describe the amount of information present in the model structure. In a
Bayesian framework, both the prior distribution and the likelihood profile
should be compared to the posterior distribution to determine what effect
the data have had in shaping the parameter profile. One concern in
Bayesian analyses is that the prior may dominate the posterior, suggesting
that no new information has been added by the data. With the above
methods to obtain parameter ranges and by varying parameter values in
Monte Carlo simulations, probabilistic statements can be made about spe-
cific outcomes. While this level of information may make results less clear
and therefore more difficult for decision making, these types of results
effectively describe the role that the data have played in forming the 
prediction. The USEPA’s DDRP program successfully used Monte Carlo
simulations to make probabilistic statements about long-term model 
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projections (Church et al. 1989). So this technique merely introduces a 
manageable complication to what was already going to be a probability-
based statement.

Correlated independent variables in statistical models may also present
a difficulty to extrapolation. During model-fitting procedures, such as step-
wise regression, correlated independent variables are typically not retained
because little additional variation is explained by adding either correlated
variable when the other is present. However, in instances where the two
variables are likely to be targeted for management actions, there may be
political, economic, or social reasons for including confounded independ-
ent variables. In cases where large numbers of interrelated variables are
involved, more complex analytical techniques, such as partial least squares
or principal component regression, may be used to build models without
creating a list of the key variables involved.

A case study from the Pacific Northwest demonstrates that problems
associated with including confounding variables and attempting to make
management recommendations from the statistical model. In the arid
regions of the Pacific Northwest (i.e., east of the Cascade Range), water
diversions for irrigation are common. Water diversions affect salmon
(Oncorhynchus spp.) by reducing (or removing) flows, and unscreened
water diversions may intercept juvenile salmon and divert them to agricul-
tural fields. Diversions are located primarily on the east side of the 
Cascades because the climate there dictates this type of irrigation. In
response to growing fears over salmon declines, estimating the impact of
these structures and the number of salmon that could be saved by remov-
ing the diversions was a restoration goal. Because the spatial distribution
of diversions was confounded with (i.e., not homogenous or randomly dis-
tributed with respect to) various other climate, habitat, and land-use vari-
ables, the data could not support a calculation of the number of salmon that
would be saved by removing the diversions (Feist et al. submitted) despite
all attempts by managers to do that.

10.5 Data Storage and Management

10.5.1 Database Design
Database design is a significant topic in and of itself.The design of the data-
base and normalization of the tables in the database need to be decided
before data collection begins. Data sheets and form design are separate
from database design. Most database management systems allow the data-
base structure to be changed at any time. The problem is that, for data ele-
ments that are added, the cells of records already entered will be null. As
a result, the structure of the database should not be substantially changed
after data have been entered, and this structure influences how data can be
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retrieved (i.e., what queries are possible). Database design starts before
data collection begins. Without an adequately designed database, the data
that have been acquired at a large cost may not be usable to effectively
address the problem. Forms should be an integral part of the design of the
database and should accommodate transcription or import into the data-
base (Conquest et al. 1993). With a good design, field sampling can often
be improved with preformatted data sheets or integrated digital data col-
lectors. Field crews can be a source of considerable error if data forms are
not designed to limit errors (Conquest et al. 1993). Database design has to
consider the final uses to efficiently serve the data to users.

10.5.2 Data Input
During data input, it is imperative to check and cross-check the data as they
go into the database and again after data entry is complete to ensure 
the accuracy of the data. Handheld computers, personal digital assistants
(PDAs), and forms that can be optically read on a computer are becoming
common for data input. Regardless of the type of input, quality assur-
ance/quality control (QA/QC) measures are required to ensure data 
accuracy.

10.5.3 Data Standards 
The development of standards sometimes requires more effort than data
collection and storage. There are many efforts from federal and state gov-
ernment agencies along with private industry to promulgate standards for
data collection, measurement, QA/QC, archiving, and metadata.

The use of standards is important in developing databases that may be
shared outside the realm of the initial data developer. While individual
researchers have intimate knowledge of how, what, when, where, and why
the data were collected and developed, other users may not be able to use
the data unless adequate standards are used and the data are well 
documented.

10.5.4 Hardware and Software Concerns
Data storage technology seems to be growing as fast or faster than 
Moore’s law (that computer power doubles every 18 months). Computers
on the individual desktop now have more power and storage capacity than
whole data centers of the recent past. Data centers have progressed to the
point that the storage and manipulation of terabytes of data is currently
feasible. The integration of data servers, operating systems, and server soft-
ware now requires full-time support to keep the data available. The 
complexity of maintaining a software-based server requires a significant
investment.
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10.5.5 Data Backup
The only way to ensure data integrity is to have adequate backup strate-
gies and methods. Types of data backup include

• Online mirrored backup. This type of backup requires an identical
amount of online storage that the databases are backed up to on a frequent
basis (often several times a day), preferably on a separate server located 
at a different site than the original. Data libraries that have high use and
frequent updates should have this type of backup.

• Several disk drives on a single server that provide enough redundancy
so, if a hardware failure occurs, they can be reconfigured quickly to restore
the database. While they are technically not a backup system, they provide
a type of data security.

• Tape-archive hardware and software can be automated so the backup
occurs unattended.Various schemes for full and partial backups can be inte-
grated to provide for the needs of the user. Adequate documentation about
the backup process is required. Some portion of the data backups should
be stored in a different place than the original database in case of fire or
other catastrophic event.

• High-capacity removable storage media (such as compact disk [CD] or
digital video disk [DVD]) provide the ability to store and back up data in
a form that is easily restored or accessed. They can often be accessed and
used more easily than tape backups but may require more operator inter-
vention during their production than do tape backups.

10.5.6 Data Stewardship and Warehousing Groups
Historically, data were acquired, analyzed, interpreted, and reported by the
individual user. After publication, the data would be archived with little or
no use. With more modern technology for the storage of large quantities of
data, it is possible to warehouse the data in a database that can be easily
accessed by the user or shared with other users. Today, a great deal of data
is held by federal and state agencies, and much of it is available over the
Internet. The USEPA, U.S. Geological Survey (USGS), and other agencies
have hundreds of data sets, many of which are available for downloading
or accessible through direct database connectivity. In the future, users will
be able to access most data sets directly and may not even have a need to
keep local copies of widely available data except when more rapid access
is needed. A structured-query-language (SQL) database that is available
over the Internet is preferable in many ways to local copies of a database.
The primary data holder can maintain and update the files and access to
the data can occur when needed. Mirroring data from the primary holder
is useful because it can allow faster and easier access in many cases.
Mirrored data sets also act as a type of backup.
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10.5.7 Network Access
In today’s world, data access across a network or the Internet is becoming
an important issue. Providing access to databases for a large number of
users requires building databases that are well documented, easy to under-
stand, and protected. Many software solutions exist for serving data to users
across a network. The setup of these data servers should provide good
service but should also protect the data from unintentional changes. Data
managers should be the only ones able to modify the data. Edits or addi-
tions to the database should have well-documented procedures.

Providing full access to a database may not be what is always needed. In
some cases, databases should be protected with passwords or user privileges
that would prevent full-read access to all of the data. When providing
network access, the bandwidth of the provider should be considered. The
server must be able to provide the data to users at a rate that is satisfac-
tory and economical.

10.6 Data Access Concerns

Access to data is an important concern when gathering data for a modeling
project and deciding which outputs and data from the model to publish.Data
access is a contentious issue in ecological modeling and many other scientific
fields, such as medicine and engineering (Fayerweather et al. 1991; Walter
and Richards 2000). Mandatory data sharing for regulatory compliance, for
example with the Freedom of Information Act, and grant or funding-source
requirements also play a role in determining which data are made available
to the public. No sharing, voluntary sharing, and selective sharing are also
choices available to the modeler (Fayerweather et al. 1991). For an ecologi-
cal modeler, the type of data sharing, choice of which data to publish, and the
format in which the data are published are important concerns.

10.6.1 Information versus Data
The term “data” can apply to many inputs and outputs of the modeling
process. Raw field data, remote-sensing data, and processed data from the
output of a model can all be inputs into an ecological model. Therefore, in
terms of data access, it is important to consider what data from the model-
ing process should be made available. Sharing information produced from
the modeling process does not necessarily include sharing raw data. Pub-
lishing raw data may be overwhelming, especially with large quantities of
remote-sensing data, and provides little information to users accessing the
data if they are unable to recreate the model. Publishing model outputs or
analyses of the outputs provides users with more understandable informa-
tion but may not convey the assumptions or uncertainties of the model,
which could lead to the misuse of the model outputs.
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10.6.2 Presentation of Data and Limitations Including
Model and Analysis 
Just as intended use and goals dictate model development and criteria for
data selection, different strategies of data presentation should be used for
different audiences. “Simply providing maps is not enough. Land-use deci-
sion makers need both improved [remote-sensing-]derived information and
meaningful access to this information” (Arnold et al. 2000). The presenta-
tion of data, like data access, should be targeted to specific audiences, and
the presentation strategies used should reflect the original goals of the
project and meet the needs and expectations of the users. Never underes-
timate the power of models, maps, and statistics; they are a very effective
way to manipulate information and can be easily misinterpreted.

10.6.3 Limiting the Sharing of Data
There are a number of arguments for limiting the sharing of data used in
ecological modeling. The data or model outputs may be misused by other
scientists or modelers, producing a liability to the modeler that may lead
the modeler to maintain control over which data to publish and when to
publish the data. The modeler has a personal claim to any plans for future
projects, and publishing data increases the possibility of others stealing
ideas and competing for peer recognition and future funding. Perhaps more
importantly, resource protection may become an issue because the integrity
of natural resources may be compromised by publishing the location and
other information about the resources. For the safety of individual species,
particularly endangered species, and sensitive habitats, limiting access to
data on their whereabouts may lessen poaching, collecting, or other adverse
ecological impacts. A final argument against the open sharing of data is the
cost that is incurred by the modeler. Sharing data incurs time and resource
costs to the modeler that may deplete limited funds and distract the
modeler from current modeling projects. The costs can be passed along to
the individuals or agencies requesting the data, but this action in effect
limits access to the data and sets a precedent for restriction of data access
(Macilwain 1996). So, although many public agencies are providing more
access to data via the World Wide Web, personal-privacy, resource-protec-
tion, and administrative-cost issues must be considered before adopting a
voluntary data-sharing policy.

10.6.4 Voluntary Data Sharing
In general, the voluntary sharing of data is encouraged and has many ben-
efits for modelers and model users. Openness and sharing of scientific infor-
mation promotes model quality and integrity. Obtaining a broader view of
the system by providing data to other modelers with different backgrounds
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for an independent analysis of the data can enhance the credibility of the
modelers and lead to improved models (Fayerweather et al. 1991). Provid-
ing access to model data also allows different modelers to gain new insights
into the system and furthers the use of models in resource management. In
many cases, public awareness and engagement are desired by the modelers
throughout the modeling process, and free access to the data and informa-
tion provides the opportunity. Providing free access to data also eliminates
the duplication of data collection efforts and can decrease model develop-
ment costs. In addition to voluntary data sharing, there are federal regula-
tions that influence public agencies and researchers who obtain funds from
public agencies. In a rule passed by the White House Office of Management
and Budget, the Freedom of Information act applies to the access of raw
data from public agencies and private researchers who receive govern-
mental grants if the data were used as the basis for governmental regula-
tions (Macilwain 1999). So, in some cases, public access to raw data included
in the modeling process is necessary for regulatory compliance.

10.6.5 Access Policy Recommendations 
Recommendations for data access policy should be made on a case-by-case
basis, but several recommendations can be made for modelers. First, con-
sider which data should be provided. Providing information and analysis of
the outputs of the model does not have to include the publication of the
raw data used in the modeling process. Secondly, the format in which the
data are presented and the method of access to the data should be consid-
ered. If outputs from a model are published, as much information as possi-
ble about the structure, assumptions, and limitations of the model should
be conveyed to the person accessing the data. Also, the method of data
access is an important consideration when estimating the costs of having a
voluntary data-sharing policy. For example, the publication of data via the
World Wide Web may involve higher costs at the initiation of the project
but is likely to be more cost effective than having to personally respond to
individual requests for data over a long term. In general, for ecological mod-
elers, a voluntary data-sharing policy would seem to be the best option for
promoting openness, model credibility, and reduced model development
costs, provided that possible negative consequences to resource protection
are taken into consideration.

10.7 Summary Guidelines or Recommendations

To properly use data in developing ecological models,

• Refine the management question. What do you want or expect to learn?
• Develop a conceptual model. Framework without data is better than data

without a framework.
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• Understand and disclose the limitations. Understanding the limitations of
the data is as important as any other aspect of the modeling process and
is critical to the credibility of the project.

• Provide and use metadata. Reveal “where you got the data”; it is critical
to understanding the limitations of the data.

• Determine data access. Determine who gets access to the data and in what
form.
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11.1 Introduction

The incorporation of ecological and environmental models into the process
of environmental management may be facilitated through the development
of a “toolkit.” Such a toolkit would identify existing ecological and envi-
ronmental models relevant to environmental management and provide for
the effective and efficient implementation of these models in a management
decision-making framework. In this discussion, ecological models refer to
those constructs that explicitly describe the dynamics of individual or-
ganisms, populations, communities, or ecosystems. Environmental models
describe the spatial or temporal dynamics of physical, chemical, and other
habitat features, but might not directly consider biological or ecological
properties or their dynamics. For example, models that describe the trans-
port and distribution of chemicals in air, soils, sediments, or surface waters
without addressing bioaccumulation would be environmental models but
not necessarily ecological models. Clearly, both categories of models can
contribute importantly to environmental management.

This chapter briefly outlines alternative structures of an ecological 
modeling toolkit in support of environmental management and decision
making. The toolkit is considered from the perspective of “model makers”
and “model users.” Issues important to both communities are highlighted.
The chapter tabulates several examples of modeling approaches that have
proven useful in environmental management. Finally, conclusions and rec-
ommendations are made concerning the development of an environmental
manager’s modeling toolkit.

11.2 The Toolkit Concept

Alternative concepts for an environmental modeling toolkit may describe
a continuum between simple collections or organized libraries of models to
highly interactive, dynamic, and self-designing systems (Figure 11.1). One



concept of the toolkit embraces the idea that a collection of scientifically
credible, generally accepted, and reliable resource management models can
and should be made available to assist decision makers.These models could
become the “tools of the trade” for environmental managers. The empha-
sis is on using existing models to assist in the management decision-making
process; the model results will not directly determine environmental man-
agement decisions.

Alternatively, the toolkit can be envisioned as more than a collection of
models: the toolkit can become a highly integrated, operational decision
support system that is interactive with the environmental or resource
manager [e.g., Garcia and Armbruster (1997)]. Under this concept, future
environmental managers will be able to invoke a toolkit that will interac-
tively guide them in selecting an appropriate model from a distributed,
global library (or assist the manager in developing the necessary model),
link in the needed data sets, perform the model calculations, assist in the
analysis and visualization of model results, and facilitate the incorporation
of the model results and analyses into an operational decision-making
framework. The toolkit will be virtual and dynamic and will be derived 
from an Internet-based, self-building process in which model makers and
model users freely interact to continually build and modify the toolkit to
meet their specific resource management needs. Again, this toolkit would
support the decision-making process, not make decisions. Although the
concept is somewhat futuristic, many of the components of such a toolkit
already exist.

11.3 Toolkit Implementation

After the fundamental nature of the toolkit has been determined, the next
challenge is to identify appropriate tools for inclusion. The development of
the toolkit requires considerations from the viewpoint of model makers and
model users. These two groups are inclined to view models from different
perspectives that can be summarized in terms of whether or not a model
predicts an impact and whether or not a predicted impact occurs (e.g.,
Figure 11.2).
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Figure 11.1. A gradient of alternative toolkit designs.



11.3.1 Model Makers
Model makers (and users) desire models that accurately and reliably
predict the occurrence or nonoccurrence of a particular environmental
impact [e.g., Burns (1986)]. Model makers strive to avoid the dissemination
of models that might fail to forecast an actual impact (i.e., model maker’s
ruin). One problem model makers face is that of providing the management
community with models that cannot be validated for all conceivable appli-
cations. It remains neither possible nor desirable to completely specify an
ecological system in the form of a model. Therefore, making simplifying
assumptions is an unavoidable aspect of the modeling process. Because of
such simplifications, all ecological and environmental models are invalid
descriptions at some level of structural and functional detail. Model valid-
ity has also been addressed from the perspective of comparing model pre-
dictions with available data. Because the results of all possible future
model–data comparisons cannot be evaluated, ecological and environmen-
tal models can never be “validated” from this perspective. Under these
kinds of constraints, the model maker must determine the conditions (e.g.,
initial conditions, regions of model parameter space, and environmental
forcing functions) where the model has been demonstrated to perform with
sufficient accuracy and precision to support correct and reliable decision
making. These conditions define a domain of applicability for the model
(Figure 11.3). The model maker works to increase the domain of applica-
bility through continued data collection, model testing, and model refine-
ment. From the viewpoint of the model maker, all models are by definition
invalid; however, some are useful (Mankin et al. 1975).
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Figure 11.2. Perspectives concerning the development and use of modeling tools
in environmental decision making.



11.3.2 Environmental and Ecological Models
If the toolkit serves mainly as a library or repository for approved models,
several questions must be successfully addressed:

• What kinds of ecological and environmental models should be included
in the toolkit?

• What are the criteria that should be used to qualify or disqualify models
for inclusion?

• Will separate toolkits be developed to support different management
objectives and organizations (e.g., fisheries, forestry, and toxic 
chemicals)?

• Should ecological models already used routinely in resource manage-
ment (e.g., habitat suitability index models) be forced into a toolkit?

• Will each toolkit become a highly regulated and controlled software
product whose distribution and use will be closely guarded and moni-
tored by each resource agency?

Literally hundreds of ecological models have been developed and pub-
lished in the peer-reviewed technical literature (Pastorok et al. 2001).Apart
from narrowly defined reviews and summaries [e.g., Campbell and Bartell
(1998); Jorgensen et al. (1996); Suter and Bartell (1993); Barnthouse (1992);
Emlen (1989); Barnthouse et al. (1986)], the identification and collation of
potentially useful models for resource management requires comprehen-
sive and costly literature searches.
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It may prove daunting to identify and examine the models in any mean-
ingful way for inclusion in the toolkit. Nevertheless, a recent survey and
evaluation of ecological models by the Chemical Manufacturers Associa-
tion identified and examined more than 100 models and determined their
relevance for assessing ecological risks posed by toxic chemicals (Pastorok
et al. 2001). Specific criteria were defined, and each model was examined in
light of those criteria. The criteria are:

• Realism—Accuracy and comprehensiveness of the biology, ecology, and
environmental processes included in the model;

• Relevance—Applicability of the model objectives and outputs for 
assessing ecological risk;

• Flexibility—Feasibility of applying the model to different problems and
locations;

• Uncertainty analysis—Whether or not the model is conducive to sensi-
tivity and uncertainty analysis;

• Degree of development—General acceptance of the model by the scien-
tific community;

• Parameter estimation—Number of model parameters and the feasibility
of their accurate estimation;

• Regulatory acceptance—Adoption of the model for use by a regulatory
agency;

• Credibility—Adequate comparisons of model results to data; and
• Resource requirements—Level of effort required to implement the model

These or similar criteria could be used to identify and evaluate ecologi-
cal and environmental models for inclusion in the toolkit. Criteria for model
evaluation and model selection might vary in relation to specific manage-
ment objectives.

Ecological and environmental models have proven useful for various
environmental management issues and challenges (Table 11.1). Major 
motivations for the toolkit concept include the desire to increase the use of
models in environmental management where models are already used and
to introduce models into management where models have not historically
been used.

If the toolkit is conceived as becoming highly integrative and interactive
in decision support, technologies that facilitate these features will have to
be identified, as well (Table 11.2). Such an interactive toolkit would include
state-of-the-art computer hardware and software technologies that would
facilitate the design and implementation of ecological and environmental
models. These tools would also provide for the presentation, analysis, and
visualization of model results. This concept of the toolkit would both
describe and convey the modeling results to the decision-making process.
The continuing evolution of object-oriented programming and the Internet
afford an opportunity for the development of the toolkit as a highly dis-
tributed network (e.g., national or international).
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11.4 The Toolkit and Environmental Management

Discussions of the structure of the toolkit and its contents benefit from con-
sidering the nature of specific resource management decisions and how 
such decisions are actually made. Such consideration further benefits from
insights provided by those resource managers who participate in toolkit
development.
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Table 11.1. Examples of models that have been used in environmental resource
management.
Model Description and application Reference

AGNPS Spatial–temporal transport of nutrients and Young et al. 1986
pesticides in surface waters; examines pesticide 
and nutrient runoff from agricultural applications 
of these chemicals

PRZM Surface runoff, erosion, leaching, and movement of Carsel et al. 1984
agricultural chemicals; emphasizes leaching of 
pesticides into groundwater 

BASINS Point and nonpoint source watershed model; www.epa.gov/
integration of geographic information system (GIS) OST/BASINS
and model algorithms for estimating toxic chemical 
loadings from watersheds into surface waters

HSPF Watershed hydrological simulation program; Johanson et al.
simulates streams flows 1981

SEISMIC Spatial environmental information system for Hollis et al. 1993
managing chemical impacts

QUAL2E Riverwater-quality model; applications in Brown and
assessments of nutrients, ecological production, Barnwell 1987
and dissolved oxygen in surface waters

ECoS Water-quality model for estuarine ecosystems Harris et al. 1984
HEP Habitat evaluation procedures; applications in USDI 1980

ecosystem restoration and management involving
habitat improvement for selected fish and wildlife

FINMAN Decision support model used in multiobjective Ault and Fox 1989
management of tropical grouperoid fisheries

ADSS/IREM Integration of GIS and habitat evaluation procedure Garcia and
models for integrated river basin environmental Armbruster 1997
management; applications to Lonetree Wildlife 
Management Area, North Dakota

Table 11.2. Modeling capabilities in support of an interactive toolkit.

Multi- and parallel-processing computers
Efficient, distributed global networking and communication
High-level programming languages (Java, Visual C++, C, and Fortran-90)
Artificial-intelligence and expert-system technologies
Graphic user interfaces
Geographic information systems (GIS)
Data visualization methods
Animation (e.g., VRML)



11.4.1 Model Users
The design and construction of the toolkit must reflect the needs of the
model users. The primary user group, by definition, includes those individ-
uals charged with making decisions that potentially affect environmental
resources (e.g., land use, forests, fisheries, water quality, and agricultural
chemicals), including resource planners, environmental engineers, applied
ecologists, resource managers, risk analysts, and environmental lawyers.The
toolkit might also be of practical or academic interest to the academic com-
munity of environmental scientists, social scientists, economists, landscape
architects, land owners, and risk communicators.

Model users desire to avoid situations where effects are predicted by
models but do not subsequently occur (see Figure 11.2). Costly plans or
actions to avoid or minimize an anticipated environmental impact may be
enacted unnecessarily as the result of incorrect model forecasts (model
user’s ruin). Such modeling “false positives” also diminish the ability of
managers to act decisively in the face of future predictions of impending
impacts. That is, will the next predicted impact be another false positive?

11.4.2 Managers and Decision Makers
The management of environmental resources is fundamentally a decision-
making process. Therefore, the toolkit might reasonably include decision
models in addition to ecological and environmental models. Minimally, eco-
logical and environmental models included in the toolkit should be com-
patible with decision-making models. For example, Figure 11.4 illustrates a
hypothetical dynamic control model for evaluating the potential ecological
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risks (e.g., gene flow to native plants and alteration of soil arthropod com-
munities) posed by the use of genetically engineered crops. This framework
indicates that the ecological model (selected from the toolkit) has become
an integrated component in the decision model and contributes informa-
tion concerning possible risks in conventional croplands and croplands con-
taining genetically modified organisms in relation to decisions concerning
the use of fertilizers, the application of pesticides, and the percentage of
crops to be planted with genetically modified plants. The ecological model
also provides input to a risk-based monitoring program as an integral part
of the overall crop management model. As illustrated by this example, it
may prove efficient and effective to work backwards from the set of
resource management challenges faced by the agencies and decision-
making processes in designing, building, and filling the toolkit.

11.5 Data Management

A toolkit that will effectively support the use of models in environmental
decision making will necessarily include capabilities for data handling.
Models often require large amounts of data. Data are used in the processes
of (1) model development, (2) model implementation, (3) definition of
initial conditions, (4) estimation of model parameter values, and (5) model
verification and evaluation. The design and construction of the toolkit will
have to successfully address these data issues in relation to environmental
and ecological modeling. The toolkit will need the capability to opera-
tionally link models to complex, often spatially explicit data sets. As data
requirements of increasingly complex environmental models expand, the
toolkit may need the ability to perform sophisticated interpolations to fill
in missing values in constructing model-input data files. Additionally, the
toolkit should facilitate the ability to check for data errors (e.g., likely erro-
neous values) and either correct errors or propagate the error estimates
through the model calculations (e.g., a Monte Carlo simulation).

Models can also produce large amounts of results that will require similar
data-handling capabilities to extract information that will be meaningful 
in resource management and decision making (mason and Gurney 1993).
The toolkit will necessarily address data analysis and postprocessing 
issues that include (1) higher-dimensional data handling and (2) data 
visualization. For example, current GIS methods are generally constrained
to the analysis and presentation of two-dimensional data or model results.
However, many environmental resource challenges involve additional
dimensions, including the vertical and time dimensions. Data visualiza-
tion methods will be necessary for displaying the four-dimensional 
output (i.e., three-dimensional results that vary through time). Eco-
logical animation that uses the virtual reality markup language might
provide one of the necessary capabilities in advanced data visualiza-
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tion. Whatever the technology, the objective for this aspect of toolkit 
development is summarization of model results in a manner that con-
tributes to informed decision making and environmental management.

11.6 Summary and Recommendations

An environmental modeling toolkit could assume various forms and range
in complexity from a localized collection of existing models to a globally
distributed, interactive, intelligent decision support system. Several gov-
ernment agencies have already organized their modeling and data-handling
capabilities. These existing capabilities should be examined in relation to
developing new toolkits to support environmental management by other
agencies, organizations, and managers. Criteria have been developed for the
systematic evaluation of ecological and environmental models that might
be included in toolkits [e.g., Pastorok et al.(2001)]. These criteria should
reviewed for possible use in identifying existing models for inclusion in the
toolkit.

The technical components of a toolkit envisioned as an interactive mod-
eling and decision support system already exist. Even while technologies
continue to evolve and advance, current capabilities in computer hardware
and software need only be integrated into an operational environmental
modeling and decision support system. The beginnings of these kinds of
systems also exist (e.g., USEPA BASINS) and should be evaluated for their
relevance in the design and implementation of the toolkit concept.
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12.1 Introduction

As a component of environmental resource management, decision makers
(e.g., resource managers), stakeholders (e.g., the public and nongovern-
mental organizations), and modelers (e.g., scientists and engineers who
develop and use modeling and assessment tools to perform evaluations of
alternative management practices) face pressure to accurately project and
evaluate the costs, benefits, options, and potential consequences of proposed
resource management actions. Current technologies offer many capabilities
to help address these difficult demands. These technologies include geo-
graphic information systems (GIS), landscape ecological modeling and 
simulation, group collaborative forums and conferencing, expert systems,
multidimensional visualization tools, decision support systems (e.g., com-
puter-based programs that aid decision makers in evaluating differing
courses of action), and web-based data-mining tools. Usage of each of these
technologies is rapidly growing. The problem for many users of such tech-
nology, however, is blending these tools together into a coherent and 
integrated computational framework [e.g., a toolkit or toolbox; see English
et al. (1999)] that is keyed to the management process.

12.1.1 The Toolkit Concept
The concept of a “toolkit” embraces the idea that a collection of scien-
tifically credible, generally accepted, and reliable resource management
models and assessment tools can and should be made available to assist
modelers, decision makers, and stakeholders. Just as a master craftsman
carries a comprehensive set of tools that can used to complete a project, a
resource manager, modeler, or stakeholder should have a set of modeling
tools available to aid the collaborative decision-making process. Note that,
for any given job, the craftsman may employ only a small subset of the tools
in the kit; however, given the breadth of tasks the craftsman may face, the
toolkit must have a range of tools so that the craftsman can look in the kit



and find the tools appropriate for the task. In this same manner, the envi-
ronmental management toolkit must have the range of tools required to
meet the needs of decision makers, stakeholders, and modelers.

In the context of environmental management, toolkit functionality would
be most effectively cast as a highly integrated set of tools that facilitates
conceptualization of problems; encourages interaction among decision
makers, modelers, and other stakeholders; and empowers easy querying of
databases and model results with the capability of producing clear, visually
based outputs. Given that the ultimate purpose of the toolkit is to support
decision making, features that aid building and running models, accessing
data, building consensus, conducting alternative analyses, and presenting
results are essential.

12.1.2 Why Would a Toolkit Be Useful?
The lack of familiarity with models and modeling terminology is, to a 
great degree, responsible for less-than-optimal use of ecological models in
resource management decisions. A toolkit, or a series of interconnected
toolkits, stocked with information on modeling approaches, models, and
visualization tools applicable to common environmental investigations
(e.g., forest planning and environmental assessments) would provide an
invaluable source of information for managers regarding the effective use
of such technologies as a part of resource management. The toolkit would
be a resource to help make managers, stakeholders, and modelers aware 
of modeling and assessment options available to address different types of
resource management issues.

Inherent in the toolkit approach is a degree of standardization required
to facilitate the connection and use of multiple tools (models, GIS, and data-
bases) in a seamless and integrated fashion. Such standardization would
greatly increase the flexibility toolkit users would experience while employ-
ing different models and assessment tools for a given resource management
scenario. As such, the models and tools contained within a toolkit would
likely be used more productively (and would more often be accepted by
regulatory agencies and the public) than others. Holland (1998) overviews
the development of three modeling and assessment toolkits for groundwa-
ter, receiving water, and watershed analyses. Use of these toolkits has been
shown to increase user productivity by a factor of 10. Further, these tool-
kits have received significant regulatory acceptance as exemplified by U.S.
Environmental Protection Agency (USEPA) support for their development
and by their use by USEPA regional offices throughout the United States
(Holland et al. 2001).

12.1.3 Toolkit Types and Functionality
Just as craftsmen with different specialties may carry different sets of tools,
the types and functions of toolkits will vary depending on the user and use.
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A properly functioning toolkit should assist its users in their efforts to 
interact during problem formulation (conceptualization) and beyond. As
such, the toolkit would be designed around the following four questions, as
adapted from Westervelt (2001):

• Who is the target user? The target user will have different sets of
requirements for the toolkit, as discussed below.

• What is the user’s starting point? The user would approach the toolkit
with a set of goals (e.g., management and technical objectives) and pro-
posed management actions.

• What does the user want to do? The user will want to better understand
the risks and tradeoffs associated with the proposed actions relative to
resource management goals. This understanding will be achieved through
the use of the analytical tools available in the toolkit.

• What are the user’s skills? Users (or their staffs) should be comfortable
with computers for doing word processing, performing geospatial analyses,
and creating reports and presentations. These users will range from gener-
alists who understand the system as a whole, but are typically less informed
regarding its specifics, to specialists who understand the mathematics and
theories associated with system details (but perhaps not the overarching
issues for the system).

Given this variety of users, resource managers and decision makers may
want a general set of tools geared toward conceptualizing problems (e.g.,
the formulation of problem geographic, socioeconomic, and political
boundaries; decision variables; and alternatives), determining approaches
where modeling would prove useful, interpreting model outputs, and visu-
alizing or presenting results. Modelers will want much more detailed and
specific information on available models or modules (including access to
the models and their modules, themselves), site-specific data, model param-
eters, boundary conditions, etc. Stakeholders may be interested in some
combination of these capabilities. For a toolkit to function properly, signif-
icant interaction must occur among resource managers, stakeholders, and
modelers to ensure that questions are formulated in terms that can be
directly addressed by modeling and assessment tools.

From the discussion above, four differing, but interwoven, functional
spheres must be supported by a toolkit: those for the problem formula-
tion/conceptualization process (which involves all three of the user classes),
for the decision maker, for the stakeholder, and for the modeler/analyst. As
such, one could envision the following four overlapping toolkits as shown
Figure 12.1:

• Conceptual toolkit—Decision makers, stakeholders, and technical staff
must operate from a common ground. The function of the conceptual
toolkit is to facilitate finding that common ground. This toolkit should
include methods to develop a common language for describing specific
environmental questions and the means to analytically identify problem
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components. The ecological-risk-assessment framework developed by the
USEPA (USEPA 1992) is an example of this process.

• Decision maker’s toolkit—The decision maker’s toolkit is geared
toward decision support. The most important aspects of decision making
that would be supported by such a toolkit are alternative formulation, eval-
uation, and tradeoff analysis. This toolkit must include tools that facilitate
interactions among resource managers, stakeholders, and technical staff 
to reach consensus on the problem(s) to be addressed and the validity of
potential approaches to addressing said problem(s). Information regarding
the types of ecological models appropriate for application to common envi-
ronmental issues should be available within the toolkit.

• Modeler’s toolkit—Model developers and users (including decision
makers who wish, and have the ability, to run models themselves) should
have documentation and links to available models, modules, and descrip-
tions of modeling approaches. The modeler’s toolkit would include all the
tools (e.g., grid generators, parameter estimators, and setup and calibration
tools) needed to develop new models or to apply existing models and
assessment tools that answer specific questions. To be fully functional, this
toolkit must include guidelines or standards enabling seamless communi-
cation among models, between databases and models, and between model
outputs and inputs to tools in the decision maker and/or stakeholder 
toolkits.

• Stakeholder’s toolkit—The set of tools needed by stakeholders (the
public, nongovernmental organizations, etc.) focuses on data mining and

224 Jeffery P. Holland et al.

Conceptual

Modeling
and

Assessment
Decision
Making

Stakeholders

Carpenter
Electrician
Plumber

Homeowner
Contractor

Neighbors

Blueprints

Figure 12.1. Relationship among the different toolkits.



access to technical results that are presented in formats amenable to stake-
holder use. This toolkit would include visualization capabilities similar to
those provided for decision makers.

Of these four toolkit types or functions, the modeler’s toolkit has experi-
enced the most development to date (see the Sidebar 12.1 for examples of
such development). The conceptual toolkit has the greatest development
left to conduct, but it most likely has the greatest potential payback asso-
ciated with its use in environmental management.

General issues of toolkit design and functionality are presented in the
next section. More specific information for each toolkit is provided imme-
diately thereafter. Note that these toolkits actually represent specific types
of functionality required by the user.As discussed in this chapter, such func-
tionality could be supplied by four independent, but linked, toolkits or
through one master toolkit with differing levels of functionality.

12.2 General Issues of Toolkit Design and Functionality

Clearly, the potential users (and uses) determine the different purposes for
developing a toolkit. Modelers may want to use a toolkit to set up a model,
to calibrate and verify it, and to present model results. Stakeholders, alter-
natively, might wish to mine databases, to assess differing management
alternatives, and to conduct tradeoff analyses. As a result, the functional
requirements for a modeler’s toolkit could differ greatly from the require-
ments for the stakeholder’s or the decision maker’s toolkit. It is therefore
essential that any toolkit be developed with its ultimate audience in mind.
The more general building blocks of toolkit development are presented in
Figure 12.2, and each building block is discussed below.

12.2.1 Web Empowerment and Implementation
Among the general building blocks of any toolkit, none is perhaps more
important than that of being “Web empowered.” The use of the Internet
and the World Wide Web is a phenomenon of increasing commercial and
social significance. At present, it is common for managers, stakeholders, and
modelers to use digital elevation models, contaminant fate and effects data,
urban landscape data (e.g., locations of roads, population centers, and indus-
trial complexes), land-cover and land-use data, and soil information that are
obtained from Internet sources. However, the data needed by these differ-
ing groups are seldom resident on a single Web site. The ability of different
decision makers, from local resource managers to planners to senior deci-
sion makers, to productively access data from decision support systems is
contingent upon those systems’ facilitating connectivity to remote data
sources over local area networks and/or the Internet as seamlessly as one
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Sidebar 12.1
Examples of toolkits

The existence of the large number of decision aids and of modeling
systems from the U.S. Army Corps of Engineers (Holland, 1998;
Holland et al. 2001) and the U.S. Geological Survey (Leavesley et al.
1996) is indicative of the paucity of and need for integrated deci-
sion maker’s toolkits. Several U.S. federal agencies are active in the
partnered development of integrated computational frameworks 
to support natural and cultural resource management and deci-
sion making. A partnership of the U.S. Army Corps of Engineers
(USACE), USEPA, Department of Energy, and Nuclear Regulatory
Agency is devel-oping a joint risk-assessment, decision-support
system [e.g., Deliman et al. (2000)]. The USEPA, in conjunction with
industry, has developed the BASINS software package (Lahlou et al.
1998) to support decision making regarding total maximum daily
loadings. The U.S. Geological Survey in concert with the U.S. Bureau
of Reclamation (Fulp and Frevert 1998) and the Tennessee Valley
Authority (Zagona et al. 1998) have developed decision support
systems for water resources management. Numerous journals, many
online (go to http://www.iwap.co.uk and select “journals”), are specif-
ically oriented toward decision support and knowledge management
in natural resources.

While there are literally hundreds (perhaps thousands) of “decision
support” systems, most of these systems are site-specific or place-
based in design and function. Only recently have broad-based, inte-
grated computational frameworks of the type envisioned herein as a
“decision maker’s toolkit” begun to surface. Most of these toolkits
[e.g., Holland (2001); Danish Hydraulics Institute (1999)] are in their
formative stages. Industry groups, such as the OGC and Nobility, Inc.
(http://www.nobility.com/), are also developing products ranging from
interoperability protocols to proprietary marketplace solutions. The
need for such toolkits, along with descriptions of required function-
ality, have an ever-broadening base of support among a variety of
technical organizations. As an example, a recent report from the U.S.
Government’s Interagency Group on Decision Support (Case et al.
2000) mirrors many of the requirements listed above for computa-
tional toolkits and frameworks that support natural resource 
management.



presently uses a Web browser. Equally important is the ability of modelers
to access different data sources and types quickly with minimal manipula-
tion. Ideally, toolkit users would view cyberspace as nothing more than an
extension of their local computers.

12.2.2 Interoperability Protocols and Standards
Productive use of any integrated toolkit, particularly for decision makers
and stakeholders, requires the establishment and use of protocols (stan-
dardized methods that connect software components and their outputs) for
interoperable data archiving and retrieval, database development, meta-
data presentation, and tool linkage (such as GIS-to-model connectivity).
Examples of protocol developments, particularly those associated with the
linkage of models, analytical tools, and information technologies, are dis-
cussed by Leavesley et al. (1996), Holland and Goran (1999), and Whelan
et al. (1997). Crowe (2000) discusses several modeling environments, includ-
ing the Spatial Modeling Environment and the Environmental Systems
Research Institute’s ModelBuilder (ESRI 2000). Such products represent
candidate development environments for achieving and enforcing interop-
erability through the use of standards and protocols.

Several other initiatives are under way, such as the development of the
Hierarchical Data Format (National Center for Supercomputing Applica-
tions 2001) and the activities of the Open GIS Consortium (OGC) [see
Lake (2000)], that hold the promise of providing such protocols. Several
agencies of the U.S. government are partnering (Case et al. 2000) in the
development and promulgation of such standards, often in collaboration
with the OGC.
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The use of standard protocols is necessary for the creation of standard
(and stable) data management, seamless connectivity to remote servers,
straightforward links between differing data sources and assessment/mod-
eling tools, etc. Any sustainable opportunity for decision makers and stake-
holders to query databases of multiple types efficiently (e.g., through just a
few mouse clicks using a query language that is natural to the decision
maker) and to visualize or further manipulate those data is directly related
to software and hardware interoperability. Unfortunately, there are now
several sets of “standards” for archiving and querying geospatial data.
Clearly, the development of one set of interoperability protocols or stan-
dards would be highly beneficial.

12.2.3 Conceptualization and Collaboration Tools
Conceptualization involves the formulation of the environmental manage-
ment problem(s) being tackled, the key system components (e.g., physical,
biological, social, and economic) associated with the problem(s) being
investigated, and the potential management alternatives to be considered
as a part of problem solving. The process of conceptualizing problems,
and their potential solutions, has become a highly collaborative one that
involves decision makers, stakeholders, scientists and engineers, and the
public. Recent activities among the U.S. federal agencies, as exemplified by
those of the (U.S. Department of Agriculture (USDA) Johnson et al. 1999),
illustrate the collaborative nature of future decision making.

Tools to support problem, objective, and alternative conceptualization
are essential for all potential toolkit users. These tools could range from (1)
a web-based decision tree that, through branched queries, leads the deci-
sion maker or stakeholder to specify the particular problem or solution
alternative to (2) a fully icon- or object-based method for accomplishing
the same result. Westervelt (2001) provides a review of candidate software
applications that could support development of a conceptualization capa-
bility for the U.S. Army’s Land Management System (Holland and Goran
1999).

Tools empowering group meetings, shared data mining and visualization,
and consensus building (all on the Internet) are required. Therefore, the
decision maker’s toolkit, in concert with the stakeholder’s and conceptual
toolkits, must provide the computational means to facilitate both concep-
tualization and collaboration (Johnson et al. 1999).

12.2.4 Integration of Improved Science into 
Decision Making
The integration of advanced science and engineering, particularly for new
discoveries, is a challenging task. A recent USDA report from its Commit-
tee of Scientists (Committee of Scientists 1999, p. 123) states that
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Collaborative planning rests upon a foundation of scientific information developed
by scientists and other knowledgeable people in an open, public process. This 
‘assessment’ process ensures that current scientific thinking is a part of the planning
process as well as a sound foundation of credible information. Issues in planning
that have a significant scientific content include: whether the temporal and spatial
scales being considered are appropriate for the questions being asked, whether all
relevant information is being considered, whether that information is interpreted in
a manner consistent with current scientific understanding, whether the level of risk
to species and ecosystems associated with the alternatives is acknowledged, and
whether the uncertainty of our knowledge is recognized.

If collaborative planning is the very foundation of decision making, then
appropriate and effective use of scientific data is the foundation of collab-
orative modeling and assessment.

Toolkits must be formulated to integrate scientific discovery and data into
the decision-making process. This integration requires that the toolkit facil-
itate better use of existing or new scientific information in resource man-
agement. An example of how a toolkit could facilitate better use of existing
technology involves improved use of modeling results in estimating likely
outcomes from implementation of management alternatives. A second
example involves integration of new scientific understanding from differ-
ent disciplines, such as economics, ecology, biology, and hydrology. Experi-
ence of the authors in the development of the Department of Defense
(DoD) Groundwater Modeling System (GMS) (Holland et al. 2001) has
shown that, when a toolkit (in the case of the GMS, for subsurface model-
ing) with standard protocols is employed by the research community, new
scientific discoveries (e.g., new subsurface remediation processes) are cod-
ified and implemented in decision making much more quickly than would
happen without such a toolkit. It is likely that the economies experienced
in the development of the GMS would be repeated with the development
of a more generalized ecological modeling toolkit.

12.2.5 Knowledge Repositories and Management
The envisioned toolkits must provide for repositories and catalog services
that document lessons learned, components of the decision process, exist-
ing technical capabilities (such as software and subject-matter experts), and
the location of relevant data. Up-to-date capabilities of these types would
improve decision makers’ and stakeholders’ abilities to be “smart buyers”
in environmental management and would assist modelers in understanding
model applicabilities and limitations. The establishment and maintenance
of these services would require a number of technological advances. Open
“wizards” would have to be developed that facilitate placing data within
Web-accessible repositories. The repositories themselves would have to be
defined with interoperability protocols, such as those described above, so
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that they can be queried and mined by decision makers and stakeholders.
Advanced search engines, pattern recognition algorithms, artificial neural
networks (Babovic and Bojkov 2001), and other knowledge management
agents would have to be employed to make efficient use of these reposito-
ries and catalog services. Current catalogs and inventories of available
models and analysis tools, along with a set of well-documented case studies,
would have to be established, as well.

12.2.6 Requirements for Toolkit Functionality
For toolkit(s) to support the different user communities, they must

• Integrate predictive capabilities (modeling and simulation), data man-
agement, GIS, visualization, and heuristics into a decision support 
framework

• Have collaborative functions (such as multiuser viewing and manipula-
tion of archived data) to augment multiple-stakeholder use

• Support protocols for interoperability so that modeling results will 
interact seamlessly with other analysis tools within the toolkit

• Provide methods to aggregate technical data to facilitate data usage
• Provide an efficient means to evaluate alternatives and propose new ones

as part of the decision-making process
• Link effectively to business processes of differing, and often highly 

disparate, users
• Provide three-dimensional (3-D) visualization and animation capabilities
• Provide Web (Internet) accessibility and functionality
• Support the elements of the decision process (as discussed in more detail

below)
• Aid the selection of appropriate modeling and analysis tools (e.g.,

empower “smart” buying)
• Provide a repository of lessons learned
• Facilitate completion of place-based (e.g., site-specific) decision-support-

system development
• Provide a means for incorporating decision constraints and rules within

the overall computational toolkit
• Provide statistical and data-mining tools for manipulating and querying

potentially large databases

12.2.6.1 Documentation

The tools in any toolkit should be fully documented. The documentation
should

• Describe the particular tool in detail and prescribe its correct application
in relation to environmental resource management
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• Provide examples of correct and inappropriate uses or applications of
each tool

• Describe the types, limitations, and sources of required inputs
• Describe the kinds of results produced by the tool and their 

interpretation
• Discuss the relative strengths and limitations of the tool
• Present the uncertainties generally associated with implementation of the

tool

The documentation should be readily accessible (e.g., in help files and
online tutorials) and should include interactive tutorials that can instruct
users on the appropriate applications of the toolkit contents to increase the
effectiveness of their involvement in the resource management process.

12.2.6.2 Metadata Requirements

With any focus on methods for data analysis and presentation, a toolkit
must address the source and quality of the information accessed by its users.
That is, it needs to include “data about the data” or metadata. These meta-
data, as well as the data they describe, will also need to be conveniently
accessed by toolkit users via an Internet-based implementation of the user’s
toolkit.

The metadata for any specific data set, model results, or other informa-
tion relevant to environmental resource management should (1) identify
the source, content, and format of the database; (2) indicate who performed
the work; (3) describe the methods used to produce the results; and (4)
present a general summary of the credibility and uncertainty associated
with the data, results, or information. Clearly, the metadata will have to be
developed in terms that are understandable to the diverse set of users who
have roles in specific resource management issues.

The metadata should permit access to the data at different levels of
inquiry, beginning with more generalized summaries and proceeding to
more in-depth analyses and presentations of the data, model results, or
other information in the particular database.

12.3 Conceptual Toolkit

The scientists and engineers who develop models, the managers who must
make decisions, and the stakeholders associated with those decisions each
generally have different objectives. However, all are driven by a common
theme, the environmental problem that begs a solution. Problem solu-
tion requires identification of the goals and objectives of the different 
stakeholders and resource managers involved in the given environmental
problem. In the most general case, these goals and objectives would diverge
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to the point that an answer deemed optimal to all parties would be the
exception rather than the rule. A toolkit is therefore required that would
facilitate identification of issues among all stakeholders while aiding for-
mulation of potential alternative solutions that are the least divisive to 
the environment and stakeholder objectives. This toolkit is the conceptual
toolkit.

12.3.1 The Glue That Binds
The focal environmental problem will have some components that are
known to be fundamental and others that may not be well understood or
even agreed upon as being important. The conceptual toolkit is a blueprint,
a schematic of the focal issues that delineates important interactions among
components and, through feedback, indicates gaps in knowledge about the
scientific problem. It is also a tool to facilitate communication. This toolkit
must express environmental science and engineering at levels sufficient to
initiate modeling efforts and, at the same time, must be sufficiently explana-
tory to address issues of environmentally cognizant stakeholders and 
managers. The conceptual toolkit is thus both a development tool and a
communication tool that is important for interactions of scientists and 
engineers with the stakeholders and the decision makers. As such, the 
conceptual toolkit should form a nucleus that relates each of the modeler,
stakeholder, and decision maker toolkits to one another.

The most basic aspect of the conceptual toolkit is its graphical nature.
This toolkit must be designed with icons and terminology that can be intu-
itively grasped by modelers, stakeholders, and decision makers if it is going
to provide the common ground required to support collaboration among
these communities. The conceptual toolkit should provide a hierarchy of
methods, ranging from simple sketch pads to elaborate group collaborative
environments, in support of problem and alternative formulation, evalua-
tion, and feedback. This is undoubtedly the most ambitious, and the least
well developed, of the four toolkits discussed in this chapter.

12.3.2 From Conceptualization to Model Development
and Analysis
The conceptual toolkit, by framing the environmental problem, addressing
differing stakeholder objectives, and presenting scientific components, pro-
vides the foundation for the modeling process. The first step in that process
is the determination of the objectives of the model. By identifying those
objectives, the conceptual toolkit would provide important input into the
modeling efforts. By introducing scientific knowledge and associated uncer-
tainty, the conceptual toolkit would set the foundation for the analysis of
the problem and the evaluation of alternative management scenarios.There
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should be both forward and backward information exchange between
problem conceptual models and mathematical science and engineering
models so that each can be modified as additional information is obtained
from the analysis or as the objectives of stakeholders or decision makers
are modified.

12.3.3 From Conceptualization to Communication
Even after the objectives are delineated, the conceptual toolkit would be
used to suggest alternative decision options. As the conceptual blueprint is
modified by alternative decisions, feasible impacts are communicated to
stakeholders and managers for reaction and modification. This communi-
cation is an iterative process, with exchanges occurring many times.

12.3.4 From Analysis to Decision
As the problem-solving process progresses through modeling, analysis, and
decision making, additional studies will likely be formulated on the basis of
stakeholder, decision maker, and modeler feedbacks to the current state of
analysis. Additional management alternatives should then be formulated
via the conceptual toolkit.

12.4 Stakeholder’s Toolkit

Various environmental nongovernmental organizations (NGOs), such as
the Sierra Club, Nature Conservancy, Environmental Defense Fund, Isaac
Walton League, and the general public, constitute a set of stakeholders 
that have become increasingly active in the resource management decision
process. Public and NGO activities related to resource management may
include formulation of a particular position through public forums, involve-
ment in the legislative process, purchase and setaside of lands for conser-
vation, formal review of proposed resource management activities by public
agencies, and the conduct of alternative technical analyses.

The diverse occupational backgrounds and technical training of stake-
holders challenges the development of a toolkit that meets the needs of this
group. Stakeholders include interested individuals with little or no formal
training in ecology or resource management who have sincere interests and
commitments (e.g., advocates) to sound environmental decisions on issues
that directly influence them or future generations. Other stakeholders are
highly trained and technically competent in disciplines relevant to envi-
ronmental and ecosystem management, but they are not advocates of any
particular decision or policy. Such trained individuals might be retained 
by environmental NGOs to provide technical support and consultation in
relation to specific resource management decisions.
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The tools needed to support the interests of stakeholders would provide
a functionality similar to that needed by the decision makers. However, the
technical training and proficiency of stakeholders, particularly among 
the general public, may well be less than the capabilities of individuals
entrusted with resource management decisions. A stakeholder’s toolkit has
to be carefully designed to accommodate, and perhaps anticipate, the more
limited technical capabilities of stakeholders, and its functionality may have
to be more broadly defined than that of the toolkit developed to assist 
decision makers.

The stakeholder’s toolkit should assist stakeholders in reviewing and
understanding the technical and policy bases for decisions regarding 
the management of specific environmental resources. The toolkit should
provide the stakeholders with the capability to readily identify, collate,
examine, interpret, and evaluate the data, model results, and other infor-
mation used to arrive at particular resource management decisions. The
toolkit should make transparent the alternative actions and the informa-
tion base used by managers to arrive at a decision.

Additionally, the stakeholder’s toolkit should facilitate virtual interac-
tions (via the Internet) between stakeholders and other participants in the
resource management process (e.g., decision makers, technical support staff,
and risk assessors). Similarly, the results developed with different compo-
nents in the stakeholder’s toolkit should be transferable to decision makers
and other professional participants in the environmental management
process. It is anticipated that stakeholder access to information will be
mainly through the World Wide Web or advances in this communication
technology. The Internet will likely increase the number and technical
sophistication of stakeholder groups during the coming decades. The stake-
holder’s toolkit should therefore provide access to all of the technical tools
(e.g., models, data, analytical techniques, and visualization) used in the
resource management and decision-making process.

12.4.1 Data-Mining and Statistical Tools
Development of the stakeholder’s toolkit should initially focus on identi-
fying and selecting tools that facilitate the statistical interpretation of 
data and information produced by the technical support staff and decision
makers. Stakeholders probably will not develop and execute complex 
ecological models. However, they may employ sophisticated statistical
analyses of large sets of data and model results or implement intricate deci-
sion models as part of their participation in the resource management
process.

Stakeholders need methods that help them interpret, understand, and
evaluate these kinds of technical aspects associated with specific resource
management decisions. Such methods should emphasize capabilities in rec-
ognizing, retrieving, and presenting relevant model results, data, and other
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information pertinent to specific resource management topics or decisions.
The stakeholder’s toolkit should provide the capability to query or evalu-
ate data or results of models at several levels from general inquiries to
detailed examinations.

12.4.2 Web-Based Visualization
Tools that provide information-rich, visual summaries of complex data,
model results, statistical relationships and decision making should be 
among the first additions to the stakeholder’s toolkit. Such tools could 
be conveniently and rapidly accessed via the Web and might reasonably
include

• Two- and three-dimensional color graphic displays
• Animated displays of model results and remotely sensed data
• Complex pattern analysis and recognition algorithms
• Audio/video summaries of issues pertinent to the topic of concern
• Interactive analyses and visualization of model results and remotely

sensed data

The use of Web-based visualization tools will depend upon the develop-
ment of general guidelines for presenting data and the results of models.

12.4.3 Tools for Multiuser Interactions
The toolkit should also facilitate collaborative efforts among various stake-
holders or among stakeholders, the technical assessment community, and
decision makers in examining the information basis for specific topic areas
or evaluating decisions regarding particular environmental resources. Such
collaboration might take the form of real-time data sharing, simultaneous
visualization and analysis of data or model results, and the interactive
review and evaluation of decision alternatives and their associated infor-
mation bases.

Use of this collaborative functionality will increase the transparency of
the technical and policy basis underlying specific resource management
decisions.

12.5 Decision Maker’s Toolkit

Decision makers have multiple requirements for technology to support the
decision-making process that are equally applicable to government agen-
cies, private corporations, individuals, and a host of international organiza-
tions. These same requirements are also of an ever-increasing importance
to state and local government decision makers for issues ranging from total
maximum daily loadings to recreation to urban development.
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12.5.1 Issues Associated with Toolkit Requirements
It is anticipated that most decision makers will be users rather than pro-
ducers of data. Therefore, data mining and advanced visualization, all facil-
itated with Web-based collaborative accessibility, are key components of the
decision maker’s toolkit. Some managers will be interested in using mod-
eling tools, and, for certain place-based decisions, these managers would be
able to execute these models through connections to the modeler’s toolkit.
These models and tools must be cast in a fashion that facilitates their use
as a part of the decision-making process.

12.5.2 Elements of the Decision Model
The decision maker’s toolkit must be a part of the overall decision-making
process. Five major elements are associated with the representation of the
generalized environmental management decision process:

• Statement of management objectives
• Delineation of management alternatives
• Expression of the physical, biochemical, ecological, and/or socioeconomic

states (existing or likely) of a given site or sites
• Evaluation of and learning from possible outcomes from different 

management alternatives
• Estimation of the utility (relative worth) of these possible outcomes 

relative to the stated management objectives

Case et al. (2000) present an analogous decision process with the following
elements:

• Recognition of problem or opportunity—Raising an issue in the formal
decision-making contest

• Process mapping—Deciding how an issue will be resolved and who will
decide

• Problem framing—Describing the problem to be solved or the opportu-
nity to be captured

• Defining goals and criteria—Selecting indicators and measures that 
guide decision making in terms of what is sought and how success will be 
measured

• Intelligence gathering—Collecting and integrating information that will
support problem framing and evaluation of the utility of alternatives

• Evaluating and choosing alternatives—Comparing alternative courses of
action on multiple, and often competing, criteria

• Learning from outcomes—Using the experience gained to refine man-
agement, goals, criteria, and the decision process

Note that, although these elements are shown in a linear order, they actu-
ally represent a continuum that cycles through multiple times. Further, one
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can enter this decision-making continuum at different points in the process.
For example, a cycle typically occurs in situations where initial management
objectives are expressed that yield a range of potential alternative man-
agement scenarios. In such cases, the best from among a set of alternatives
is assessed on the basis of available data, stakeholder requirements, and 
the state of scientific understanding at the time. The effectiveness of the
selected alternative is then monitored. Such monitoring produces new
information that is used, along with any scientific advancements and
changes in stakeholder requirements, to propose changes to the manage-
ment alternative being employed. This cycle is then repeated in a fashion
that allows management to adapt as a function of societal, ecological, and
economic factors.

The decision maker’s toolkit should provide an integrated suite of tools
that purposefully follows and supports the elements of the decision model.
As such, this toolkit should provide standard templates for data presenta-
tion and problem formulation for different decision types. For example,
specific templates should be developed that would support regulatory, risk
assessment, and habitat restoration decisions. Clearly, there are many other
resource decisions that must be supported, and the tools within the 
decision-making toolkit should be developed in a modular fashion so they
can be efficiently combined to support “real-world,” site-specific decision
making.

12.6 Modeler’s Toolkit

The modeling and assessment toolkit consists of the computational com-
ponents that represent the physical and biological facets of the system being
managed. Of the four toolkits discussed in this chapter, more advances have
been made for the modeler’s toolkit than the others (see Sidebars 12.1 and
12.2). Numerous models are available that could be integrated into such a
toolkit, and we will not attempt to list them or recommend a particular
subset. Instead, we will discuss issues related to constructing a modeling and
assessment toolkit with emphasis on its functionality, some potential future
developments, and the role of standards in developing a toolkit that will
maximize accessibility of the components and a degree of confidence in the
results produced.

The selection and implementation of the environmental models con-
tained within this toolkit generally fall under the responsibility of model-
ers rather than decision makers, managers, or stakeholders. These modelers
usually find the best models and assessment tools for the job and identify
the data needed to run the model. Once the model is constructed and inte-
grated into the toolkit, the modeling results would then be exported to the
other toolkits as decision variables and information.Therefore, the manager
or stakeholders faced with making an environmental decision may not be
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Figure 12.3. Five major facets of the DoD groundwater modeling system.

Sidebar 12.2
Example use of a modeling toolkit

The U.S. Department of Defense (through the U.S. Army Engineer
Research and Development Center), in concert with the USEPA,
Departments of Energy and the Interior, and more than 15 university
partners, has developed a comprehensive subsurface modeling toolkit,
the DoD Groundwater Modeling System. The GMS provides the
ability to support requirements for modeling and assessment tools
throughout the life cycle of contaminated-groundwater site restora-
tion and cleanup (Figure 12.3).

The GMS integrates more than 10 multidimensional sub-
surface models and visualization, animation, parameter-estimation,
grid-generation, and site-conceptualization tools within a single-
point-of-access graphical environment. The GMS functionality
includes:

• Pre- and postprocessing support for MODFLOW96, MODPATH,
MT3DMS, FEMWATER, RT3D, SEAM3D, SEEP2D, UTCHEM,
PEST, and UCODE

• Site characterization tools
• GIS/CADD import/export
• SCAPS and CPT data import
• Finite difference/finite element grid generation
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• Automated calibration tools
• “True layer” finite difference grid visualization
• 2-D and 3-D data interpolation and visualization
• Geostatistical library including

Kriging (ordinary, universal, zonal, and indicator)
Inverse distance weighting
Natural neighbor
Clough–Tocher
AVI video file animation
Conceptual modeling approach
Regional-to-local telescoping model conversion
Coordinate transformation

The GMS is employed to support a “typical” contaminated site
cleanup in the following manner. First, geologists and hydrogeologists
use the GMS’s characterization tools to conceptualize the site 
geologic and hydrologic components (see Figure 12.3). This phase of
GMS involves management and manipulation of numerous site data.
The result is the development of a site conceptual model that includes
geologic layering, location of all water bodies, and probable locations
of contaminant source plumes.These features are then illustrated with
fully 3-D visualization tools that are on board GMS.

In the second phase, GMS provides the means to set up, calibrate,
verify, and execute different subsurface models to assess likely con-
taminant plume migration and the potential for these plumes to inter-
act with human and ecological receptors. Tools to design, simulate,
and optimize (as required) different restoration alternatives are 
provided to the modeler and cleanup specialist to facilitate investi-
gating the efficacy of alternative strategies prior to the actual site
implementation.

The GMS also provides a host of visualization and animation tools
to allow decision makers and stakeholders to view the effectiveness
of various alternatives in controlling plume movement and restoring
the subsurface environment. Such visualized modeling results can 
be placed on the Internet or in presentation software for display to
stakeholders.

Use of the GMS in site-specific cleanup and restoration activities
has shown its utility in a variety of ways. The multiple technical 
disciplines involved in contaminated site cleanup and restoration,
ranging from geologists to environmental engineers to regulators,
employ the GMS toolkit for their discipline-specific requirements.
However, because of the protocols and standards integrated into
GMS, the products developed by one discipline or in one phase of a
cleanup can be directly and seamlessly used by other disciplines and
phases. Site conceptual models can, for example, be directly imported



expected to directly access the components that would be in this toolkit.
However, the specification of the focus, extent, and goals of the problem
being addressed (via the conceptual model established through dialogue
between managers and modelers) should determine the scope of these com-
ponents and the manner in which they will be used. Ultimately, the degree
to which a site-specific implementation develops its own technical methods
versus tapping the resources of existing models can significantly affect the
scope of the project. Therefore, of the different toolkits considered in this
chapter, the modeling and assessment toolkit may realize the most signifi-
cant time and cost savings for a given place-based implementation because
of the generally high cost of both the modeling development effort and 
conducting adequate quality assurance.

12.6.1 General Functionality
The modeling and assessment toolkit would export its results to the deci-
sion maker’s and stakeholder’s toolkits. The particular modeling results
exported, and the input parameters used to create them, will be significantly
influenced by the conceptual toolkit and by the particular decision being
addressed. Because the input parameters will already have been deter-
mined via collaboration with the modeler, it may be possible to run the
model to provide output to the other toolkits dynamically. If this is not pos-
sible for computational or other reasons, a data set of model results can be
provided to the other toolkits for each set of assumptions. Either method
for providing results must be flexible enough to provide alternative results
based upon changes in these modeling assumptions. In some cases, the
models themselves must also be made available because they may directly
affect the outcome of any decision functions that are evaluated.
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into many GMS-supported modeling tools. Results from models 
are output in formats that are easily viewed over the Internet or on
a personal computer with standard browsers, graphical tools, and 
animators. Further, most data used to set up a particular subsurface
model are directly transferable for use by another GMS-supported
model.

The overall result of the use of the GMS toolkit is the development
of streamlined and integrated computational methods that improve
the productive use of subsurface models in support of contaminated
groundwater restoration and cleanup. These increases in productivity
have translated to reduced resources (time and money) for modeling
and assessment and to optimized site cleanup and restoration designs
that more completely consider site uncertainties.



Because most environmental decisions are spatially based, results will
typically be calculated and analyzed in a geospatially oriented computa-
tional environment. This environment, as a component of the modeler’s
toolkit, would have to provide a single point of access to grid-generation,
parameter-estimation, visualization, calibration, verification, and animation
techniques. In addition, it must provide access to many models and analy-
sis tools. For example, assessment of the effects of a stressor on an exposed
ecological population could require the use of the following modeling and
assessment tools:

• Exposure assessment methods
• Fate and transport models
• Individual behavior models
• Methods to partition behavior between biota and media
• Chemical-toxicity-assessment methods
• Ecological population models

The selection of these tools would, in turn, require the consideration of the
type of stressor, temporal scale, spatial scale, land-use history, and biotic and
abiotic properties of the system being studied.

12.6.2 Enhancements/Developments Required
Clearly, numerous models in a toolkit could be applied to a given environ-
mental decision. Therefore, it is important that the modeler’s toolkit have
a complete and intuitive human–computer interface that appeals to mod-
elers. This toolkit would also provide a link to a database of model descrip-
tions that could be queried for information regarding the set of models that
are most relevant for the problem at hand.

Another need within this toolkit is for self-documentation to transfer
modeling methods and assumptions to other toolkits.The ability to develop
an audit trail for assessments would highlight assumptions employed in the
modeling process and would export this information to other toolkits that
use modeling results. Modeling equations, graphical output, and variables
can be exported to a file format that can be interpreted by a number of dif-
ferent word processors and used to demonstrate assumptions to users of
the decision maker’s and stakeholder’s toolkits.This information would also
form the basis for the peer review of modeling and the preparation of the
final report.

Modeling and assessment uncertainty analysis is another development
that would provide very useful information to other toolkits. In theory,
uncertainties could be propagated throughout the models that are used in
order to establish an overall uncertainty or to perform a sensitivity analy-
sis for the decision variables. In practice, these uncertainties are difficult 
to quantify across different models. With sufficient standardization across
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models, however, uncertainty estimation techniques could be employed to
calculate distributions of interest.

12.6.3 Role of Standards
Each of the models contained in the toolkit must be interoperable with all
other appropriate models in the toolkit as well as be able to communicate
with other toolkits. The toolkit must be able to incorporate new or modi-
fied models within the system as well as to link to provided data sets. For
these reasons, standards have a very important role. An explicit standardi-
zation approach provides for consistent and standardized use of ecological
models with known reliability in resource management and assists in 
producing credible results.

Given the variety of resource decisions and the number of available tools
to address them, it is advisable to develop decision-specific components
within the modeler’s toolkit. For example, ecological-risk-assessment mod-
eling tools required by the USEPA may have little overlap with modeling
tools that evaluate the effects of different timber-cutting strategies devel-
oped for the Forest Service.

Standards should be established to specify a minimal set of criteria for
determining whether a given model would be incorporated into the toolkit.
Important considerations for inclusion are transparency and accessibility of
documentation. Also, accurate, efficient, scientifically defensible linkages
must be made available

• To pass outside data sources to toolkit components
• To move information within models of the toolkit
• To provide results to other toolkits

The toolkit and each of its components should be upgraded periodically to
ensure that state-of-the-art models are being used.

12.7 Summary and Recommendations

Numerous benefits (see Sidebar 12.2) and challenges are associated with
the development of integrated computational systems,“toolkits,” in support
of environmental management and decision making. Decision makers,
stakeholders, and modelers all require different types of toolkit functional-
ity. It is equally clear, however, that appropriate linkages between these
toolkits are required if one is to experience the most robust use of these
toolkits in environmental management and problem solving.

We recommend that the four toolkits discussed in this chapter (the
modeler’s, decision maker’s, stakeholder’s, and conceptual toolkits) be
adopted as the fundamental tools required for the environmental manage-
ment and decision making. Of the four toolkits, the conceptual toolkit is the
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one that is the least well understood. However, it also represents the toolkit
that may have the greatest impact on environmental management, given its
nature as the “glue” between the other three toolkits.

The overarching, common requirements of the toolkits may warrant a
toolkit development approach that builds and shares modules-meeting
these common requirements while providing specific modules to meet 
the more focused requirements of the modeler, stakeholder, and decision
maker. Given such commonality, especially that noted between the stake-
holder’s and decision maker’s toolkits, we believe that one adaptive toolkit,
with modules that meet the specific needs of stakeholders and decision
makers, may be an effective paradigm for toolkit development.

As alluded to in Sidebar 12.1, several federal agencies in the United
States and many international organizations have expressed interest in the
development of such toolkits. There is significant potential for synergism
between these individual initiatives, so collaboration among these differing
groups in the development of toolkits should be formalized and expanded.
This partnering is particularly important in developing standards and pro-
tocols (common linkages among different models, assessment tools, and
databases). The ability of components within a given toolkit to communi-
cate, the opportunity for new components to join and function within a
toolkit, and the effectiveness of virtual development teams to build new
tools in a distributed fashion are all directly and specifically related to the
establishment and acceptance of a single set of standards and protocols in
environmental management.

The utility of the toolkit concept must be more formally documented in
real-world problem solving. In this regard, Case et al. (2000) recommend
that a series of demonstrations be conducted that exercise and build upon
the different toolkits discussed in this chapter. We strongly endorse this 
recommendation.
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13.1 Introduction

Despite substantial advances in ecological modeling during the past two
decades, models are rarely used in environmental decision making. In this
paper, we explore the reasons for this lack of model use and discuss dif-
ferent types of scientific and management investment that might enhance
the use of models in environmental decision making.

We believe one of the most important factors preventing widespread use
of models in decision making is a lack of training. Many managers lack the
experience to decide on appropriate kinds of models and the scales of 
resolution that are best to solve a given problem (Breininger et al. 2002).
Related to this issue, we discuss the need for improved communication
between managers and modelers.

Another important factor is the lack of appropriate and relevant data.
We believe this deficiency is often an extension of lack of training, because
managers who lack training in modeling do not know what types of data to
collect to optimize the use of models.

As we will discuss below, a large number and variety of ecological models
have been developed during the past decade. The lack of appropriate
models is not an important factor, because many generic and specific
models that already exist can be applied to practical problems and decision
making.

13.2 Enhancing the Use of Models in Decision Making

Investments are needed in four areas to enhance the use of ecological 
modeling in decision making: training and education; application of exist-
ing models; integration of existing models; and developing new, case-
specific models.



13.2.1 Training and Education
Teaching the use of existing models is the most efficient way to reach the
goal of enhanced model use in the short term. Teaching can take various
forms, and can be done in a variety of formats. Both the content and the
format of training should depend on the audience. Here we consider two
types of audience: managers and technical personnel.

Environmental managers, people who make decisions on management
and research in governmental agencies and in the industry, are often unfa-
miliar with the potentials of modeling. The topics for educating managers
in the use of ecological models could include

• Types of questions that can be addressed with ecological models
• Selecting the appropriate model
• Types of data needed for different types of models
• Interpreting the results of models
• How models incorporate variability and uncertainty
• Interpreting and communicating risk and uncertainty
• Recognizing limitations of models
• Learning to identify inappropriate uses of models
• Examples of the successful use of models

Another type of audience includes technical personnel who may be using
or reviewing models developed by others. To judge the technical merits 
of models, they need to have a basic understanding of the fundamentals of
modeling. The topics for technical personnel should include all the topics
for managers. In addition, the following topics may be useful to train tech-
nical personnel:

• Components of different types of ecological models
• Tradeoffs between complexity (realism) and practicality (data 

availability)
• Collecting the appropriate data
• Analyzing data to estimate model parameters
• Incorporating variability and uncertainty
• Presenting model results

In addition to managers and technical personnel, modelers may also need
training, for example to better understand biological aspects of the system,
practical limitations to data collection, and the needs and limitations of
management. However, this training is different because, unlike the topics
discussed above, it is very case-specific. It is best done in workshops that
aim at improving the communication among modelers, managers, and tech-
nical personnel.
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13.2.2 Application of Existing Models
During the past several decades, a large number and variety of ecological
models have been developed (see Table 13.1 for a list of examples). The
variety of ecological models is reflected in their level of biological organi-
zation (population, metapopulation, food-chain, community, landscape, and
ecosystem levels), in the way they describe time (discrete versus continu-
ous), in their treatment of variability (deterministic versus stochastic), and
in their level of detail (scalar, age-structured, stage-structured, spatially
explicit, individual-based, etc.). For reviews of ecological models, see
Burgman et al. (1993), Akçakaya and Sjögren-Gulve (2000), and Akçakaya
(2000).

The simplest way to develop a model is to apply an existing model to a
management question. “Application” means estimating parameters of the
model, based on data that are specific to the location, species, and/or system
in question, and using the model to address a specific management ques-
tion about a particular case. This process is also often called “modeling,”
and it is true that analyzing case-specific data to estimate the parameters
to incorporate into an existing platform is a method of building a model.
However, we call this process “application” simply to differentiate it from
the process of writing a computer program to create a model or a model-
ing platform.

There are many successful applications of existing models to address
environmental issues (see Table 13.2 for a list of examples). Some of these
applications have guided or determined management decisions, as we
discuss below.

Decisions supported by model results have included listing a species 
as threatened, determining the type and schedule of management actions,
and decisions on development permits. For example, in May 1995, the
Oregon Department of Fish and Wildlife used RAMAS to develop an age-
structured model in a report on the biological status assessment for the
marbled murrelet, as a response to a petition to list the species under
Oregon’s Endangered Species Act (Oregon Department of Fish and
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Table 13.1. Examples of existing models.

Population models
Stochastic scalar abundance models
Structured models (e.g., Leslie matrix)
Metapopulation models (e.g., RAMAS GIS and Vortex)

Landscape models
Forest landscape models (e.g., LANDIS and FORMOSAIC)
Aquatic landscape models (e.g., ATLSS)

Ecosystem models
Food-web models (e.g., RAMAS Ecosystem and Populus)
Aquatic-ecosystem models (e.g., AQUATOX, CASM, and IFEM)
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Wildlife 1995). This species was later listed as threatened under Oregon’s
Endangered Species Act.

In another case, a metapopulation model was used to evaluate the effec-
tiveness of translocation as a management tool for the endangered hel-
meted honeyeater (Akçakaya et al. 1995).An updated version of this model
is currently being used to support the decision regarding timing of release.
Data from a geographic information system and a RAMAS metapopu-
lation model were used to determine the viable population size for the
Florida scrub jay (Root 1998). This model was used in the context of 
four reserve designs developed as part of a habitat-conservation planning
process focusing on scrub habitat on nonfederal lands in Brevard County,
Florida (Brevard County Office of Natural Resources 1995).

A metapopulation model for a threatened land snail species (Regan et
al. 1999) is contributing to planning outcomes in the Togari Forest of north-
west Tasmania.Another metapopulation model was applied to the redhorse
populations in the Muskingum river in Ohio (Root et al. 1997) to model
the thermal impact that might result from a proposed increase in power
plant operation. The proposed increase was approved by the Ohio 
Environmental Protection Agency.

Brook et al. (2000) applied several existing models (including RAMAS
Metapop, RAMAS Stage,Vortex, Inmat, and Gapps) to 21 populations.The
results both validated the predictions of these models by comparing them
with observations and showed that models developed with different soft-
ware gave similar results when used with the same data sets.

In summary, a large variety of existing ecological models can be applied
to support or guide management decisions. Such applications require the
collection of site-specific data and statistical analysis of the data to esti-
mate model parameters. Once the model parameters have been determined
(together with their uncertainties resulting from measurement error and
their natural variabilities), the application of an existing model requires
very little research effort. Therefore, the major scientific issues in the 
application of existing models involve data analysis methods. These
methods include survival estimation methods based on mark–recapture
data; methods for estimating spatial, temporal, and error variance compo-
nents; as well as variance caused by such components as age and sex.

Most of the models considered in this paper, as well as most successful
applications of modeling to management questions, are at the population
level rather than the community or ecosystem levels.This selectivity reflects
the state of ecological modeling: the theory of single-species dynamics is
more complete than that of species interactions and community dyna-
mics. The disadvantage of the ecosystem approach is the complexity of
interactions among species and our lack of understanding of community
and ecosystem dynamics. As our understanding increases, conservation and
management practices will likely become more ecosystem-based. However,
the contingencies and complexities involved may make it impossible to find
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general laws in ecosystem ecology (Lawton 1999). Currently, ecosystem-
based approaches to practical ecological problems suffer from vagueness
and circularity (Goldstein 1999). The single-species models are obviously
not useful for all questions; models at community and ecosystem levels are
often needed to address different types of questions. Nevertheless, it seems
that single-species dynamics will remain one of the major practical methods
for environmental conservation and management in the next decade and
beyond, until the increased understanding of ecosystem dynamics allows
more generic and practical models to be built.

At this point, the question of model selection, or the selection of the 
modeling approach appropriate for a particular case, arises. Three impor-
tant factors are the question to be addressed, the quantity and quality of
the data available, and the ecology of the system involved. In some cases,
these criteria may point to different models. For example, the question may
require a complex model, but the data may allow only a simple model. In
such a case, the common approach of using a complex model and making
assumptions for the parameters for which data are not available is not the
most productive approach. Instead, two approaches can be taken, in many
cases, simultaneously. On the one hand, a simple model can be used to
explore other (more fundamental or more general or simpler) questions.
On the other hand, more data can be collected, guided by sensitivity and
uncertainty analyses with the more complex model.

Other factors important in model selection include generality and trans-
portability. Other factors being equal, more generic models are easier to
apply to new cases with minimal or no new programming, whereas more
case-specific models often require additional programming to be applica-
ble to a new location or species. In some cases, this additional programming
can be as substantial as creating a new model.

13.2.3 Integration of Existing Models
In the recent past, significant model development has involved the inte-
gration of existing models rather than models created from scratch. Of
course, in some sense, all models are created by combining basic build-
ing blocks, such as components that implement basic functions for dose–
response relationships, density-dependence functions, random-variate gen-
erators, etc. However, what we mean by “integration” here is the linking of
two or more fully developed models or generic modeling platforms.
We will first discuss examples of such integration and then list some poten-
tial future developments that may involve the integration of existing
models.

Two of the most commonly used approaches in population modeling 
are matrix models (Leslie 1945; Caswell 1989) and metapopulation 
models (Levins 1970; Gilpin and Hanski 1991). Models that integrate these
two approaches have included multiregional models [e.g., Fahrig and
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Merriam (1985)] and the spatially structured RAMAS Metapop (Akçakaya
1994).

Another integration involved habitat models and demographic models.
Habitat models aim to predict a species’ response to its environment or its
habitat requirements (Verner et al. 1986), whereas demographic models aim
to predict the changes in its abundance or its risks of decline and extinc-
tion (Burgman et al. 1993). Models that integrate habitat and demographic
models have used different approaches, including individual-based models
(Lamberson et al. 1994), grid-based models (Price and Gilpin 1996), and
habitat-based metapopulation models (Akçakaya et al. 1995).

A third example of integration aims to link landscape models with
metapopulation models. Landscape models predict changes in landscape
and land use, based on modeling the dynamics of vegetation, natural
processes [such as disturbances (fire, floods, wind, etc.) and succession],
and human impacts (such as timber harvest and pollution).A new approach
aims to integrate the landscape model LANDIS with the habitat-based
metapopulation model RAMAS GIS. LANDIS (Mladenoff et al. 1996) pre-
dicts changes in forest stand structure, including species composition,
dominant tree species, and age distribution. The RAMAS GIS (Akçakaya
1998) simulates the dynamics of species that inhabit distinct habitat patches.
The integrated model will allow risk assessments for species and popula-
tions based on expected habitat changes. It will simulate the dynamics of
the metapopulation in a landscape in which the underlying habitat variables
(and thus the number, size, and spatial structure of the habitat patches) are
changing (Akçakaya 2001). Incorporating landscape dynamics in the spatial
structure of metapopulation models will allow evaluating effects of land-
scape management options on the viability of key species.

We believe the trend of integrating existing models will persist in the near
future and that developing models through the integration of existing types
will continue to be more efficient than creating entirely new models.

Existing models and approaches have several potential links. One of
these possibilities involves linking simple (scalar) population models to
allometric relationships. The resulting models can be used in screening
assessments with minimum or no field data. An important research issue
for this development is testing whether the level of conservatism (precau-
tion) of this approach is comparable to the level required in a screening
test.

Another type of integration may involve linking fate-and-transport
models to ecological models. Although this approach has been used in 
specific cases, a general modeling platform is needed that links physical/
chemical models (e.g., hydrological models), dose–response models, and
population or metapopulation models (to assess ecological affects).

General models are also needed to integrate food-web and metapopula-
tion models. Such an integration would allow modeling trophic interactions
in a spatially structured habitat, with different metapopulation structures
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for different species. In this approach, coordinating temporal and spatial
scales and resolutions will be an important research issue.

Integration may also involve several models of the same type. For
example, linking habitat-based models for a set of several target species
allows decision making in a multispecies context.A simple approach to such
multispecies modeling involves combining habitat requirements of a set of
target species and weighting the habitat suitability with ecological risk or
status.

13.2.4 Developing New, Case-Specific Models
In most cases, an existing model is suitable to address the management
question. In some cases, however, new model development is required.
Such requirements can often be met by the integration of existing types of
models, as discussed above. In rare cases, the management question may
require a completely new approach to modeling.

One misconception about creating new models is that they are more
transparent. In general, there is no relationship between the transparency
of a model and its age. Some existing, generic models are very transparent,
with detailed documentation of the equations and algorithms used and
several papers describing applications of the model. New models created
for a specific case can sometimes be “black boxes,” because of their 
complexity and because resources are often not available for developing
detailed manuals and other documentation.

The major advantage of developing entirely new models lies in enabl-
ing future scientific advances rather than addressing immediate manage-
ment issues. Obviously, many management questions would benefit from
advances in modeling in particular and ecology in general. Thus, creating
new models should not be ignored. However, given a management issue,
it makes sense to first review if an existing model can address the issue.
Such an approach would prevent a lot of costly duplication of modeling
effort.

13.3 Investment for Enhancing Model Use

Making research investments to enhance the use of ecological models
involves three decisions (represented by the diamond-shaped boxes in
Figure 13.1). The first decision is between research and training. We believe
investment in training and education gives the most return in the short
term. As discussed above, training and education may take different forms
depending on the target audience. For educating managers in the use of
models, we believe a one-day workshop format is the most suitable. For
training technical staff and researchers, the most cost efficient is Internet-
based, asynchronous teaching supplemented by two-way communication
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(e.g., by telephone). Thus, we recommend that Web-based short courses on
ecological modeling be developed and offered to technical personnel in
agencies involved in environmental decision making.

The second decision related to investments for enhancing model use
involves the relative research investments in model development versus
application (see Figure 13.1). The relative investment in applying existing
models versus developing new ones depends on the time scale at which
management decisions are needed. Both of these options require collect-
ing and analyzing data to address the question. After the relevant data 
have been collected and analyzed, application of an existing model requires
minimal additional investment in time and research effort. Therefore, for
short-to-medium time horizons, the most efficient way of developing
models involves using existing models with parameters based on data for
the specific question at hand. In a majority of cases in which a management
question can be addressed by models, the limiting ingredient is the avail-
ability of data, not the model.

The resource requirements for model application depend on the type of
model that is appropriate for the available data and the question to be
addressed, and on the availability of a software platform to apply that
model. In general, data-intensive models (such as individual-based models)
require more data and more resources to apply. Models that require 
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Figure 13.1. Series of three decisions (represented by the diamond-shaped boxes)
for making research investments to enhance the use of ecological models in envi-
ronmental decision making.



programming or extensive customization require more time and resources
than models that can be implemented with existing software platforms.

The third decision is about the relative investment in developing models
by integrating existing models versus creating new models. The former
option results in models with enhanced capabilities in a medium time
horizon, whereas the latter option results in new models in the long term.
The resources required for developing new models depend on the type of
model, the species, and the landscape or the ecosystem being modeled.

13.4 Conclusion

In this paper, we considered four areas for making investments needed to
enhance the use of ecological modeling in decision making: training and
education; application of existing models; integration of existing models;
and developing new, case-specific models. The relative enhancement of
model use in decision making with these four types of research investments,
as well as their different time horizons, are represented in Figure 13.2.
The horizontal axis of this graph obviously has a very crude scale, which in
reality depends on several factors. The vertical axis gives some arbitrary
measure of how much the use of models is enhanced with a given amount
of resources. By “enhancement,” we mean an increase in the efficient and
productive use of ecological models in environmental decision making.
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Thus, the figure is not meant to be predictive; it is simply a conceptual illus-
tration of the effectiveness of various research and educational investments
discussed in this paper.

In summary, we believe that, in the short term, the most efficient way to
enhance the use of models in environmental decision making is through the
education of environmental managers in workshops and the training of
technical personnel by Web-based courses. In the medium term, model use
can best be enhanced through the application of existing models to specific
cases. In the long term, manifold opportunities exist for developing new
modeling approaches by linking or integrating existing types of models.
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14.1 Introduction

Modern society is driving changes in a number of ecological, political, and
economic systems that are interacting in complex and often unpredictable
ways with potentially disastrous consequences.These systemic problems are
impossible to address in isolation, requiring an integration and transcen-
dence of existing boundaries of knowledge across the natural and social 
sciences (Costanza et al. 1997). A shift in emphasis is required from study-
ing and managing problems in isolation to studying whole systems and the
complex, dynamic interactions between the parts. Analytical models can
play a crucial role in organizing and synthesizing knowledge about these
complex systems.

Modeling is an essential prerequisite for the comprehension of system
dynamics and for choosing among alternative management scenarios. Chal-
lenges facing natural resource managers and decision makers increasingly
occur at broad spatial and temporal scales, requiring the use of mathemat-
ical models to evaluate alternative future scenarios of ecological change.
Model building can also play an important role both in understanding
complex system dynamics and in transcending the compartmentalization of
knowledge by facilitating synthesis and consensus building. Models provide
a common language and conceptual framework to organize knowledge and
make sense of a complex world.

Although some management questions can easily be addressed with the
aid of existing models (see Chapter 13, this volume), complex systems
demand new complex models and modeling processes.Yet, despite the great
need for improved model development and the substantial advances in eco-
logical modeling that have been made in the past two decades, analytical
modeling has not achieved its potential in environmental decision making.
Significant investments are needed to develop the potential role of ecolog-
ical modeling in the management of our natural resources.

An effective way to expand the role of ecological modeling in natural
resource management involves education. A greater understanding of the



goals, uses, and benefits of modeling by managers, scientists, stakeholders,
and the public must be accomplished for modeling to be incorporated and
applied. Also, a concerted effort must be made to increase the effectiveness
of communication among modelers, scientists, stakeholders, managers, and
the public. Managers must be able to explain their needs to modelers, and
modelers must be able to explain their results effectively to managers. This
paper focuses on four areas of education needed to facilitate the applica-
tion of ecological modeling in earth-systems management: the education of
(1) managers and decision makers, (2) students, (3) scientists and modelers,
and (4) stakeholders.

14.2 Educating Managers and Decision Makers

Two primary areas of needed investment are communication to and edu-
cation of on-the-ground managers and decision makers (i.e., those who
influence resources allocated to these managers). Most managers and 
decision makers have only a vague understanding of the importance and
capabilities of ecological models to aid in management decision making. In
fact, many managers view models as complex black boxes that can only be
understood and used by technicians, scientists, and mathematicians. In some
cases, these perceptions are correct. However, ecological models range in
complexity and purpose. Many models and their results, regardless of 
how complex or simple, can often be used to inform decisions with proper
assistance and interpretation (Starfield 1997).

Thus, to increase the use and effectiveness of ecological models in man-
agement, managers and decision makers must be educated about model
value and usability. Several issues are of particular importance, including

• Relevance and importance of modeling
• Sensitivities and uncertainties of models
• Available models and methods
• Methods for educating managers and decision makers

14.2.1 Relevance and Importance of Modeling
Managers and decision makers need to understand the relevance and
importance of modeling. An ecological model is a conceptual or mathe-
matical representation of a natural phenomenon. Ecological models are
abstractions or simplifications of the real world that portray the dominant
components and key processes. Typically, ecological models define rela-
tionships among the parts of an ecological system and the dynamic pro-
cesses that change and influence these parts (e.g., states and transitions).
These relationships are the basis on which one can predict changes in system
behavior or component pieces over time in response to external forces.

Models perform a variety of functions. Ecological models are excellent
tools for formulating questions about the behavior of an ecological system
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and potential threats to system integrity (Lauenroth et al. 1998). Increased
understanding of system behavior resulting from model predictions 
and exploration can be very useful in guiding management decisions. For
example, simulation results from a spatially explicit, cell-based model of
vegetation and fire dynamics at Eglin Air Force Base in Florida helped
natural resource managers understand that current and planned fire man-
agement would not maintain the desired extent of longleaf pine (Pinus
palustris) habitat across the base (Hardesty et al. 2000). The model showed
that, after a period of 50 years, many primary longleaf pine habitats would
be converted to hardwoods (mainly Quercus laevis) and sand pine (Pinus
clausa). Managers realized from these predictions that prescribed fire man-
agement needed to be doubled to maintain and restore the desired amount
and quality of longleaf pine habitat. Moreover, the model allowed managers
to select and implement an adaptive approach that promised to reduce
greatly the per-acre cost of burning while maximizing desired ecological
effects (J. Hardesty, The Nature Conservancy, personal communication,
November 2001).

Models also document and record major assumptions and current under-
standing and help organize our knowledge about a particular ecological
system or process (Maddox et al. 1999). Developing a simple conceptual
model of the koa/’ohi’a (Metrosideros polymorpha) mesic forest on the
island of Hawai’i, has helped The Nature Conservancy scientists and 
on-the-ground practitioners articulate and document dominant system
dynamics and understand key processes and threats to these forests (S. Gon,
The Nature Conservancy, personal communication, October 2001).The con-
ceptual model also incorporated potential conservation and management
strategies that could be used to reverse the current trend of unchecked
degradation. Such conceptual models and the information contained within
them provide a powerful communication tool for both managers and key
stakeholders.

14.2.2 Sensitivities and Uncertainties of Models
Ecological models, however, are not a panacea for solving every manage-
ment problem or answering every question, and managers and decision
makers must understand the sources of variation in a model [e.g., Reed et
al. (1998)]. Models are a means of integrating data to more comprehen-
sively understand complex ecological dynamics. Managers must realize 
that models are not answers in and of themselves. They are useful tools 
for organizing and communicating ideas, synthesizing current understand-
ing and data, developing management goals and objectives, elucidating
unknowns, and generating hypotheses. In the best of circumstances, they
provide a glimpse into the future to help guide present decisions [e.g.,
Gustafson et al. (2000)]. Users and managers must exercise caution in inter-
preting model results and in using resulting information to make decisions.
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Model results should be used to support and guide decisions rather than to
dictate decisions.

Models typically have significant uncertainties associated with their
results and output. Uncertainties in the input data are sometimes explicit
and obvious. Often, however, model uncertainties are not recorded or are
unknown and unstated. Sidebar 14.1 gives an example of how information

266 Thomas P. Maxwell et al.

Figure 14.1. The RAMAS Red List dialogue for entering an uncertain value.
In this example, the extent of occurrence for Grevilla caleyi (an Australian
shrub) is entered as a best estimate of 6km2 and a plausible range of 4 to 
7km2.This uncertainty is represented as a triangular fuzzy number [Data from
Akçakaya et al. (2000)].

Sidebar 14.1
Propagating uncertainty with RAMAS Red List

RAMAS Red List version 2.0 implements threatened-species criteria
of the International Union for the Conservation of Nature (IUCN)
(IUCN Species Survival Commission 2001). Those criteria constitute
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rules for assigning species into categories representing different levels
of threat.The IUCN rules are based on such characteristics as number
and distribution of individuals, fluctuations and decline in abundance
and distribution, and risk of extinction. These characteristics are used
as input data; the output is a classification into one of the categories,
such as critically endangered, endangered, vulnerable, near threat-
ened, or least concern. These threatened-species categories are used
in the Red List of Threatened Species (www.redlist.org) and provide
an easily and widely understood method for highlighting those species
under higher extinction risk to focus attention on conservation meas-
ures designed to protect them. The categories are widely recognized
internationally, and they are now used in a whole range of publica-
tions and listings produced by the IUCN as well as by numerous 
governmental and nongovernmental organizations (NGOs).

The software package RAMAS Red List (Akçakaya et al. 2001)
implements the rules as used by the IUCN and allows the user to
explicitly incorporate uncertainties in the input data. Input data,
such as the number of mature individuals, can be specified either as a
number or as a range of numbers, or as a range of numbers plus a best
estimate (Figure 14.1). The RAMAS Red List propagates the uncer-
tainties by using fuzzy arithmetic [see Akçakaya et al. (2000) for the
details of the method of propagating uncertainty]. Depending on the

Figure 14.2. The RAMAS Red List result for Grevilla caleyi. The status 
is uncertain and includes both “critically endangered” and “endangered”
categories, reflecting the uncertainties in the input data [see Akçakaya et al.
(2000)].



about uncertainties can be maintained in an analysis. Uncertainty analysis
indicates the influence of a parameter, given the actual variation it repre-
sents, on the output variable. Sensitivity, on the other hand, is the degree to
which the model outcome depends on the variability of one parameter.
Thus, uncertainty analysis complements sensitivity analysis. Identifying the
sources of uncertainty in a model helps a user know when the limits of the
model’s applicability have been reached. Such analyses are designed to shed
light on the sources of variation of model output. Managers and decision
makers must be aware of the importance of this type of information and
be advised about how to interpret and use model results given sensitivities
and uncertainties. Although ecological models have sensitivities and uncer-
tainties, knowledge of these sources of variation can serve to enhance the
use of a model and its results.

268 Thomas P. Maxwell et al.

uncertainties, the resulting classification can be a single category or a
range of plausible categories (Figure 14.2). The range of categories
relects the uncertainty in the input data. Results for a set of species
can be viewed together (Figure 14.3), allowing a comparison based on
the threat category as well as on the uncertainty of the results.

Figure 14.3. The RAMAS Red List result for several species. In some cases,
the status is uncertain and includes more than one threat category. In other
cases, there is no uncertainty in the status, and the species is assigned to only
one category.



Using existing models and developing new mathematical models not only
elucidate important patterns and processes in natural systems, but may also
highlight the variety of challenges in addressing real-world problems facing
natural resource managers. An important challenge to effective environ-
mental decision making is the ability to evaluate levels of uncertainty in
model predictions. Taylor et al. (2000) underscore the need to incorporate
uncertainty in management models, and this important component in eco-
logical modeling is often overlooked.

In environmental management applications, models that do not effec-
tively quantify or communicate uncertainty in their outputs may lead to
decisions that produce unintended results. On the other hand, these models
may simply lead to management inaction because relative risks cannot be
evaluated and, therefore, no single scenario can be demonstrated to be
better than another (Akçakaya and Raphael 1998). Hence, models that do
not adequately quantify uncertainty in their output undermine their utility
as effective management tools.

The software RAMAS Red List: Threatened Species Classifications
Under Uncertainty is a classroom example that highlights the importance
of uncertainty propagation within an applied model (Akçakaya et al. 2001).
Users can explicitly incorporate uncertainties in the input data, allowing
those uncertainties to propagate through the model, affecting the final clas-
sification of particular threatened species (see Sidebar 14.1). Such models
clearly demonstrate how the predictive power of models hinges on the
robustness of the input parameters, how managers must evaluate model
outcomes in light of such uncertainties, and how models may direct future
sampling protocols and monitoring programs.

14.2.3 Available Models and Methodologies
Modeling is a powerful tool for scientific exploration with extremely diverse
applications that span ecological models ranging from conceptual to math-
ematical to simulation. For example, ecological models are often simple
conceptualizations consisting of narrative descriptions, schematic dia-
grams, and/or box-and-arrow flowcharts. They can also consist of simple or
complex numerical equations, graphs, or computer algorithms forming the
basis of a dynamic simulation model. This latter group of models varies
greatly. Computer simulations include, for example, models of popula-
tion viability, forest succession and disturbance, fires, animal habitats 
and dispersion, wetland and river dynamics, and whole-ecosystem 
biogeochemistry.

To increase the effective use of models in management, managers and
decision makers need to be introduced to the plethora of available models
and methods like those discussed in this book. Often, they also need to be
assisted in choosing the type of model that would best help them under-
stand their system and guide their management decisions. In outlining and
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exploring the scope of a problem with managers and stakeholders, devel-
oping a simple conceptual box-and-arrow diagram of an ecological system
is generally more appropriate and helpful than developing a complex 
computer simulation model. Sometimes modelers are too quick to build
comprehensive, complex simulation models when managers need simpler
models to help organize their thinking and to communicate ideas and
assumptions (Starfield 1997). In other instances, models may not be useful
because they fail to adequately represent necessary details of the problem.

Managers primarily need to understand

• Data requirements to build and test different kinds of models
• Appropriate spatial and temporal scales needed to answer their man-

agement questions
• Tradeoffs between model complexity and generalization for their 

applications
• Tradeoffs between using resources to develop models versus collecting

more field data (Reed et al. 1998)

Developing this understanding requires that managers and decision
makers be knowledgeable about the time and resources needed to build
and use ecological models. Time and resources will vary with the type and
purpose of the model and the level of complexity and accuracy needed for
the project. Providing accurate and reliable cost estimates for the develop-
ment and use of models will be key in increasing the use of models in 
management.

14.2.4 Methods for Educating Managers 
and Decision Makers
Methods to educate managers and decision makers need to be flexible 
and appropriate for different needs and different people. For example,
education of on-the-ground managers will probably occur under different
circumstances and using different methods than for mid- and high-level
decision makers. Decision makers may require less technical information
and more information on capabilities, limitations, and costs. Decision
makers will likely be educated and informed by the managers themselves.
Thus, managers will need to become articulate spokesmen for allocating
resources for modeling. Case studies that illustrate model capabilities and
how models have helped inform management decisions can be a powerful
method for educating and persuading decision makers [e.g., Tester et al.
(1997); see Table 13.2 in Chapter 13, this volume).

In contrast, on-the-ground managers and practitioners may demand
more detailed knowledge of models ranging from some of the technical
aspects to cost and resources. Resource managers often are essential part-
ners in determining the most useful output of models. In some circum-
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stances, managers may become the final users of the model and may need
training on running the model and interpreting results. Managers will likely
need to be educated about the ecological system and the ways it can be
expressed mathematically by modelers and scientists. Some managers will
be self-educated, but most are focused primarily on day-to-day activities
and have little time or interest to learn about models. It often takes an influ-
ential advocate to educate managers about the value and importance of
modeling. Again, case studies can be particularly important.

In addition, managers must be able to articulate their needs and ques-
tions. They must be presented insights about how to formulate appropriate
model questions, how to help modelers focus on the core issues, how to cope
with model limitations and uncertainties, and how to appropriately inter-
pret and use model results.

14.3 Training Modelers and Scientists

Ecological modelers need to become more effective in the process of 
environmental management, a task that demands both scientific and com-
munication skills. Communication skills are often overlooked in preparing
modelers for a career in environmental management, yet communication is
a crucial aspect of collaborative problem solving.

In real life, modelers usually have to develop the modeling tool within
the constraints of the project rather than having the luxury of determining
the problem, goal, or timeline themselves. They must clearly and immedi-
ately understand:

• What is the goal of the assignment?
• Who needs the model?
• How will it be used?
• What are the applicable timelines?
• What management actions are being tested?

For many modelers, particularly those with less applied backgrounds,
understanding the constraints of a problem is often deemed a lower prior-
ity than their own independence and creativity. What could have been an
important applied management tool may become an irrelevant theoretical
study or a creative solution to the wrong problem.As a result, models result-
ing from such efforts are seldom used. Misapplied models also become a
disincentive for policy or decision makers to incorporate models into future
management decisions. Therefore, modelers must improve their under-
standing of the problem to deliver an effective, well-targeted product. This
task involves both effective listening and the ability to ask appropriate
questions to clarify the needs and constraints of the users.

Modelers must also improve their ability to communicate their methods
and results to policymakers and stakeholders who typically have little 
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technical background. Most modelers have experience making technical
presentations to technical audiences, but few have substantial experience
making technical presentations to nontechnical audiences. The surest way
to make an ecological modeling effort irrelevant is for the modeler to be
incapable of explaining the results to policymakers. Intuitively, scientists,
and in particular modelers, who can communicate technical results effec-
tively to nontechnical audiences will be more likely to find their modeling
efforts more greatly relied upon and used. One can improve one’s public
presentation skills by participating in Toastmasters International, joining an
amateur theater group, speaking to Rotary Clubs and other organizations,
taking a public-speaking class at a community college, or getting a mentor
who is a good public speaker.

Environmental scientists who do not have a modeling background could
benefit from additional training to improve their understanding of the uses
and limitations of specific models and modeling in general. Most impor-
tantly, these scientists must understand the potential role of models in an
environmental management program. Modeling is often a team process.
Modelers rely on the assistance and guidance of scientists who are experts
in the system being modeled. Usually, the expert scientist describes to the
modeler how the system works, and the modeler creates a computational
analog of the system. In some cases, managers and stakeholders may be
involved in the modeling process. Together, the team decides what is 
feasible or infeasible given various fiscal, technological, logistical, physical,
or biological constraints. For those scientists who do not understand the
process, modeling is intimidating and something to be avoided. They likely
assume that everyone working on a model must know how to program a
computer and must know complex mathematics. It is the job of the modeler
to work with these aspects of the project. In many modeling projects, the
expert scientists do not even see the programming code or complex math-
ematics. When nonmodelers understand the purpose of modeling and the
role they would likely play, modeling is no longer intimidating. In fact,
it often becomes interesting and exciting.

There are two main benefits to this education. First, the nonmodeling sci-
entists and stakeholders are often in a position to identify projects where
modeling can play an important role. Second, their willingness to partici-
pate in the process improves the productivity of the modeling team and
makes life easier for the modeler. In many cases, they are also in the best
position to explain the results to the policymakers. Educating this group
during the course of the development effort would greatly improve the use
of ecological models in management.

How can we educate current practitioners? There are many ways that this
can be accomplished.Web-based training is becoming very popular because
it allows individuals to learn at their own pace, on their own time, in their
own location. Workshops are an excellent way to train modelers and non-
modelers, alike. There is a growing trend toward scheduling workshops
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immediately before, during, or after major professional society meetings.
This scheduling takes advantage of opportunities when a large group of
individuals would already be together. Many agencies sponsor training
workshops. For example, the National Conservation Training Center, under
the U.S. Fish and Wildlife Service in Shepherdstown, West Virginia, has
developed a week-long course titled “Introduction to Natural Resource
Modeling.” It is designed to familiarize nonmodelers with the process,
benefits, and limits of resource modeling.

Participation in the modeling process is one of the most effective
methods for educating both modelers and nonmodelers.Agencies and other
management organizations should encourage broad participation in mod-
eling projects, allowing modelers to improve their communication skills and
allowing nonmodelers to familiarize themselves with the process. Inviting
scientists to work on case-study projects with university classes can provide
an enlightening experience for all participants. Students learn by working
with scientists in the field, and scientists are often challenged to rethink and
reorganize their knowledge base so they can present it to an audience that
does not have the full, prior knowledge that they do.

14.4 Training Students

Optimally, student education should develop a balance of skills in analysis,
synthesis, and communication structured around a participatory, problem-
focused, collaborative learning experience. Modeling can play a key role in
this learning process. Students should be well trained in applying models to
link biological processes and management needs. Unfortunately, the incor-
poration of mathematical and conceptual modeling in undergraduate and
graduate student training in this field remains limited.

14.4.1 Synthesis and Creative Problem Solving
Most university science programs emphasize analysis, the ability to break
down a problem into its component parts and understand how each part
functions. Students should augment a solid grounding in analytical tech-
niques with courses, research, and workshops that develop the strategies
and tactics required to achieve synthesis: the ability to put the pieces back
together in a creative way to solve problems. Synthesis complements analy-
sis and is an essential element of any transdisciplinary program, particularly
one that addresses important, global environmental problems (Pickett
1999). Yet, training in synthetic skills is too often neglected in university
science curricula, as is training in effective communication. Scientists must
be able to share their knowledge across disciplines to strengthen their own
understanding, interact with stakeholders to integrate local knowledge and
concerns into their models, and communicate their results to policymakers
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and the broader public. To meet these objectives, university programs
should emphasize integrated analysis, synthesis, and communication.

14.4.2 Systems Thinking and Model Conception
Systems thinking [e.g., Kitching (1983)] and conceptual modeling are criti-
cal starting points for introducing students to the process of model con-
ception and development. However, they remain infrequent components 
of undergraduate biology training or graduate-level applied-ecology course
curricula. The challenge of understanding complex-system behavior and
developing simple models can be great (Hannon and Ruth 1997). The
process of developing conceptual models, however, may help teach prob-
lems and important processes in ecological systems by introducing students
to the process of synthesizing complexity into salient relationships, bound-
aries, and components. Applying conceptual models to real biological sce-
narios is also an important tool in hypothesis formulation and testing, in
determining practical and ecological constraints to a problem, and in assess-
ing an understanding of a system. Constructing conceptual models is a valu-
able step in getting students in ecology and environmental management to
become systems thinkers. This process can provide a critical foundation for
ecological practitioners and mathematical modelers to define common
vocabularies and to master the process of problem definition. The process
of deriving conceptual models can also help build consensus and common
understanding among students, which not only is relevant to understanding
the biological system, but also is a critical element in collaborative research
across disciplinary boundaries common to many management problems
(Walters 1986; Carpenter 1992; Jackson 2000).

14.4.3 Quantitative Modeling
In addition to conceptual modeling, quantitative training in undergraduate
biology and ecology curricula is also generally weaker than that in the phys-
ical sciences. Quantitative concepts and exercises should be integrated into
ecology curricula rather than remaining isolated in mathematical courses.
Such integration would highlight the importance of quantitative solutions
to ecological questions. At the same time, ecological examples should be
more commonly applied in mathematical training to underscore the appli-
cability of mathematical skills to contemporary management problems.
Such integration both emphasizes the utility of using quantitative methods
in ecological decision making and underscores how mathematical models
can enhance biological understanding (Gross 2000).

A number of software packages are geared toward introducing students
to the process of quantitative model building, from conception and con-
struction to verification and validation [e.g., Akçakaya et al. (1999);
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Hannon and Ruth (1997); Jackson et al. (2000)]. For example, Madonna,
ModelMaker, SimuLink, PowerSim, and STELLA are icon-driven pro-
grams useful for introducing students to the basics of quantitative model-
ing, allowing the student to build a quantitative model from start to finish.
Such software simplifies model building by generating equations defined by
constructing graphical relationships between input parameters in an eco-
logical system of interest (Costanza 1987). In some cases, simulations 
displayed as graphs, tables, or animations can be automatically generated
from mathematical formulae. These programs are valuable and popular in
teaching environments because simple quantitative models can be easily
constructed to illustrate diverse phenomena, from simple logistic growth 
to percolation models of landscape pattern, to movement of phosphorus
through a salt marsh, to complex predator–prey relationships. Excellent
software packages, such as RAMAS and Populus, or texts, such as the
Applied Population Ecology (Akçakaya et al. 1999) and A Primer of
Ecology (Gotelli 1998), introduce basic quantitative approaches specific to
population dynamics and conservation biology with applied, interactive
examples. In addition, simple spreadsheet programs, such as Excel, can also
be effectively and creatively used to construct basic quantitative ecological
models, including simple spatial process models (Weldon 1999; Gergel and
Reed 2001). Although many of these programs may be limited to relatively
simple models, they provide tractable, creative segues into the sometimes
daunting world of quantitative modeling by removing the hurdles of arcane
programming languages (Jackson et al. 2000). There is a broad array of 
ecological models and texts that can be useful in integrating a variety of
modeling exercises into the classroom, which may increase quantitative 
literacy and competence critical to effective environmental management
[e.g., Alstad (2001); Bossel (1994); Brown and Rothery (1993); Gergel and
Turner (2001); Hannon and Ruth (1997); Othmer et al. (1997); Starfield 
et al. (1990)].

14.4.4 The Process of Modeling and Environmental
Decision Making
Abundant research suggests that transdisciplinary education is best pursued
not in the abstract but by means of applied problem solving [e.g., Grigg
(1995); Scott and Oulton (1999); Wheeler and Lewis (1997)]. This approach
forces students and faculty to integrate and synthesize the methods and
insights of the various disciplines. Rather than mastering a single set of tools
to apply to all problems, students should learn to select and apply the tools
required by the specific problem they address in their research. Modeling
toolkits can facilitate this synthetic approach to learning (see Chapters 11
and 12, this volume). Providing real-life scenarios in classroom modeling
exercises is critical.
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It is also important that students have realistic expectations of how 
the process of environmental decision making works and, most importantly,
the role of science and scientists within the process (Berkson and Harrison
2001; Berkson and Harrison 2002). Students must understand how they 
will fit into the process so they can enter the field as effective and produc-
tive players. Many of our university science programs teach how the 
decision-making process could work. Students are taught that decisions are
based on best available science and the recommendations of scientists. In
reality, however, decisions are typically based on incomplete information
and a combination of scientific, political, economic, and social factors. Stu-
dents need to be taught how the process does work, not how it could work
based on best-case scenarios. This learning may be best achieved by teach-
ing synthesis and integration and by providing examples of the multiple
roles that models play in the environmental-decision-making process.
The template for a course that provides exposure to the actual process of 
environmental decision making has been developed and is currently 
in use (Berkson and Harrison 2001; Berkson and Harrison 2002) (see
Sidebar 14.2).

This practical education in real-world environmental modeling can be
greatly enhanced by linking students with agencies in developing modeling
projects for class. This interaction not only exposes students to the com-
plexity of real-life management issues but may also provide managers with
useful products at the end of the semester. In addition, application of real-
life scenarios during modeling training may force modelers to produce 
creative solutions within the temporal and financial constraints of the real
world.

14.4.5 Communication and Interpretation of Models
Another important element in student training is effective communication
and interpretation of models to scientists, land managers, decision makers
and the public. Collaborative, problem-focused learning environments
require sharing knowledge across disciplines, interaction with multiple
stakeholders, and the communication of results to policymakers and the
broader public.Thus, collaborative learning environments can provide a key
component in the education of students.

Modeling exercises should incorporate written and oral presentations to
groups that require the description of the model development and the eval-
uation of the results, tailored to the ecological and technical background 
of particular groups. Other techniques, such as role-playing exercises, are
useful exercises in learning how to effectively communicate across institu-
tional boundaries. For example, students can give testimony based on their
model results in a public hearing or can act as a decision maker describing
the pertinence of model results to other modelers, environmentalists, field
biologists, or a regulatory agency.
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14.4.6 Atelier Courses
Another approach that has proved effective in student education is to
develop graduate-level “atelier” style workshop/field-courses that integrate
transdisciplinary graduate education and environmental problem solving.
The atelier approach is being developed by the University of Maryland
Institute for Ecological Economics. “Atelier” is French for “artisan’s work-
shop,” and the method employs a combination interdisciplinary workshop,
case study, design studio, and guest lecture system rolled into one. Each
workshop focuses on a specific environmental problem selected and
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Sidebar 14.2
Teaching model development and implementation

Promoting effective communication skills is an important component
of the “Systems Approaches to Natural Resource Modeling” course
offered to graduate students in the Department of Fisheries and
Wildlife Sciences at the Virginia Polytechnic Institute and State Uni-
versity. This course is an introductory modeling course that teaches
students the goals, processes, applications, benefits, and limitations of
natural resource modeling. Students learn by participating in the
modeling process, from defining the goals of a model related to their
dissertation topics, to building a prototype of the model, to present-
ing their results.

At the end of the class, each student gives two presentations of 
the model’s results. One presentation is meant to be a formal techni-
cal presentation, similar to one that might be given at a professional
society. Students are expected to present the methods and results 
to their fellow students as peers. The second presentation is meant to
be a presentation to a decision maker, to someone without a strong
technical background who would need to apply the results of the
model.

The students have very little trouble with the technical presenta-
tion. Most have given many scientific presentations previously. It is
quite different with the nontechnical presentation. They are given 10
minutes to tell the room full of “decision makers” the bottom line of
their model in terms that the decision makers will understand and in
a way to keep them interested. The students say that this is one of the
toughest parts of the class. But it is one of the most important. When
the students get to the real world, they will be giving many nontech-
nical presentations, and if they want to be effective, they need to give
them well.



researched in close consultation with the relevant stakeholders. The intro-
ductory and analytical materials for the workshops can be delivered via a
Web-based educational module to economize on precious field time. The
ateliers then move to the field, to study the problem first hand and to
develop the tools and methods necessary to tackle it. Ateliers emphasize
peer-to-peer interactions, where all participants share their disciplinary 
perspectives in an effort to forge an appropriate synthetic approach to the
problem. The result is practical experience in the integrated application of
methods and insights from diverse disciplines to the resolution of a specific
problem. Along the way, they build the skills in interdisciplinary synthesis
expected from student dissertations. Participants develop communication
skills by sharing their perspectives with each other, by communicating
research results to the group and the stakeholder community (including rel-
evant policy makers), and by producing publication-quality articles. Other
outcomes of this approach include experience in teamwork, knowledge
sharing and problem solving desirable to future employers, and concrete
steps toward resolving an actual environmental problem.

The student’s learning experience in applied environmental problem
solving can be enhanced by arranging internships with governmental,
international, or nongovernmental organizations. These internships will
provide the students with insights and approaches from outside academia,
as well as experience, professional skills, and valuable future contacts.
Universities should develop strong ties with governmental environmental
management agencies and NGOs so that student cooperation can extend
beyond internships toward collaboration on mutually beneficial research
and mentoring.

14.5 Educating Stakeholders: Consensus Building

Involving the range of parties interested in or affected by the policy deci-
sions in the modeling process builds confidence in the models developed.
The collaborative process fosters consensus about the appropriateness of
the model’s assumptions and results and promotes compliance with the
policies derived from the model. Interactions between managers, modelers,
and scientists can help keep the program firmly grounded in relevant
observable biology. Managers are much more likely to trust and understand
a model that they helped develop.

Modeling can play an important role in breaking down the gap between
expert knowledge and the public. Information in the modern world is com-
partmentalized and is often controlled by various isolated technical elites.
This fractionation allows experts from various fields to hold contradictory
opinions and the public to hold inconsistent and volatile opinions. Coming
to consensus is the process of confronting and resolving these inconsisten-
cies by breaking down the barriers between compartments of knowledge
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and information. The process of modeling can serve this consensus-
building function. It can help to build mutual understanding, solicit input
from a broad range of stakeholder groups, and maintain a substantive dis-
cussion among members of these groups. What is required is a new role for
modeling as a tool in building a broad consensus not only across academic
disciplines but also between science and policy (Costanza and Ruth 1998;
Yankelovich 1991; Weisbord 1992).

14.5.1 Modeling and Consensus Building
The consensus-building function of the modeling process can be facilitated
with a three-stage approach to collaborative management (Costanza and
Ruth 1998). The first stage uses collaborative development of a high-
generality, low-resolution scoping and consensus-building model to involve
a broad representation of stakeholder groups affected by the problem.
Graphic modeling tools make it feasible to involve a group of modeling
novices in the construction of relatively complex models, as long as a few
people competent in modeling act as facilitators. The projected graphical
representation of the model can serve as a blackboard for group brain-
storming, allowing students, educators, policymakers, scientists, and stake-
holders to all be involved in the modeling process. Using the model as 
the topic of group discussion allows investigation of new scenarios and
testing of new ideas. The model develops and evolves through this collab-
orative process of exploration. When applied in this manner, the process 
of creating a model may be more valuable than the finished product
because most of the learning occurs during the collaborative development
process.

The second stage of building consensus uses models that are more
detailed and that include realistic attempts to replicate the dynamics of the
complex system of interest. This stage involves collecting large amounts of
historical data for calibration and testing and then performing a detailed
analysis of the uncertainties in the model. It may involve traditional
“experts” and is concerned with analyzing the details of historical devel-
opment of a particular system with an eye toward developing specific sce-
narios or policy options in the next stage. It is still critical to maintain
stakeholder involvement and interaction at this stage. This involvement
may include the exchange of models and regular workshops and meetings
to discuss model progress and results.

The third stage of building consensus with management models is
focused on producing scenarios and management options in the context of
adaptive feedback and monitoring.This stage is based on the earlier scoping
and research models. It is also necessary to place the modeling process
within the larger framework of adaptive management (Holling 1978) if
management is to be effective. Adaptive management views regional policy
exploration as experiments, where interventions at several scales are made
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to achieve understanding and to test policy options. This perspective means
that models and policies based on them are not taken as the ultimate
answers but rather as guiding an iterative experimental process with the
regional system. Emphasis is placed on monitoring and feedback to check
and improve models rather than on using models to obfuscate and defend
a policy that does not correspond to reality. Continuing stakeholder
involvement is essential to adaptive management (Holling 1978).

14.5.2 Computational Methods and Toolkits
The collaborative scoping and consensus-building process can be facilitated
by the use of a wide range of modeling tools. In graphic-icon-based tools
(see Chapter 8, Section 8.4.1.1, this volume), the structure of the module is
represented diagrammatically so that new users can recognize the major
interactions at a glance (Costanza 1987). One of the main strengths of such
tools is their ability to enable scientists and decision makers to quickly and
easily build “scoping models” that focus and clarify their mental models.
Running these models enables visualization of the dynamic consequences
hidden in the modelers’ assumptions and understanding of a system. With
relative ease of use, these graphical programming tools offer a powerful
method for investigating the workings of complex systems (Hannon and
Ruth 1997).

Building on the initial scoping models to develop effective research and
management tools often requires the inclusion of spatial interactions in the
model. This phase of the modeling process usually requires more sophisti-
cated tools such as a geographic information system (GIS). In cases that
involve effects on or management of landscapes or habitats, GISs can serve
two distinct but related roles. First, a GIS can improve communication and
understanding among the stakeholders by allowing a way to visualize the
options or impacts in a spatial context.Also, it relates the actions and results
to a known, concrete, familiar place to which the stakeholders can relate.
Second, a GIS can function as an analytical tool that is an integral part of
the modeling process for addressing spatially explicit questions.

A good example of a modelers’ toolkit that integrates disparate appli-
cations into a unified, seamless environment is the Spatial Modeling 
Environment (SME) (Maxwell and Costanza 1997). The SME links the
STELLA modeling tool with advanced computing resources, allowing users
to easily develop their scoping models into a high-performance spatial 
modeling and visualization environment. It is being applied jointly with
state, local, and federal management agencies as an integrated, adaptive
framework for managing ecological–economic systems. Current application
areas include the Patuxent River watershed (Voinov et al. 1999) and the
Baltimore metropolitan area.

Developing an awareness of the potential of and limitations of available
computational hardware and software and training potential users are
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important aspects of the education process for everyone involved in envi-
ronmental management. These tools can open the simulation arena to a
much wider set of participants and can allow analytical modeling to play a
key role in addressing complex management problems that would other-
wise be intractable.

14.6 Conclusions

To address the substantial challenges facing our society, an integrative,
transdisciplinary approach to environmental management must be
adopted. The ability to build abstract representations of reality (models)
that are useful in understanding and solving complex problems is at the
core of this new approach. Because of the complexity of linked ecological
and socioeconomic systems, a sophisticated, pluralistic, and participatory
approach to modeling is becoming increasingly important. Modeling is
essentially a form of synthesis that allows the emergent understanding to
be tested, communicated to others, and further developed to draw new 
conclusions and insights.

A significant investment in education and training of all involved groups
is necessary to realize the potential of environmental modeling in the man-
agement process. Managers and decision makers must be educated about
the value of analytical modeling, particularly the relevance and importance
of modeling, limits and uncertainties of models, and available modeling
approaches. Modelers and scientists will benefit from training in communi-
cating their results to nontechnical audiences, understanding the needs and
constraints of the environmental management process, and facilitating the
collaborative aspects of the modeling process. Students should augment a
solid grounding in analytical techniques with courses, research, and work-
shops that develop their capabilities in synthesis and creative problem
solving, systems thinking, and quantitative modeling methodology. They
should be facile in communicating with interdisciplinary and nontechnical
audiences. Other stakeholders can be included in a collaborative modeling
process, which can help build mutual understanding; solicit input from a
broad range of participants; and maintain a substantive interaction among
managers, scientists, modelers, and stakeholders.

Investment in targeted educational initiatives may be the quickest and
most cost-effective way to facilitate the application of modeling to envi-
ronmental management. This conclusion is particularly evident for small-
scale, local problems that can be effectively isolated from the sociocultural
context in which they are embedded. These initiatives can help build a
common understanding of the goals, uses, and limitations of models among
managers, policymakers, modelers, and stakeholders and can facilitate 
effective communication among these groups. Modeling toolkits that
support graphic model interfaces and visualization of model output can play
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a crucial role in enabling communication, collaboration, and consensus
building. We believe that major improvements can be made quickly in this
area if desired. To elevate the role of ecological modeling in the natural-
resource-management process, it is critical to teach those involved how 
ecological models operate and why they are useful.

Other important research and development investments are necessary if
modeling is to play an integral role in addressing the large-scale, intercon-
nected environmental problems facing humanity, such as global warming,
resource depletion, and biodiversity loss. Addressing these complex prob-
lems will require new tools and infrastructure to enable collaborative 
modeling across a large, distributed, interdisciplinary group of experts.
Many important modeling applications are intractable without toolkits that
support graphical, modular, and hierarchical model development and inte-
grated visualization of model output. Virtual reality hardware and software
may play an important role in the construction of hypothetical worlds for
scenario analysis. High-performance computing can make important con-
tributions in the simulation of complex environmental systems, but it will
rarely be used unless the modeling infrastructure seamlessly and transpar-
ently integrates the investigators into the high-performance domain. Model
sensitivity analysis can determine the most pressing data collection needs.
Further development of data standards and metadata is crucial. Improved
financial support for the development and application of ecological models
and additional funding for basic research leading to new modeling ap-
proaches is needed, as well.

The process of environmental modeling should be framed not as an
oracle prescribing a specific solution to a problem but as a learning ex-
perience for all involved. This education process develops an understand-
ing of the dynamics of the managed system and its most probable responses
to management interventions. It may also facilitate the exploration of policy
options, the synthesis of disparate knowledge sources, consensus building,
conflict resolution, and scenario generation and evaluation. Enabling this
educational process will require significant investments. Top priority should
be given to investments in targeted educational initiatives to inform man-
agers and stakeholders of the potential and limitations of the modeling
process and to train scientists and modelers in facilitating the educational
process. Opening the educational process to a wider range of participants
and enabling its collaborative aspects will require additional investments in
the modeling tools and toolkits, improved databases and standards, and
modeling methods described in other chapters in this volume.
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What in the World Is Worth Fighting
for? Using Models for
Environmental Security

Wendell Chris King and Virginia H. Dale
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15.1 Introduction

Dramatic human-induced changes occurring in our environment adversely
affect the Earth today and, if left unabated, will seriously impact the safety
and security of our world in the future. A burgeoning population and its
demands for natural resources, renewable and nonrenewable, are leading
this assault on the environment. Some consider technology a coconspirator
in the degradation of the environment. Certainly, technology has evolved
to the point that it can do great harm; conversely, technology can also heal
and mitigate.

Conceptually, threats to peace and security associated with environ-
mental issues have been collected under the term environmental security.
Environmental security is a process for effectively responding to changing
environmental conditions that have the potential to reduce peace and 
stability in the world and thus affect a country’s national security. Accom-
plishing national environmental security goals requires planning and the
execution of programs to prevent and/or mitigate anthropogenic adverse
changes in the environment and to minimize the impacts of potential 
environmental disaster or ecoterrorism (King 2000).

The concept of environmental security is not new, particularly for the 
academic community where the environmental movement began. Many 
of the eminent scientists who advanced our understanding of the Earth’s
environment were also the “doomsayers” (as they were characterized at 
the time) who predicted catastrophic environmental consequences as a
result of uncontrolled human activity. Norman Myers (1986), an early 
environmental security scholar, expressed the relationship between the
environment and world stability well when he wrote,

Hence national security is not just about fighting forces and weaponry. It relates 
to watersheds, croplands, forests, genetic resources, climate and other factors that
rarely figure in the minds of military experts and political leaders, but increas-
ingly deserve, in their collectivity, to rank alongside military approaches as crucial
in a nation’s security.



An unfortunate sideline in the early work on environmental security was
that, as the concept developed, it was couched in the old civics debate of
whether the government should spend its money on “guns or butter.” In
hindsight, it certainly appears that Myers was on target, at least in identi-
fying future environmental security issues. It is also understandable that
mainstream security leaders did not embrace his concepts in national 
security thinking, considering Myers’ view that reduced military spending
was the appropriate source for funding environmental security initiatives.
This rejection may be one reason that environmental security never
received full consideration within security policy discussions.

Today, the environmental security debate flourishes among social and
political science scholars who work to redefine security, define environ-
mental security, and predict the political and social responses to environ-
mental scarcities. Homer-Dixon (1991; 1994), Levy (1995), and others 
have helped develop and focus the early work of Myers (1993) and other
scholars into a better understanding of how environmental issues will
impact security in the future. Debates have centered primarily on defining
environmental security and applying political science approaches to analyze
how developing countries will respond to environmental stress factors.
Although these debates and discussions raise many challenging social
issues, it is not a goal here to enter into that fray.

This chapter is intended to focus on where and how ecological modeling
must play a role in environmental security. Modeling can answer the 
questions posed by strategic analysts if results from ecological models 
are provided in a manner understandable to political scientists and policy
makers.

15.2 Global Environmental Security Issues

The issues selected for this analysis are a compilation of environmental
stresses identified in works published by the U.S. Environmental Protection
Agency (USEPA 1999) and the Army Environmental Policy Institute
(Glenn et al. 1998; Lee 1999). Note that population trend analyses are
included here even though population has not generally been considered
an environmental issue. Specialists in the field of human geography are
making strong arguments that it should be so viewed because humans are
part of the global ecosystem. It is becoming increasingly clear that one
cannot consider environmental security issues without concurrently ex-
amining population trends, particularly in a regional context. For example,
consider the water scarcity issues in several regions of the United States.
Water scarcity is caused by pollution of existing sources, reduction of avail-
able supplies, or increases in demand from either population increases or
per capita consumption. In reality, most cases of regional water scarcity
result from all of these factors occurring at the same time. Clearly then,
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population trends must be examined in predicting water demand and anti-
cipating scarcity issues.

Because population trends are an important variable in nearly all envi-
ronmental security issues, this analysis begins by discussing population
trends on a regional scale. It then proceeds to consider three major environ-
mental areas: global climate change, land-use issues of deforestation and
desertification, and water as a scarce resource. Climate change poses a sig-
nificant risk because it has a high probability of occurrence and a potential
for severe consequences. Results from global climate models are employed
to predict the consequences of anthropogenic changes to the environment
[e.g., Aber et al. (2001); Dale et al. (2001)]. Risk assessment models have
been used to determine the range of impacts [e.g., Sutherst et al. (2000);
Utset and Borroto (2001)]. Further, ecological models assess the synergetic
effects and severity of impacts on specific biomes. Thus, modeling has been
key to identifying climate change as an issue and can be used to explore
effective solutions. Land-use issues are linked in both cause and effect to
climate change. The linkage between water and conflict is already well
established, with the concerns for the future being more fraught with danger
than at any other time in history.

15.2.1 Population Growth
Modeling of human population growth is certainly of interest to national
security analysts. Many estimates exist, with considerable variability in the
upper bounds and predicted rates of growth. One well-accepted model 
predicts the world population will asymptotically approach 12 billion after
2100 (Getis 1998). The concept of “carrying capacity” can focus our under-
standing of the fundamental interrelationship between overpopulation and
environmental security. Carrying capacity is the total population that the
resources of an area can support over an indefinite period of time and is
graphically represented by a leveling off of the growth curve.

From a human perspective, this principle of carrying capacity holds, even
with the marvelous products of human ingenuity. Technology can change
the relative value of human carrying capacity by enabling us to satisfy 
the demands for resources of one region at the expense of another, by
changing efficiency of use, and by providing solutions to many other 
specific problems. However, the number of people any region can support
is finite [and, by extension, the total population the world can support is
limited; Brown and Kane (1994)]. Optimistic philosophies of human activ-
ity espouse the belief that technology can overcome the fundamentals 
of carrying capacity; to date, this belief has not proven valid. The critical
resources of water and energy (food and fuel) are renewable at finite rates
on which technology can have only a minor impact. Ecological models offer
a means to assess ways to manage resources for environmental security
[e.g., Horie et al. (1992); Giampietro et al. (1994); Sahoo et al. (2001)].
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When one considers the concept of carrying capacity in the context of
human population increases, one question immediately arises: What is the
total carrying capacity of the Earth? Will the Earth be able to sustain a
steady-state world population of more than 11 billion people after 2100,
nearly double the current world population?

Answering the question requires considering the spatial distribution of
both people and resources. Where will these 11 or so billion people be
located, and how well aligned will the populations be with essential
resources? Another issue that complicates any analysis of regional or world
carrying capacity is the ability to share or transfer resources effectively.
All great modern cities now operate through a worldwide supply network.
Countries like Japan and the United Kingdom thrive at a very high 
standard of living while providing only a small portion of consumed natural
resources from within their geographic boundaries. Further, no assurance
exists that this transfer process can be sustained over time.

Models provide a way to explore how resource limitation can affect
human population and vice versa. For example, Groot et al. (1998) ex-
amined food-supply capacity at the global scale using a spatially explicit
model based on data for soils, climate, agronomy, and demography. Use of
the model allows decision makers to explore scenarios of food sufficiency
by region and to determine major sources of uncertainty in projections.
Furthermore, models offer a means to evaluate threats to food security, such
as environmental degradation, economic growth, population explosion, and
climate change (Norse 1994). As one example, a model analysis has shown
that deficiencies in pollinator abundance, diversity, and availability can 
have critical impacts on world food supply, security, and trade (Kevan and
Phillips 2001). Similarly, model analysis shows how food consumption 
and trade can be influenced by the threat of mad cow disease in Europe
(Latouche et al. 2000) and Cassava mosaic virus in East Africa (Legg and
Thresh 2000).

15.2.2 Global Climate Change
Strong evidence exists that global climate change in the form of global
warming caused by anthropogenic activity is occurring (IPPC 2001;
Houghton 1994). Driving global climate change is a series of interwoven
phenomena including, but not limited to, deforestation, burning of fossil
fuels, and industrial pollution.Assessing each of these factors independently
in a static model is within our scientific capability today but does not yield
realistic results. Each activity occurs independently at different rates and
concurrently with the natural variability in weather.

The rate of temperature change within the dynamics of greenhouse gas
behavior and natural climate processes is a key area of uncertainty in 
the global warming debate. Several complex computer models of climate
change have been developed and are being continually updated, but each
has proven to have strengths and weaknesses in describing actual condi-
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tions or predicting changes. A wide range of global-temperature-change
predictions exists, but they generally fall in the 0.5 to 6.0°C range. The 
Intergovernmental Panel on Climate Change (IPCC) predicts a 1.4 to 5.8°C
temperature increase by 2100 relative to 1990 (IPCC 2001).

Complex interactions between systems, actions, and counteractions of the
carbon cycle and other processes make it difficult to determine exactly how
atmospheric warming will affect the Earth’s ecosystem. On the basis of our
current understanding of climate and weather, a rise in temperature world-
wide and changes in temperature distribution, spatially and temporally,
will change weather and climate over large areas of the Earth. Higher 
temperatures will produce more evaporation from the oceans, resulting in
increased rainfall somewhere. Higher temperatures over land will increase
evaporation of soil moisture, raise dry-soil temperatures, and melt ice. All
of these factors will combine to change the weather patterns of a particu-
lar region in both frequency and intensity of events. These variations in
weather pattern can, over time, sum to changes in regional climates in many
parts of the world (Watson et al. 2000). For example, locations of grasslands,
forests, and deserts may shift because of evolving climates.

Sea-level rise as a direct response to global warming has been an issue
that has captured considerable public attention, although there are many
other equally important possibilities that must be assessed, particularly in
considering environmental security. On the basis of scientific analysis to
date, the range of sea-level rise is predicted to be between -1 and +6 meters
(King 2000), not a particularly informative range to use in assessing impacts.
However, the factors that enter into this calculation are well defined. First,
warm water occupies a larger volume than cold water, so as ocean surface
temperatures warm because of contact with the warmer air, the volume of
the ocean will increase, resulting in a rise in sea level. The more difficult
factor to calculate is the depth change attributable to warmer air tempera-
tures occurring in regions with snow and ice cover. Uncertainty about
whether and how much ice will melt under different warming predictions
accounts for the wide range in the sea-level-rise estimates. Using the IPCC
(1992) warming estimate as a basis for temperature rise, Houghton (1994)
predicts a 50-cm sea-level rise by the year 2100. The most detailed statisti-
cal analysis of sea rise predicts a 35-cm rise by 2100 as the most likely result,
with a 10% chance of sea rise reaching 65cm, and a 1% chance of a 1-m
rise (Titus and Narayanan 1995). This rise, coupled with natural land 
subsidence in some lowland regions, could have large impacts in several
critical areas of the world, such as Bangladesh and Egypt (Houghton 1994).

There is scientific certainty that changes in weather will affect water and
forest resources, food production, human health, weather events like floods
and other “natural disasters,” and coastal processes, all of which have peace
and security implications. The nature of these impacts is more difficult to
predict than sea-level rise. To realistically predict the impacts of global
climate change, models of future water, food, health, and disturbance 
conditions need to be driven by projected climate scenarios. Table 15.1 
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presents a synthesis of predicted worldwide impacts from regional climate
change based upon IPCC global-climate-change studies, as summarized by
the USEPA (2000a,b). As indicated in the table, regions relying on single-
crop agriculture and subsistence farming, such as tropical Asia and Africa,
are particularly vulnerable to changes in weather patterns. Vector- and
water-borne diseases are expected to rise in the developing regions of the
world and in areas where extremes in weather will increase the frequency
of weather-driven disasters. Models of pasture and rangeland production
have reduced uncertainties associated with effects of global change on
pasture growth in cool, wet climates, but more focus on the linkages
between biophysical, social, and economic factors is still needed (Campbell
and Smith 2000). Furthermore, models offer opportunities to improve
understanding of attempts to mitigate climate-change impacts. For example,
a review of two international agricultural models examined the potential
effects on crop production of measures to prevent climate change (Chen
and Kates 1994).

Many of the environmental issues discussed later in this chapter are inex-
orably linked to global climate change: water as a scarce resource, deserti-
fication, and deforestation being prime examples. While the data are not
specific in terms of exactly where impacts will be seen, they do suggest that
the basic carrying capacities of many regions will change, which implies that
populations will need to shift in response. Overall, the impacts of global
warming, as predicted by this review, will be a major destabilizing influence
on the security of the world and will constitute a major causative factor in
population migration.

15.2.3 Land-Use Change
The various ways that people use and manage land are a prime cause of
land-cover change on the Earth. Thus, land use and land management
increasingly represent a fundamental source of change in the global envi-
ronment. Land use refers to the purpose to which land is put by humans
[e.g., protected areas, forestry for timber products, plantations, row-crop
agriculture, pastures, or human settlements; Turner and Meyer (1994)]. The
major environmentally significant land-use changes today are deforestation
and desertification.

15.2.3.1 Deforestation

The impacts of deforestation range from the very subtle changes in climate
that loss of forest areas may induce to the dire life-threatening issues that
the absence of fuel wood can cause. In the context of environmental secu-
rity, consider the examples of Ethiopia and Haiti. In 1900, Ethiopia was 45%
forested (Food and Agriculture Organization 1990), while today only 2.5%
of the country remains forest and woodland (World Resources Institute
1997). Likewise, Haiti has gone from a mostly tree-covered to a nearly
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barren landscape. It is reasonable to surmise that there is a correlation
between the unrest in these countries and these drastic changes in their
environments. This situation alone would be sufficient reason to consider
the security implications of deforestation, but there are more direct issues
that result from the widespread loss of forest areas in a region. In relation
to environmental security, the most critical concerns are

• Reduced carrying capacity of the land
• Fewer forests as a component of the carbon cycle, resulting in loss of

carbon dioxide (CO2) removal capacity
• Loss of biodiversity with all of its known and unknown implications
• Increased flooding and loss of soils, with resultant mudslides and water-

way siltation
• Reduced economic benefits resulting from loss of forests as a renewable

resource

What is clearly evident in the available data and predictive modeling is
that impacts from deforestation will be most severe in tropical regions,
not unexpectedly because these are the regions of the highest deforesta-
tion rates. It appears that tropical regions are trading short-term economic 
benefits for an unknown future. Most deforestation is being caused by 
land-use changes, changing from forests into some agricultural or grazing
use. When considering security issues in the developing temperate-forest
countries, impacts on carrying capacity have the most direct and dire effects.
In the developing world, the land must provide water, food, and energy for
heating and cooking. Loss of fuel wood reduces the ability to properly
process food, and this could lead to both malnutrition and disease.

Ecological models are key to assessing both impacts and causes of 
deforestation. Hansen et al. (2001) emphasize the value of models in 
exploring feedbacks between climate, land use, and biodiversity. Aber et al.
(2001) discuss the role that different models play in assessing impacts of
multiple stressors on effects of global change on forests. Dale and Rauscher
(1994) point out that different models should be used to address unique
levels of biological organization (global, regional, community, and tree) and
impacts. No one model can consider them all. Furthermore, economics is a
primary factor in deforestation; Kaimowitz and Angelsen (1998) document
that modeling is a primary tool in addressing social and economic aspects
of forest loss.

15.2.3.2 Desertification

Today, some 40%, or 60 million km2, of the world’s land area is classified 
as having a dry climate, with some 10 million km2 of this land being con-
sidered desert (Houghton 1994). Desertification occurs when a vegetated
area, such as a steppe, through natural or human-induced processes loses
vegetative cover, allowing increased soil erosion, primarily by wind. This
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process typically further reduces the carrying capacity of an already fragile
environment. Natural fluctuations in rainfall can change the shape of a
desert, usually working around the margins of an existing desert. Over-
grazing, mining of groundwater, and overuse in farming are primary human
activities that can produce desertification of an area.

The African Sahel is the most striking example of desertification or land
degradation seen in modern times. The Sahel is the belt that extends across
Africa at about 15° N and forms the southern extent of the Sahara desert.
An increase in the nomadic herding population of the region in combination
with a drought lasting from 1968 to 1991 has produced desertification in 
the area (Strahler and Strahler 2000). Desertification has resulted in a 
drastic reduction of regional grazing capacity until conditions and time allow
regeneration of the vegetative cover, if erosion and the other impacts of
desertification have not been so severe as to irreversibly damage the land.

Global warming can produce desertification in the same way that natural
climate change does; therefore, accurate climate modeling is a requisite
component of understanding desertification. Simulation models project that
the net effects of global warming and desertification will be an intensifica-
tion and extension of drought conditions during dry seasons (Feddema
1999).

15.3 Water as a Scarce Resource

Water is a critical resource for life and essential for economic success in a
modern, developed society. Water is required for domestic consumption,
sanitary use, industrial use, cooling water in the generation of electric
power, hydroelectric power generation, and agricultural irrigation. Water
quantity can be measured in terms of total demand but is better represented
in terms of the quantity per person over some period of time (daily or
yearly). During the past century, there was an 800% increase in total water
demand, driven primarily by population increases, but demand per person
also doubled (Gleick 1998).

Models can be used to identify and alleviate water distribution problems.
For example, Jowitt and Xu (1992) found that relatively simple time-series
models can be used to predict consumer water demand and that these
results can be used to design water distribution systems. As another
example, Luijten et al. (2001) used a model to assess water availability and
use under different development pathways of development and growth in
Latin American countries with steep-slope farming. The model helped
reduce the complexities of dealing with the land–water interface and spatial
linkages within the watershed. These model results can help teach local
stakeholders about responses of the landscape to water management 
practices. A third example focuses on balancing difference uses of water.
Droogers et al. (2000) developed a simulation model to evaluate irrigation
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performance for the two dominant crops in western Turkey: cotton and
grapes. Although both crops are normally irrigated, their model showed
water productivity of grapes to be maximal without irrigation. Thus, to 
minimize risk of water shortages, cropping of grapes should be expanded.
With high water availability, a mixture of grapes and cotton is preferable
for the economic benefits provided.

An example of the effect that development has on water use can be seen
by comparing water use in the United States with world water use. In 1900,
world demand was approximately 300m3 per person per year; in the United
States, that value was 700. In 1980, world consumption had grown to 700,
while the U.S. demand had reached 2700. In terms of these units, which
factor population growth out of the equation, water demand in the United
States had grown by a factor of 4 while world demand had increased by a
factor of only 2 (Gleick 1998). The important point here is that transform-
ing from a developing to a developed society has greatly increased the
requirement for water. Projections of water consumption in developing
countries suggest that demand for household and industrial use could
double in the next 25 years (Swaminathan 2001).

Many authors continue to suggest that water scarcity is the resource side
of the problem that must be addressed. Former Senator Paul Simon’s (1998)
book on water, Tapped Out—The Coming World Crisis in Water and What
We Can Do about It, takes this general approach (i.e., fix the water 
problems and avoid the crisis). While his concern with water and his 
solutions are valid, the underlying principle of carrying capacity remains
inviolable. In the water context, climate provides a watershed with a fixed
amount of water. A minimum amount of water is required per person each
day for survival. The equation then becomes straightforward:

Human carrying capacity = Gallons of water available per year/
(Gallons per person per year demand)

Conservation and other management tools can, to some degree, change the
values in both the numerator and denominator but cannot change the
reality that a given environmental setting can support only a certain number
of people.

The water problem is one of trying to reconcile supply with demand in a
spatial context with the population. Supplies are fixed, while demand con-
tinues to grow rapidly and not always in the best locations. There has been
progress in improving management practices, but those new practices have
reduced the rate of growth in demand per person, not total consumption.
In this context, the United States can be considered a recent good news
story. By 1995, water demand in the United States had dropped from 2,700
to 2,200m3 per person per year, resulting in a flattening of total demand
during the past 20 years. This reduction in the rate of growth of water
demand was achievable only in concert with a small population growth rate
during the same period.
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The bottom line for water as a resource is:

• Demand will continue to increase steadily and in direct proportion to
population growth.

• Modernization (development) will increase demand, not reduce it.
• In areas experiencing water shortages now, conditions will worsen, while

many more areas of the world will reach their limits of available water
resources.

In terms of environmental security, an important question is: What is the
basic water requirement for a person to sustain life? This value must include
water for drinking, cooking, and basic sanitation requirements, such as per-
sonal hygiene and cleaning. One widely accepted estimate is 50L per day
per person (Gleick 1998). Figure 15.1 shows the countries of the world that
fail to meet this standard.

Water quality is an often overlooked issue that must be addressed in 
any discussion relating water supplies to security. The World Health 
Organization (1995) estimated that 1 billion people a year contract a water-
borne diarrheal disease and that 3.3 million of these people die from it.
This estimate does not account for many other water-borne diseases 
that inflict pain and suffering throughout the world. A primary quality
concern in the developing world is human waste being disposed of in
surface waters, which contaminates drinking water supplies, and this water
being consumed without adequate treatment. Clean water is a critical 
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Figure 15.1. Countries with extreme water scarcity [Data derived from Gleick
(1998)].



issue for parts of South and Central America, most of Africa, and much of
Asia.

Salinity in water is another major quality issue of concern in agriculture
and industry. Salts present in irrigation water are retained and concentrated
in the soil as water naturally evaporates from the upper layers. Over time,
without adequate rain to dissolve these salts back into the water for trans-
port away, salt levels in irrigated soil build up to concentrations toxic to
many plants. These lands are then lost to production or must be used for
crops more tolerant of salt. Such crop choices are quite limited. Salination
is reducing food production rates in many parts of the world today, mostly
in arid regions, where lack of rainfall makes soil recovery times very long.
The United States is experiencing this problem in isolated parts of the arid
West and Southwest.

Overall, water is a problem affecting basic survival in at least one-third
of the world and a limiting factor in development for most of the world. As
an anonymous American sage once said, “People argue over politics; they
fight over water.”

15.4 Strategic View of the Role of Models in
Environmental Security

Obviously, achieving environmental security is not going to be straight-
forward. This problem is compounded by the fact that environmental 
security is very much a contextual issue. For example, assume that two dis-
putes over water rights exist between the United States and Mexico on 
one border and the United States and Canada on the other. If the technical
details of these two problems are similar, will the nature of the discussions
be the same? Experience supported by numerous examples suggests that
scarcity of water in the south would make that dispute much more 
contentious. Further, the prevailing political environment could make the
technical details of the issue secondary to the policy considerations.

Models can help in sorting out the complex issues of environmental 
security. For example, Tillman et al. (2001) developed a model that can
explore ramifications on water capacity, price, and financial debt of shifting
water-utility-management goals from water security to cost. Models can
also illustrate the interactions between critical resources for security. For
example, the role of water in the food security of China was explored by
Heilig et al. (2000). They used a detailed agroclimate model to estimate
China’s maximum grain production under rain-fed and irrigation systems
and found that about 70% of the production depends on irrigation. Given
China’s projected grain demand, water conservation and the development
of water resources for agriculture is critical for China’s food security.

Table 15.2 presents a summary of possible impacts of environ-
mental security issues on significant environmental hazards (King 2000).
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Considered together, these data offer several conclusions about the im-
pacts of environmental degradation and change, including, in order of
importance:

• Humans are threatened by loss of water and food and by increased inci-
dence of disease.

• The greatest overall impacts from cumulative environmental change will
occur in the tropical countries, which are all economically developing
countries.

• Global warming with its linkages to deforestation is the issue with the
potential to produce the most damage.

• Weather change is likely to produce an increase in the incidence of
natural hazards as increased evaporation is counterbalanced by new,
more intense weather cycles. Because of environmental degradation,
many more people will be at risk.

• Issues related to water are major stress factors on human subsistence and
economic development (Armitage 2000).

With these summary data, this discussion can move from “what” to con-
ducting a geographic analysis to determine generally “where” environ-
mental security problems and conflicts may occur. Spatially explicit models
allow for quantitative deliberations of such questions. For example, a geo-
graphic information system (GIS) analysis might take the water-scarcity
data from Figure 15.1 and overlay it with population-growth-rate data 
to create Figure 15.2. The result shows the correlation between countries
with high population growth rates and the countries with drinking-water-
shortage issues. Forty-one of the fifty water-scarce countries also have 
population growth rates above 2% per year.

Figure 15.3 shows how several issues can be correlated; in this case: pop-
ulation, deforestation, and water scarcity. Figure 15.3 is based on historical
data and is therefore not predictive, but such hind casts can be used to
improve understanding of underlying causal factors.

One example will bring the connection between the environment and
security into focus; consider Afghanistan. Following the line of analysis just
presented, we begin by examining the country’s population trends. Despite
20 years of war, Afghanistan continues to have a very high annual popula-
tion growth rate (2.9%) and one of the world’s highest fertility rates (Palka
2001). Data on infant mortality and life expectancy clearly demonstrate 
a country that is losing the battle to feed and care for its people. Next,
Afghanistan has less than 9% of its land classified as forests, so forest
resources are not available for subsistence uses, such as shelter and fuel.
Only 12% of the population has access to clean water, and this availability
is not adequate to meet minimum supply needs. Finally, 92% live without
adequate sanitation systems. Overall, these data reveal a country with a
population living on the edge of survival. Based on this form of analysis,
Afghanistan is somewhere in the 10 worst environmental settings in the
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Figure 15.2. Correlation of population growth rates with water scarcity.

Figure 15.3. Countries with high population growth rate, water scarcity, and defore-
station [From: King (2000)].



world, and therefore is highly likely to pose a threat to security and 
stability in the region. Environmental conditions are certainly not the only
reasons war rages in Afghanistan, but it is very fair to summarize that 
environmental security considerations are definitely contributory issues.
The key to anticipating issues and preventing problems will be in attaining
both understanding of processes and reasonable estimates of such factors
as deforestation rates, water scarcities, and population growth. Ecological
modeling will be a key element in being able to predict the future and 
to respond to changes in the environment. To develop useful approaches,
modelers will have to consider the needs of strategic planners and to
develop ways to reduce uncertainty and risk in projections. Only then will
policy planners be equipped to address the issues in a coherent way.

Throughout this chapter, issues that require or can be improved through
the effective use of ecological modeling have been highlighted. In a final
analysis, it appears that two general categories of problems need to be
addressed: one is a process, and the other is communication. Many reading
this chapter may find it remiss in not purporting the need for more and
better science as a major concern. Certainly, there are unknowns in mod-
eling such issues as climate, critical species and habitats, and many of the
other environmental security issues, but fuller use of the science available
now would go a long way toward solving current problems. Therefore, this
chapter focuses on opportunities that optimize the use of the existing
models and their products.

A major deficiency in environmental security analysis is that results of
ecological modeling are not being well utilized in environmental security
decision making. The scientific community may not be answering the really
critical questions or may not be presenting results in ways that are under-
standable by decision makers, people who typically lack highly scientific
backgrounds. Consider one important example. A USA Today (Watson
2000) front-page headline reported that new climate models were predict-
ing even more global warming than some previously thought. Each of the
two presidential candidates, Gore and Bush, had brief quotes on the
meaning of these results. Then–Vice President Gore found the reported
results disturbing and of great concern, while then-Governor Bush thought
the information was insufficient to make any conclusions from at the time.
Based on the risk of dire consequences associated with increased global
warming, some sort of call for action or review would seem appropriate.
However, these model results did not produce this kind of response.

More effort is required to put the modeling community and the decision
makers who will use the results together early in the process of conducting
scientific discovery. This alliance is essential when ecological modeling is
intended to support planning and decision making, such as in environmen-
tal security analysis. Early discussions on goals for research and results
reporting can improve the applicability of modeling results. At a minimum,
up-front customer and user input should produce better acceptance and
understanding of model results.
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Early in the development of environmental regulation, and particularly
in dealing with toxic and hazardous wastes, the environmental community
learned the hard lesson that they were not communicating with the lay
public. This fact was particularly evident with communicating the concept
of health risk, which is the basis for all regulatory standards. The modeling
community is now in a similar position in explaining the error bounds and
uncertainty inherent in predictive modeling. Not all results from modeling
projects can or should be published in a manner found most impressive to
a scientific audience. Nor should all scientific modeling be designed to
produce the most elegant results when simpler, but more useable results
can be achieved.

In conclusion, ecological modeling is essential to achieve environmental
security goals. It is simply the only method capable of projecting future 
conditions that are needed to understand the environmental impacts 
of human activity. There is much good work available already that should
be better utilized. Policy analysts and planners are remiss in their poor use
of the data and model projections, but the scientific community can do
better in developing and communicating results. If the model projections
of environmental change are even close to accurate, we cannot afford to
fail in this mission.
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16.1 New Directions

New directions for the use of ecological models in resource management
depend on current trends in the use of computers, environmental pressures,
communication, understanding of ecological and environmental processes,
globalization, and stakeholder involvement in environmental concerns. At
the same time as these trends are becoming apparent, some agreement is
being reached on the most pressing needs for resource management. These
resource management needs point out the advantages of using models 
in addressing resource management concerns because models arise from 
a philosophy of a parsimonious approach, clear assumptions, and, when 
possible, generic modeling paradigms. However, models would likely be
used more often if there were closer communication between modelers and
decision makers, clearer definition of the environmental problems, recog-
nition of the value in using models to enhance understanding, and more use
of models for exploring alternative future conditions. These are the issues
that will define the new directions in the use of models for resource 
management.

16.1.1 Trends
An examination of future directions in the use of ecological models for
resource management requires a look at current trends. First, the use of
computers is increasing in public, private, and business sectors. In developed
countries, computers are available in most businesses and agency offices 
as well as a large number of homes. Around the world, computers 
are generally accessible or can be brought into remote locations. They are
used to communicate; collect, access, and store information; and conduct
analyses. This trend means that computers are generally available on which
models can be operated.

Furthermore, global communication modes are becoming faster and
more reliable. The general availability of computers is one reason why 



communication is improving. E-mail and the Internet provide rapid means
of communication.Telephone service is quite reliable throughout the devel-
oped world. Internet access provides a way to access recent publications
and newly acquired data. As a result, managers expect access to the up-to-
date information and knowledge.

The world is becoming networked, not only electronically but also in
reality. Many people travel to distant destinations for both business and
pleasure. Air travel has become common as costs have diminished.
Improved communication and transportation networks not only facilitate
the flow of information, they also enhance the spread of environmental
problems. For example, global transmission of disease organisms and other
undesirable biota is recognized as a major concern.

Globalization of the economy is growing with increased travel, com-
munication, and networking. Produce and goods are shipped around the
world. The result is that global coffee or banana prices can rapidly affect
the livelihood of small farmers in developing countries. By the same token,
an untimely frost in Brazil can affect the prices, sales, and employment at
coffeehouses across the United States. The availability of oil, gas, or other
sources of energy is a critical resource, and the need for energy connects
the world’s economy. Thus, some resource management models are being
designed to consider global interrelations, including economics and human
population expansion.

At the same time, environmental pressures are increasing. Providing
access to energy and natural resources often calls for the development 
of new infrastructure. Roads built into new regions to acquire resources 
typically provide a route for development and instigate pressures on the
environment. Increases in human population density and per capita use of
resources also add pressure to manipulate the environment. For instance,
housing developments are being built in areas that were once thought to
be environmentally undesirable.

Awareness of environmental pressures increases with these demands and
enhanced networking. For example, global climate change is now a recog-
nized phenomenon, although ways to deal with the problem are not agreed
upon (IPPC 2001). Cognizance of current environmental conditions is
enhanced by worldwide access to television and print media. Environmen-
tal security has become a big concern since the spread of mad cow disease,
the invasion of Kuwait by Iraq, and the attacks on the World Trade Center.

Simultaneously, stakeholders are becoming more educated and more
actively involved in resource management issues (Wondolleck and Yaffee
2000). The worldwide recognition of the plight of Chico Mendes in his fight
for rubber tappers against large-scale development has become a call to
arms for individuals to organize in their efforts to protect access to natural
products. But such stakeholder groups typically lack access to information
on how management or preventive measures can affect natural resources.
Models offer a means to make such information available.
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A final trend is an increase in the use of models for decision making.
Application of models to management issues has increased but is still not
meeting the full range of possibilities.

All in all, a more complex view of the world is developing. Communica-
tion and feedbacks on a global scale are part of this new perspective. Unfor-
tunately, the use of models for resource management has not kept up with
these other advances. However, the time is ripe to enhance the application
and spread of models to resource management.

16.1.2 Resource Management Needs
The trends noted above have facilitated the recognition of needs for
resource management. Several national and international groups have
assembled principles or guidelines for managing natural resources (Tables
16.1 to 16.5). These guides all agree on the importance of natural resources,
their risk under increasing development, and the need to develop integrated
ways to understand how human activities can affect the integrity of
resources. All of these guidelines call for a focus on changes to the envi-
ronment including disturbances, changes in land use and management, and
socioeconomic developments.The Santiago Agreement identified attributes
of sustainability that need to be conserved (Anonymous 1995) (see Table
16.1). The Forest Sector of the United States National Assessment of
Climate Variability and Change specified research needed to protect
natural resources (Joyce et al. 2001) (see Table 16.2). These needs include
the ability to integrate, predict, relate, and quantify—all attributes of 
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Table 16.1. Criteria for sustainability from the 
Santiago Agreement (From Anonymous 1995).

Conservation of biological diversity
Maintenance of productive capacity of ecosystems
Maintenance of ecosystem health and vitality
Conservation and maintenance of soil and water resources
Maintenance of forest contribution to global carbon cycles

Table 16.2. Research needs identified by the Forest Sector of the United States
National Assessment of Climate Change (From Joyce et al. 2001).

Integrated approaches to environmental factors, climate change, and forest processes
Basic information on current forest disturbances
Predicting climate and change in climate
Quantifying the disturbance impact on forests
Understanding relationships between climate/weather patterns, trace gases, and biological 

species at multiple scales
Identifying interactions among forest disturbances and management
Integrating climate and land-use change into ecological models
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Table 16.3. Key points for managing national forests and grasslands from the 
Committee of Scientists report (From Johnson et al. 1999).

Ecological sustainability as a necessary foundation for sustainability
Considering the larger landscape in which national forests and grasslands are located to 

understand their role in achieving sustainability
Making decisions at the spatial scale of the issue
Making “desired future conditions” and the outcomes associated with them central reference 

points for planning

Table 16.4. Guidelines for land use and management from the report of the Land-
Use Committee of the Ecological Society of America (From Dale et al. 2000).

Examining the impacts of local decisions in a regional context
Planning for long-term change and unexpected events
Preserving rare landscape elements, critical habitats, and associated species
Avoiding land uses that deplete natural resources over a broad area
Retaining large contiguous or connected areas that contain critical habitats
Minimizing the introduction and spread of nonnative species
Avoiding or compensating for effects of development on ecological processes
Implementing land-use and -management practices that are compatible with the natural

potential of the area

Table 16.5. Guiding principles of the 1994 memorandum from the Office of the
Deputy Secretary of Defense for Environmental Security (From Goodman 1995).

Maintaining and approving sustainability and native biodiversity of ecosystems
Administering in accordance with ecological units and time frames
Supporting sustainable human activities
Developing a vision of ecosystem health
Developing priorities and reconciling conflicts
Developing coordinated approaches to working toward ecosystem health
Relying on the best science available
Using benchmarks to monitor and evaluate
Using adaptive management
Implementing through site-specific plans and programs

ecological models. The goals recognized for the national forests and grass-
lands by the Committee of Scientists (1999) added spatial concerns to the
previously mentioned temporal scales (Johnson et al. 1999) (see Table 16.3).
Placing environmental issues within the context of the full spatial ramifica-
tions of the problem can take advantage of the flexibility of spatially explicit
modeling. The action-oriented guidelines for land use and management
from the Land-Use Committee of the Ecological Society of America
require some understanding how activities can impact future conditions
(Dale et al. 2000) (see Table 16.4). Ecological models are specifically
designed to project such conditions. Finally, the guiding principles for



defense of environmental security call for developing a vision, priorities,
and coordinated approaches (Goodman 1996) (see Table 16.5). Again,
models are one of the most useful tools for this type of analysis.

Clearly, resource management models need to be based on hierarchical
and spatially explicit approaches that incorporate key features of concern
and allow for disturbances, land-use changes, socioeconomic pressures, and
other anthropogenic changes. Examples of using models for such research
exist (as described in previous chapters), but access to these models by
resource managers is limited, and few managers are aware of the current
research directions. Thus, improved availability of modeling tools for
resource management is needed.

16.2 Philosophy of Modeling

One of reasons models are so appropriate to today’s resource management
needs is that the philosophy of modeling requires focusing on key issues.
The use of models is based upon the concept that models can synthesize
the best understanding of the situation given current information. This 
perspective builds upon a parsimonious approach to modeling. That is,
modelers should strive to include the least amount of information that 
adequately explains the phenomena of interest.The term “adequate” is case
specific, for what may be appropriate in one case will not necessarily work
in another situation. A model can thus be considered a set of hypotheses
about the way a system works, given certain assumptions and context.
Models never contain all of the details of a system. In a discourse on science,
Lagrange is reputed to have said “Seek simplicity, but distrust it.” Models
are an expression of this philosophy.

Assumptions are a key part of the modeling process. To clearly com-
municate the modeling approach to a user, the set of assumptions for a par-
ticular modeling exercise should be specified. The assumptions determine
the level of detail needed in a model and situations to which it can be
applied. They typically are concerned with the temporal and spatial scales
of focus, abiotic and biotic processes, organisms and their relevant life stages
(e.g., adults vs juveniles), and environmental factors (e.g., disturbances) that
are held constant or allowed to vary in controlled ways. In general, the more
the assumptions are specific to a particular case of interest, the more mean-
ingful the model results are for that situation. However, this specificity may
make the model unusable outside of that situation, which leads to the need
to understand and to specify how, why, and where a model will be used.

Another aspect of the minimalist approach to modeling is that a new
model does not need to be developed for every situation. Instead, some 
categories of models are appropriate to a particular type of ecological or
resource management problem. When a model is applied to a new location
or related issue, the set of driving variables and parameters usually remains
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the same but the parameter values can be altered to fit the situation. As an
example, there have been numerous applications of the JABOWA model
of forest gap dynamics first developed by Botkin et al. (1972) (see Table
16.1) [see review by Bugmann (2001)]. Although the JABOWA model has
been modified over the years to include a variety of disturbances and now
spatial attributes, the basic driving variables and parameters are the same
in all versions. Such a generic modeling approach has allowed the users to
focus on issues rather than the construction of the mathematical tool.

In summary, a model is typically designed to produce projections of
change over time on the basis of a basic understanding of the system and
with varying amounts of data. Assumptions and interactions need to be
clearly set forth. Often, this kind of information is exactly what a resource
manager needs to make decisions. Yet models are not always used, even
though models would provide helpful assistance to resource management
in many situations.

16.3 Areas for Improvements in the Use Ecological
Models for Resource Management

Improvements to the use of ecological models for resource management
can be made by giving attention to several areas:

• Establishing closer communication between field ecological/environ-
mental scientists and modelers and, in turn, between modelers and 
decision makers

• Clearly defining the problem
• Using models to enhance understanding
• Exploring alternative future conditions

16.3.1 Establishing Good Communication
The need for improved communication between modelers and decision
makers is a theme that runs through many of the chapters in this book. The
elements of modeling need to be understood not only by those developing
and applying models, but also by those who use the model results.Too often
model projections are not used in decision making because they are mis-
understood. Much of the frustration related to ecological models results
from unrealistic expectations by all parties involved (Van Winkle and Dale
1998). Discrepancies often exist (1) between reality and the expectations of
those funding or reviewing a model application concerning how the results
should contribute to decision making or advancing ecological understand-
ing and (2) between the claims made by modelers at the beginning of a
project and the realities of the modeling applicability and integrity at the
end. These discrepancies arise, in part, from a lack of understanding of the
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modeling process on the part of decision makers, marketing of the some-
times poorly understood attributes by modelers, uncertainty in the model
projections, variability in the natural system, immaturity of ecological
theory, and factors that were not included in the model yet influence the
outcome of decisions.

One solution to addressing these frustrating discrepancies is to increase
interchanges between modelers and decision makers. Such interactions can
serve to improve communication and create more realistic expectations 
of the contributions of models. Understanding the outcome of a model is
not achieved just by examining the graphical, mapped, or tabular output 
but also by being aware of the strengths and limitations of the particular
modeling approach, the assumptions, and the uncertainties in the projec-
tions (Dale and Van Winkle 1998).

16.3.2 Defining the Problem
Careful attention to problem definition will enhance the use of models
because models designed to meet the needs of explicitly defined issues will
include the requisite elements. Such definition is not always straightfor-
ward; yet implementation of models for a particular problem often demon-
strates the value of the models. That is true because implementing a model
requires explicit definition of the spatial and temporal scales of concern,
the disturbance or management actions to be considered, and explicit
hypotheses about potential interactions and effects.

Ideally, the problem definition phase involves discussions between man-
agers and modelers. Managers have intimate familiarity with the problems
and factors that may influence them. Modelers have skills at examining
system interactions, defining key elements of an interaction, and identify-
ing potential sources of uncertainty.The conceptual model that derives from
problem definition both guides the way that a detailed model is developed
and provides insight into the key interactions of the systems. Sometimes
this conceptual model is one of the most important products of the model-
ing process.

16.3.3 Using Models to Enhance Understanding
Modeling is a process that enhances the understanding of a system (Van
Winkle and Dale 1998). The process of modeling requires formulating
hypotheses about how components of a system are related and allows
exploration of the implications of those hypotheses. It identifies sensitivi-
ties and uncertainties in a system and forces ecologists to specify which
components can be considered as deterministic or stochastic.

The modeling process plays a valuable role in the overall iterative scien-
tific process of hypothesis formulation (Overton 1977). It contributes to the
design of experimental and monitoring studies, the development and appli-
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cation of mechanistic or simulation models, and the interpretation of results
(Van Winkle and Dale 1998). Using models can be a part of the scientific
process even when initial information about a system is sparse. Models can
be used to organize existing information, indicate the sensitivities of the
system, and identify gaps in knowledge. For example, Aber and Driscoll
(1997) point out that “models are often more interesting when they fail than
when they succeed.” These failures often point to problems with original
hypotheses, data collection and/or storage, development and interlinking of
algorithms, or the data interpretation. Interim conclusions from modeling
often cause modifications in the original hypothesis and, possibly, the model
itself, thus setting the stage for the next iteration of asking questions via the
scientific process.

The model-building process itself is an iterative process. Many models
begin with simple assumptions or are based on general assumptions. Refine-
ment of the model comes with more experience (e.g., data) and improved
means to express the experience (e.g., more powerful formulae with statis-
tical analysis to better define the boundaries).

Pressing needs for decisions to be made or policy actions to be taken in
the face of uncertainty often force the use of incomplete or untested
models. Yet it is in those instances in which information is deficient that the
modeling process may be most useful. Many cases arise in which qualita-
tive information is valuable. In fact, models typically use both qualitative
and quantitative information and do not always result in quantitative 
projections. Modeling the effects of climate change is an example. No one
knows how much a change in temperature or precipitation will alter biota
in a given region, but it is still valuable to use models to explore the possi-
ble implications of various scenarios of climate change. Such scenario explo-
ration informs policymakers about which aspects of the ecological systems
they should be most concerned.

Furthermore, a clear distinction between qualitative and quantitative
information used in models is neither realistic nor appropriate because
information forms a continuum (Van Winkle and Dale 1998). Frequently,
the lack of confidence about information is expressed by using inequalities
or upper and lower bounds. At other times, a rough mean tendency is used
to represent a general understanding about some unmeasured quantity
[such as the assumption that past windstorms removed 20% of the biomass
of impacted forests in New England (Aber and Driscoll 1997)]. This type
of semiquantitative or categorical knowledge is frequently the basis of
equations and parameter values that are used in models and can be impor-
tant to increasing the understanding of the ecological system.

16.3.4 Exploring Alternative Futures
The purpose of many model analyses is to help predict future conditions
built on a basis of “what if.” Some models have short-term outlooks, while
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others are used to forecast possible conditions or scenarios months, years,
or decades in the future. One of the newer avenues of modeling is that of
“alternative future conditions” forecasting, where, on the basis of existing
environmental and economic conditions and in light of present or hypoth-
esized practices, various future scenarios can be produced and their associ-
ated probabilities can be calculated. Such modeling efforts are being used
to look at changes such as human population growth and interaction with
respect to developmental encroachment on military installations and other
land and water preserves. The advantage of using a simulation exercise to
explore alternative future conditions in environmental decision making is
that options available to decision makers can be set forth without the
expense or time involved in actual implementation. Of course, ramifications
and feedbacks are only as realistic as how the pertinent factors and vari-
ables are incorporated into the model structure. Such simulation tools are
typically designed to be readily accessible to users of all levels of computer
expertise. Often, the engaging nature of these models causes users to
become more involved in thinking about processes and interactions than
they would have done without the simulation model.

Considering the diverse temporal and spatial scales required to model
some resource management issues, the implementation and integration of
these processes are difficult. For example, to model trophic dynamics, the
different spatial and temporal scales of different trophic levels may need to
be a part of the model. Dale et al. (1991) did just that with a nested-model
approach to model the dynamics of a short-lived insect in relation to the
decadal changes of its host tree. Component models can be developed at
the temporal and spatial scales necessary to model each part of manage-
ment concern, and model output can be designed at the scale relevant to
the questions. However, it is necessary to recognize that management ques-
tions occur at different scales, as well. For example, noise maxima are expe-
rienced on the scale of minutes with remedial or mitigating actions required
in a short time frame; air-quality decisions are often made on a daily basis,
such as the effect of wind direction and speed on controlled burns of forests;
and land-use decisions for runoff control and restoration management 
are made on an annual or longer basis. In some models, the users are able
to narrow or expand their perspectives to different spatial or temporal
scales as the question changes. In the future, as computer technologies
become more advanced and available, such simulations are expected to be
developed and used more frequently.

16.4 Conclusion

A clear goal of future models for resource management is to meet the 
challenge set forth in the National Academy of Sciences (2000) report on
global environmental change, which stated that, “Recent progress has 
been so rapid, and the need for integration is so great, that the identity of 
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key questions and the boundaries between disciplines needs to be flexible
at a level that has never been required in the past. The world is changing
too rapidly for science to address the challenges of global change with 
traditional, incremental approaches.” Models offer the opportunity to deal
with complexities and interactions without getting bogged down in details.
In particular, future modeling efforts need to deal with

• Scales—Models can integrate processes that operate on very different
temporal and spatial scales.

• Feedbacks—Incorporating feedbacks between different aspects of the
environment that operate at different scales is one of the biggest challenges
of interdisciplinary research.

• Multiple criteria—Environmental research has been constrained by
efforts to meet a single criterion (e.g., protection of one species or keep-
ing particulates below a certain level). Developing approaches allow the
consideration of several criteria and their interactions at the same time (e.g.,
simultaneously satisfying requirements dealing with air, water, noise, and
biotic species). Acceptable resource management practices will be those
that maintain standards within all these categories. Exploration of alterna-
tive future conditions can define conditions under which multiple goals can
be met under a suite of resource constraints.

Today, ecological models are becoming more an integral part of resource
management. A host of tools is available for developing, testing, and imple-
menting these models. Yet models are still not used as often as they could
be. This limited use suggests a need for

• Understanding that models can be a part of the resource management
process that includes exploration and refinement of management options

• Greater use of models to help improve ecological understanding
• Enhancing communication between the modeler and resource manager

at all stages of model development and application

The challenge continues to be to develop and use credible models that
range the gamut from improving ecological understanding to being useful
for decision making.
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Bayesian belief networks, 137
Benchmarks, 50, 92–93
Best technology available (BTA),

46–47
Biodiversity, 125
Bioregional assessments, 83

C
Calibration, 175–176, 177
Case-specific models, developing new,

256
Case studies

endangered-species recovery, 27–39
library of, 103
using new ecological modeling for

resource management, 154–158
Chestnut blight, 72
Clean Water Act of 1972, 46
Climate, regional impacts of enhanced

greenhouse effects on, 294–295
Climate change, global, 292–296
Collaboration tools, 228
Collaborative decision making, 117
Communicating model assumptions,

154
Communicating model structure and

output, 150–154
Communication

establishing good, 315–316
interpretation of models and, 276
model, 98–99

Communication barriers, 110–111
Communication modes, global, 310–

311

A
Access policy recommendations, 204
Accuracy, 97
Adverse environmental impact (AEI),

46–47, 61–62
Afghanistan, 304, 306
African Sahel, 298
Agent-based models, 140–141
Aggregation, 96
Air pollution, 72
Alternative futures, exploring, 317–318
Aquatic-impact-assessment measures,

tree of, 49, 58
Artificial intelligence (AI), 150–151
Assessment endpoints, 49
Assumptions, 154, 314
Atelier courses, 277–278
ATLSS (Across Trophic Level System

Simulation) project, 158
Autocorrelation, 197–198

B
Barriers

addressing, 89
communication, 110–111
institutional, 111–112
overcoming, in resource

management, 89–105
solutions for overcoming, 117–119
to specific players in decision-making

process, 115–116
types of, 110–115
to use of ecological modeling for

resource management, 109–120



Communications theory, 172
Community of interest, 79–80
Competing models, 102
Computational fluid dynamics model

for fish movement, 154–157
Computational methods, toolkits and,

280–281
Computational technologies, new,

148–150
Computational toolkits, see Toolkits
Computers, 11
Conceptual models, 94, 181–182

success criteria for, 104
translating, into logic-based model

specifications, 138–139
utility of, 94–95

Conceptual toolkit, 223–224, 231–233
Conceptualization, 175, 228
Confidence, issues related to, 95–102
Consensus building, modeling and,

279–280
Consensus-building process, 118
Control theory models, 146–147
Coupled Eulerian-Lagrangian hybrid

models, 142–144, 155

D
Data

extrapolation and, 99–100
flow of, 168
information and, 172
missing, 196–197
misuse of, 171, 173–174
modeling issues and, 169–170
presentation of, 203
remotely sensed, 190–191
sources of error in, 194–196
spatial, 190
used in models, 180–183
warehousing, 201
visualization of, 137, 153–154, 235

Data access, 202, 204
Data access concerns, 202–204
Data appropriateness concerns,

184–187
Data attribute definitions, 186
Data availability, 114
Data backup, 201
Data collection, field, 191–193

322 Index

Data collection/acquisition concerns,
187–194

Data collection efforts, previous,
188–190

Data input, 200
Data issues, 16, 180–205
Data limitations, 186–187
Data management, 218
Data mining, 234–235
Data quality concerns, 194–199
Data sharing

limiting, 203
voluntary, 203–204

Data simulation, 193–194
Data standards, 200
Data stewardship, 201
Data storage and management,

199–202
Data visualization, 137
Data warehousing, 201
Database design, 199–200
Decision context, 103
Decision criteria, 50
Decision makers, educating, 264–271

methods for, 270–271
Decision maker’s toolkit, 224, 235–237
Decision making

collaborative, 117
ecological models in, see Ecological

modeling for resource
management

environmental, 49, 167–178
integration of improved science into,

228–229
models in, enhancing use of, 249–256
value-laden, 47–49

Decision model, elements of, 236–237
Decision support, linked

multihierarchical models for,
157–158

Declarative modules, 145–146
Deforestation, 296–297, 305
Demographic models, 23–24
Desertification, 297–298
Development costs, model, 100–101
Difference models, 10
Dispersal function, 130
Distributed computing, 148–149
Disturbance, 111



E
Ecological effects characterization,

90
Ecological endpoints, 91–92
Ecological modeling for resource

management
areas for improvements in use of,

315–318
barriers to use of, 109–120
beginnings of, 9–11
development of computers for, 11
effective, 180–205
effective use of, 211–219
for endangered-species recovery,

23–43
enhancing role of, 135–160
examples of using, 21–85
exploration of, 6
fish entrainment and impingement

impacts, 46–65
future use of, 16
issues related to confidence in,

95–102
key issues in, 87–285
new, case studies using, 154–158
new directions in, 310–319
opportunities for using, 3–17
overcoming barriers to use of,

89–105
roles for, in 316(b) assessments,

50–53
roots of, 9–12
science and management

investments needed to enhance
use of, 249–259

using projections from, 12–14
general characteristics of, 8–9
temporal scales of, 9
types of, 7–8

Ecological point of view, 3
Ecological-risk-assessment process,

EPA, 60–62
Ecological risk assessments, framework

for, 89–94
Ecological sustainability, 4
Economic perspective, 3
Ecosystem and receptor characteristics,

measures of, 49–50
Ecosystem management, 81
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Ecosystem sustainability, forest,
138–139

Educating managers and decision
makers, 264–271

methods for, 270–271
Educating stakeholders, 278–281
Education, training and, 250
Educational investments in

environmental science and
management, 263–282

Effective Use of Ecological Modeling
in Management workshop,
vii

Empirical modeling, 48
Endangered-species recovery

case studies, 27–39
ecological modeling for resource

management for, 23–43
lessons learned, 39–42
wolf biology and recovery status,

24–26
Endpoints,assessment, 49

ecological, 91–92
Entrainment, fish, 46
Environment Protection Agency, see

EPA entries
Environmental impact, adverse (AEI),

46–47, 61–62
Environmental managers, 6
Environmental perspective, 3–7
Environmental pressures, 311
Environmental science and

management, educational
investments in, 263–282

Environmental security, 289
concept of, 289
global issues of, 290–298
strategic view of role of models in,

301–307
using models for, 289–307

EPA (U.S. Environment Protection
Agency), regulations, 47

EPA ecological-risk-assessment
process, 60–62

Errors
model, 102–103

nonsampling, 195
sampling, 194, 195
sources of, in data, 194–196



Eulerian-reference framework,
142–144, 155

Exotic diseases, emerging, 72
Exploratory models, 152
Exposure, measures of, 49
Exposure characterization, 90
Extrapolation, 96–97, 198–199

data and, 99–100

F
Factorial analysis, 33
Federal Endangered Species Act, 23
Federal land, 5
Feedback loops, 10
Field data collection, 191–193
Fish entrainment and impingement

Impacts in, 46–65
Fish movement, computational fluid

dynamics model for, 154–157
Fish population modeling, 55
Forest ecosystem sustainability,

138–139
Forest fragmentation, 127
Forest Service planning system, 73
FORPLAN linear-programming (LP)

model, 158–159
Fractal approaches, 144–145
Fragmentation of habitat, 126
Futures, exploring alternative, 317–318
Fuzzy network models, 136–137

G
Game theory, 151
Global climate change, 292–296
Global communication modes, 310–311
Global environmental security issues,

290–298
Global warming, 292, 306
Goals, 97–98
Graphical user interface (GUI), 148
Gray wolves, 23–43, see also Wolf
Greenhouse effects, enhanced, regional

impacts of, 294–295
Grid computing, 149
Groundwater Modeling System

(GMS), 238–240

H
Habitat connectivity, 126–128
Habitat loss and fragmentation, 125
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Habitat occupancy approaches, 126
Habitat Suitability Index (HSI)

modeling, 159–160
Hardware concerns, 200
Heuristic models, 7

I
Impingement, fish, 46
Information, data and, 172
Information content, 172
Institutional barriers, 111–112
Interoperability protocols and

standards, 227–228

J
Jargon, 111
Jurisdictions, overlapping, 81–82

K
Knowledge repositories and

management, 229–230

L
Lagrangian-reference framework,

142–144, 155
Land management, public, 71–72
Land-use change, 296–298
Landscape conservation, evolving

approach to, 125–133
Landscape networks, 129–131
Large-scale regional assessments,

70–84
Library of case studies, 103
Linked multihierarchical models for

decision support, 157–158
Logic-based model specifications,

136–137
translating conceptual models into,

138–139
Logistic equation, 10

M
Management

ecological modeling in, see
Ecological modeling for
resource management

ecosystem, 81
public land, 71–72

Management decisions, resource, 52
Management goals, 49, 62



Management investments needed to
enhance use of ecological
modeling for resource
management, 249–259

Management objectives, 49, 62–63
Management planning, heuristics of

pragmatic modeling to support,
40

Management questions, wolf, 27
Managers and decision makers,

educating, 264–271
methods for, 270–271

Markov-decision approach, 147
Markov models, 140
Mathematical models, 7–8
Matrix algebra, 10
Matrix models, 254
Measurements, 49
Measurement error, 189–190
Measures, classes of, 49
Metadata, 173, 184
Metadata requirements, 231
Metapopulation model, 253, 254
Mexican spotted owl habitat, 131–132
Minimum spanning tree, 130
Models

application of, 251–254
examples of, 251
examples of applications of, 252
integration of, 254–256

Model assumptions, communicating,
154

Model communication, 98–99
Model conception, systems thinking

and, 274
Model conceptualization, 170, 171

and design, 135–139
Model development and

implementation, teaching,
277

Model development costs, 100–101
Model errors, 102–103
Model formulation and construction,

182
Model implementation, 140–150
Model limitations, 183
Model makers, 213
Model standards, 152–153
Model structure and output,

communicating, 150–154
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Model testing, 183
Model use, investment for enhancing,

256–258
Model users, 217
Model verification and calibration,

182–183
Modelers, training, 271–273
Modeler’s toolkit, 224, 237–242

example use of, 238–240
Modeling, 263

consensus building and, 279–280
empirical, 48
philosophy of, 314–315
pragmatic, heuristics of, to support

management planning, 40
process of, 275–276
quantitative, 274–275
relevance and importance of,

264–265
understanding and, 316–317

Modeling issues, data and, 169–170
Models

abuse of, 114
available, 269–270
case-specific, developing new, 256
competing, 102
computational fluid dynamics,

154–157
conceptual, 94–95, 104, 138–139,

181–182
control-theory, 146–147
data used in, 180–183
in decision making, enhancing use of,

249–256
demographic, 23–24
development costs of, 100–101
difference, 10
fuzzy network, 136–137
groundwater 239–240
heuretic, 7
ecological, see Ecological models
Eulerian-Lagrangian, 142–144, 155
interpretation of, communication

and, 276
linked multihierarchical, for decision

support, 157–158
matrix, 254
multiregional, 254
physical population, 27–31

problems with, 114–115



quantitative, 274–275
statistical, 147–148

sensitivities and uncertainties of,
265–269

spatial optimization, 146–147
strategic view of role of, in

environmental security, 301–
307

Structures of, 150–154
Monte Carlo simulation, 152
Multihierarchical models, linked, for

decision support, 157–158
Multiple criteria, 319
Multiregional models, 254
Multiscale analysis, 145
Multiuser interactions, tools for,

235
Multivariate adaptive-regression

splines (MARS), 147–148

N
NetWeaver, 136
Network access, 202
Network theory, 125–133
Nonsampling errors, 195
Not in my back yard (NIMBY)

attitude, 112

O
Occupancy approaches, 126
Outliers, 196

P
Parallelization methods, 149–150
Percolation theory, 126, 127, 129
Physical models, 7
Population growth, 9–10, 291–292

water scarcity and, 305
Population model, wolf, 27–31
Population trends, 291
Population viability analysis (PVA), 23,

125
Pragmatic modeling to support

management planning, heuristics
of, 40

Precision, 97
Predictions, 176, 177

projections versus, 13
Predictive methods, 58–59
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Predictive models, success criteria for,
104

Private property, 5
Problem definition, 316
Problem formulation stage, 91
Problem solving, creative, synthesis

and, 273–274
Projections, 186

predictions versus, 13
using, from ecological modeling for

resource management, 12–14
Protection, mitigation, and

enhancement (PM&E)
measures, 50

Public land management, 71–72

Q
Quantitative modeling, 274–275

R
RAMAS GIS, 255
RAMAS Red List, 269

propagating uncertainty with,
266–268

Recreational resources, 3
Reference conditions, 92–93
Regional assessments, large-scale,

70–84
Regional impacts of enhanced

greenhouse effects on climate,
294–295

Regression tree analysis, 147
Results, absolute versus relative,

101–102
Religious values, 4
Remotely sensed data, 190–191
Representation approaches, 126
Resolution, 185
Resource concerns, 113–114

ecological modeling for, see
Ecological modeling for
resource management

Resource management decisions, 52
Resource management needs, 312–314
Resources, available, 55
Retrospective methods, 58–59
Risk assessments, ecological,

framework for, 89–94
Risk aversion, 112–113



Risk characterization, 93
Risk criteria, 50

S
Sahel, African, 298
Salinity in water, 301
Sample sites, 192–193
Sample size, 192–193
Sampling, consistency in, 185
Sampling errors, 194–195
Scale, 185

variability and, 174
Scale considerations, 141–145
Scenarios, 101
Science investments, 16

needed to enhance use of ecological
modeling for resource
management, 249–259

Scientists, training of, 271–273
Sea-level rise, 293
Security, environmental, see

Environmental security
Sensitivity, 268
Sensitivity analyses, 101
Shannon-Weaver (SW) index, 172
Site specificity, 59
Software concerns, 200
Southern Appalachia, 71–72
Southern Appalachian Assessment

(SAA), 70–84
Southern Appalachian Man and the

Biosphere Cooperative
(SAMAB), 74

Spatial data, 190
Spatial optimization models, 146–147
Spotted owl habitat, Mexican, 131–

132
Stakeholders, 311

educating, 278–281
Stakeholder’s toolkit, 224–225, 233–235
Standards, role of, 242
Statistical models, developing, 147–

148
Stopping-time problem, 57
STORET database, 173
Stress regime characterization, 90
Students, training of, 273–278
Success criteria for conceptual and

predictive models, 104
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Sustainability, 4
criteria for, 312
forest ecosystem, 138–139

Synthesis, creative problem solving
and, 273–274

Systems ecology, 12
Systems thinking, model conception

and, 274

T
Teaching model development and

implementation, 277
Temporal scales of ecological models, 9
Time constraints, 113
Toolkit concept, 16, 211–212, 221–222
Toolkit design, general issues of,

225–231
Toolkit functionality, 222–225

general issues of, 225–231
requirements for, 230–231

Toolkit implementations, 212–216
Toolkit requirements, issues associated

with, 236
Toolkit types, 222–225
Toolkits, 209–245

computational methods and, 280–281
conceptual, 223–224, 231–233
decision maker’s 224, 235–237
environmental management and,

216–218
examples of, 226, 227
interoperability protocols and

standards with, 227–228
role of, in environmental

management, 221–243
uses of, 222

Total Maximum Daily Loads
(TMDLs), 174

Training, 250, 271–273, 273–278
Training students, 273–278

U
Uncertainty, 99, 111

dealing with, 151–152
propagating, with RAMAS Red List,

266–268
Uncertainty analysis, 111, 268
Understanding, modeling and, 316–

317



U.S. Environment Protection Agency,
see EPA entries

Universal modeling language (UML),
136

V
Validation, 176, 177
Value-laden decision making, 47–49
Variability, scale and, 174
Vasectomy for wolf control, 36–37
Verification, 176, 177
Visualization, 153–154

data, 137
web-based, 235

Voluntary data sharing, 203–204
Voyageurs National Park, 32–36

W
Warehousing data, 201
Water

salinity in, 301
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as scarce resource, 298–301
Water quality, 300–301
Water scarcity, 290, 299

population growth and, 305
Weather forecasts, 117–118
Web-based visualization, 235
Web empowerment and

implementation, 225, 227
Weight-of-evidence approach,

54
Wildlife background, 3
Wolf biology and recovery status,

24–26
Wolf control, vasectomy for, 36–

37
Wolf decline, 25
Wolf life history, 28
Wolf management questions,

27
Wolf population model, 27–31
Wolf removal strategies, 37–39




