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Abstract

Pattern in ecological landscapes is often the result of different processes operating at different scales. Neutral
landscape models were introduced in landscape ecology to differentiate patterns that are the result of simple random
processes from patterns that arise from more complex ecological processes. Recent studies have used increasingly
complex neutral models that incorporate contagion and other constraints on random patterns, as well as using
neutral landscapes as input to spatial simulation models. Here, I consider a common mathematical framework
based on spectral transforms that represents all neutral landscape models in terms of sets of spectral basis functions.
Fractal and multi-fractal models are considered, as well as models with multiple scaling regions and anisotropy.
All of the models considered are shown to be variations on a basic theme: a scaling relation between frequency and
amplitude of spectral components. Two example landscapes examined showed long-range correlations (distances
up to 1000 km) consistent with fractal scaling.

Introduction

Landscape ecology is the study of the reciprocal inter-
action between spatial pattern and ecosystem process.
To understand and rigorously test the effects of land-
scape pattern on ecological processes requires that we
define suitable models of spatial pattern. One class
of spatial models employed in landscape ecology are
neutral landscape models (Gardner et al. 1987; Turner
et al. 1989; Gardner and O’Neill 1991; Milne 1992;
O’Neill et al. 1992; With and King 1997). Neutral
landscape models attempt to capture a minimal set of
constraints dictating landscape pattern and assign the
remaining pattern to a purely random process. For ex-
ample, the simplest neutral landscape model can be
generated by assigning cells in a lattice the value 1
with probabilityp and 0 with probability 1−p. These
are the percolation maps discussed by Gardner et al.
(1987). Percolation maps were used as simple models
of physical phase-transitions (Stauffer and Aharony
1985; Goldenfeld 1992) prior to their use in landscape
ecology. Despite the simplicity of percolation mod-

els, they exhibit a surprising variety of spatial patterns
and sudden changes in connectivity with changingp

(Stauffer and Aharony 1985; Gardner et al. 1987).
Neutral landscape models were originally intro-

duced to generate spatial patterns in the absence of
any structuring process (Gardner et al. 1987). More
recently, the use of neutral landscape models has
evolved to include additional constraints on the pat-
terns generated (Gardner and O’Neill 1991; Milne
1992; Milne et al. 1996; Plotnick et al. 1996). Neu-
tral models are also increasingly being used as input
to spatial simulation models (Palmer 1992; Keitt and
Johnson 1995; With and Crist 1995; Moloney and
Levin 1996). These more sophisticated neutral land-
scape models appear less-and-less like random neutral
models and increasingly like explicit models of spatial
pattern. However, it should be noted that random need
not imply uniform random. Any of a large variety of
random distributions including Gaussian, exponential,
and gamma distributions can be used in the construc-
tion of neutral landscape models. Spatially correlated
patterns can also be random in the sense that any one
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pattern is drawn from an ensemble of correlated ran-
dom landscapes. For example, self-similar or fractal
(Mandelbrot 1982) patterns can be considered to be
the result of a single structuring process operating at
all scales in a landscape. Thus, fractal patterns can
be considered neutral with respect to multiple structur-
ing processes that induce different landscape patterns
at different scales. To avoid semantic confusion, I
will simply refer to neutral landscape as any stochas-
tic model of a spatial pattern where the valueX(t)
assigned to any locationt in the pattern can be consid-
ered a random variable, regardless of any constraints
placed on that variable such as spatial autocorrelation.

Neutral landscapes in ecology

There are a number of potential uses for neutral mod-
els in the study of landscapes. First, neutral models
can be the objects of study themselves. In this capacity,
neutral models serve as a baseline to generate expected
spatial patterns from random processes (e.g., Gardner
et al. 1987). Second, neutral models may be used to
compare random patterns to real landscapes to eval-
uate whether spatial patterns in empirical landscapes
are consistent with simple, random processes (Milne
et al. 1996). A third use of neutral models is as a means
of generating replicate landscapes that share statisti-
cal properties with an empirical landscape of interest.
These replicate landscapes can then be used to study
statistical outcomes over a large ensemble of land-
scapes. Finally, neutral models can be used as input to
simulation models to explore ecological dynamics in
heterogeneous landscapes (Gardner et al. 1989; Gard-
ner et al. 1992; O’Neill et al. 1992b; Palmer 1992;
Keitt and Johnson 1995; With and Crist 1995; Lavorel
et al. 1995).

Whereas percolation maps were the first neutral
models considered in landscape ecology, other neu-
tral models are capable of generating more complex
spatial patterns. A variant of the standard percola-
tion model involves a linear decrease of thep-value
across the lattice producing a gradient percolation-
map (Milne et al. 1996). Gradient percolation maps
vary from high density of ones on one side of the map
to a low density of ones on the other, with intermedi-
ate densities in between. The underlying gradient of
p-values can be more complex and include quadratic
and higher-order polynomial surfaces (A. Johnson,
personal communication). Gradient maps have been
used to study the geometry of ecological transitions or
ecotones (Milne et al. 1996).

Another variation on random neutral models is to
introduce contagion or autocorrelation in the result-
ing spatial pattern. These neutral models emulate the
effects of localized ecological processes (e.g., dis-
persal) that create clumped or spatially correlated
patterns. The most commonly used neutral model ex-
hibiting contagion is a surface created via a fractional-
Brownian process (or fractional-Brownian motion, of-
ten abbreviated fBm). Fractional-Brownian processes
exhibit self-affine or fractal scaling properties (Man-
delbrot 1982), and are thus useful for modeling fractal
landscape patterns (Burrough 1983a, b; Palmer 1988;
Milne 1992). The most popular method of generating
fBm is the mid-point displacement method (Peitgen
and Saupe 1988) in which line segments are recur-
sively broken at their mid-points. Each mid-point is
then randomly displaced a distance that depends on the
length or scale of the segment. Fractional-Brownian
surfaces have been used as neutral models to study
the influence of correlated spatial patterns on species
coexistence (Palmer 1992), predator-prey interactions
(Keitt and Johnson 1995), and disturbance ecology
(Moloney and Levin 1996). Other methods of pro-
ducing autocorrelated maps include adjacency biased
percolation maps (Gardner and O’Neill 1991) and ran-
dom fields constrained by a particular semivariogram
(Cressie 1993).

A neutral model that generates hierarchical pat-
terns is the random curds (Mandelbrot 1982) described
by O’Neill et al. (1992). Random curdling recursively
subdivides the plane into blocks. At each level of the
recursion, blocks survive with a probabilityp and are
subdivided again at the next level. Blocks that don’t
survive are assigned a value 0 and are thereafter ig-
nored. The process is repeated until a minimum block
size is obtained. The resulting curds are fractal in
structure.

Although neutral models have been useful in the
study of landscapes, there has been little mathemati-
cal synthesis of various neutral models. Synthesis can
often be achieved by adopting an alternative repre-
sentation of a problem. Here, I synthesize existing
neutral models by considering their properties in terms
of a spectral representation and show how the spectral
representation unifies concepts of pattern and scale
in landscape ecology. I discuss a number of exten-
sions, not discussed by previous authors, to spectral
synthesis methods with direct applications to neutral
landscape models. I also extend spectral methods to
include other frequency-based transforms such as the
wavelet transform (Daubechies 1992).
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Spectral representation of landscapes

When considering pattern in landscapes, one com-
monly thinks of a sequence of landscape attributes
repeated through space. A canonical example is the
cosine function that repeats itself in intervals of 2π .
The scale of the pattern is the distance over which the
pattern repeats itself or, in this example, the period of
the cosine function. (Notice that the frequency is the
inverse of the period so that high frequency implies
fine-scale pattern.) The intensity of the pattern is the
variation of the pattern or the amplitude of the cosine
curve.

Typically, landscapes exhibit pattern not on a sin-
gle scale, but on multiple scales simultaneously (Milne
1992). Spectral representation of a multi-scaled pat-
tern is illustrated in Figure 1. The spectral representa-
tion contains a number of spectral coefficients, each
one specifying a cosine curve with a given ampli-
tude and frequency (Renshaw and Ford 1984). The
summation or synthesis of the spectral components re-
produces the original landscape. The set of all spectral
components form the basis of the spectral representa-
tion and are sometimes referred to as a set of spectral
basis functions. A common spectral transform, called
the Fourier transform, represents patterns in terms
of cosine functions. However, the number of suit-
able bases for spectral representation is essentially
unlimited and can include step-functions and spatially
localized wavelets (see section 5).

To generate a spectral representation of a pattern,
we must first define an appropriate basis. If the pat-
tern is self-similar, the basis functions must posses
the property that any one spectral component is iden-
tical to a rescaled version of any other component. For
example, given two cosine curvesg0 andg1, then

g1(x) = (a1/a0)g0(f x + φ),
wherea1/a0 is the ratio of amplitudes,f andφ are
the frequency and phase ofg1. The set of cosine
functions with frequencies 1,2,3, . . . N/2 forms the
Fourier basis.

In fractal landscapes, the amplitudes of the compo-
nents are coupled to their frequencies via a power-law.
For a 1-D transect across a landscape,

E(af ) ∝ f−5/2−D

whereE(af ) is the expected amplitude of spectral
components with frequencyf andD is the fractal di-
mension of the landscape (Peitgen and Saupe 1988).
Thus, in the spectral representation, the self-similarity

Figure 1. Spectral representation of pattern and scale. Each dia-
mond represents a spectral component of the landscape. In fractal
landscapes, amplitude decreases as a power-law function of the fre-
quency. The log-transformed slope of the relationship is related to
the roughness or fractal dimension of the surface. The change in
frequency between successive spectral additions is related to the
lacunarity of the surface.

exhibited by fractals is equivalent to a scaling-relation
between the amplitude and frequency of components
– as the scale of the components decreases, their am-
plitudes decrease at a rate determined by the fractal
dimension. Of course, spectral methods need not be
limited to fractal patterns. As long as a suitable basis
is defined, any pattern may be represented in that basis.

A concept related to fractals is the lacunarity of a
pattern (Mandelbrot 1982; Allain and Cloitre 1991).
Roughly speaking, lacunarity refers to the amount
of variation among adjacent sites in a pattern. For
example, checker-board pattern have high lacunarity,
whereas random patterns will have somewhat lower
measures of lacunarity. A number of definitions exist
for lacunarity (Mandelbrot 1982; Peitgen and Saupe
1988). However the most commonly used is the vari-
ance among the means taken in overlapping windows
(Plotnick et al. 1993; Plotnick et al. 1996). Lacu-
narity also has an interpretation within the spectral
representation (Figure 1). An index of lacunarity is the
width of gaps between successive spectral components
in a pattern (Peitgen and Saupe 1988). Thus, lacu-
narity in natural landscapes reflects a limited number
of processes, each generating pattern within a tightly
restricted range of scales. Lacunarity can have impor-
tant consequences for ecosystem processes. Holling
(1992), for example, has suggested that lacunary
landscape patterns, by influencing foraging success,
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can result in discontinuous body-size distributions in
animals.

Scaling in ecological landscapes

Fractal pattern in landscapes often arises when a sin-
gle structuring process operates over many scales. For
example, tectonic faulting can lead to fractal topo-
graphic relief and a power law distribution of earth
quake energies (Feder and Feder 1991; Olami et al.
1992; Geller et al. 1997). Forest fires are another
structuring process that can generate fractal patterns
(Malamud et al. 1998). Disturbances, such as tree fall
gaps have also been shown to exhibit fractal scaling
Solé and Manrubia (1995).

To illustrate scaling in ecological landscapes, I
plotted the spectral decomposition (power spectrum)
of forest density for two regions of the continental
U.S., each covering greater than one million square
kilometers (Figure 2). The resulting spectra were
power law over nearly three orders of magnitude in
scale. The Southwest forest data exhibited scaling with
S(f ) ∝ 1/f 1.57 or H = 0.29; the Eastern for-
est data wasS(f ) ∝ 1/f 1.21 or H = 0.11. The
larger Hurst exponent in the Southwest reflects the
strong dependence of forest distributions on montane
environments. The pattern of mountain ranges in the
Southwest increased the variation in forest density at
low frequencies, thereby increasing the slope of the
spectral density plot. The Eastern forests were much
more evenly distributed. Thus, low frequency vari-
ation was less prevalent in the Eastern data which
resulted in a smaller Hurst exponent.

Spectral synthesis methods

Spectral representation not only provides a conceptual
framework for understanding pattern and scale, but
can also generate many classes of rugged landscape
patterns. The method of generating neutral landscapes
via spectral means is known as spectral synthesis. The
approach revolves around generating random Fourier
coefficients with a know distribution and then applying
an inverse Fourier transform to produce the landscape
in the spatial domain. In essence, the process is just
that illustrated in Figure 1: successive addition of
cosine functions with random phases and frequency-
scaled amplitudes. Generally speaking, spectral syn-
thesis is not restricted to Fourier transforms, nor sine

or cosine functions, but can be considered to include
any spectral method such as wavelet transforms.

Synthesis of fractional Brownian landscapes

A class of correlated landscapes easily generated
via spectral methods is fractional-Brownian surfaces
(Peitgen and Saupe 1988; Hastings and Sugihara
1993). Fractional Brownian motion is an extension
of regular Brownian random walks in which the cor-
relation between successive steps is controlled by a
parameterH known as the Hurst exponent (Mandel-
brot 1982). Unlike a standard first order autoregressive
process, fractional Brownian motion exhibit correla-
tions that do not decay rapidly with distance, but are
instead present at all spatial or temporal scales.

The Hurst exponent defines a scaling relation

E[(Xt −Xt ′)2] ∝ (t − t ′)2H , (1)

whereE[(Xt −Xt ′)2] is the expected variance of suc-
cessive incrementsXt andXt ′ of the random walk
spaced a distancet − t ′ apart. The left-hand side
of equation 1 is also known as the semivariance, a
measure commonly employed in geostatistics (Cressie
1993). A more complete description of fBm includes:
(1) The mean of the increments is zero, (2) the in-
crements are normally distributed, (3) the variance
of the increments scales with distance according to
equation 1, and (4) properties 1–3 are stationary and
isotropic with respect to distance or time. Note that be-
cause the expected mean of fBm is zero, the variance
of the increments is equivalent to the semivariance
used in geostatistics. Whereas semivariance analysis
usually identifies a scale above which the semivariance
remains constant, the semivariance of fBm increases
with the length of the sequence. In the limit of in-
finitely long sequences, fBm has infinite variance
(Mandelbrot 1982).

The Fourier transform of fBm is best understood
in terms of its spectral density. The spectral den-
sity is simply the square or modulus of the com-
plex Fourier coefficients. The spectral density of a
fractional-Brownian sequence scales as

S(f ) ∝ 1/f β (2)

wheref is frequency andβ = 1 + 2H . The Hurst
exponent controls the degree of correlation in the land-
scape: a large Hurst exponent,H → 1.0, results
in relatively smooth, correlated sequences, whereas
for H → 0.0 produces highly rough, uncorrelated
sequences.



483

Figure 2. Spectral density plots of forest density over 1.06 km2 regions in the Southwestern U.S. and the Eastern U.S [data from Evans et al.
(1993)]. Both plots show distinct power-law scaling. The slope of the Southwest wasβ = 1.57, and for the Eastβ = 1.21.

Figure 3. Fractional-Brownian surfaces. Left side: Hurst exponent= 1.0; Right side: Hurst exponent= 0.0.

Limitations and alternate methods

A property of fBm generated by the Fourier synthesis
method is that the sequences will be periodic, i.e., a
1-D sequence lies on a circle with the end-points ad-
jacent, a 2-D surface forms a torus, and so on. This
causes the variance of the increments to increase ac-
cording to equation 1 only up to distancesL/2 for
a sequence of lengthL. For distances beyondL/2,
the variance will begin to decrease. The periodicity
of Fourier generated landscapes is easily circumvented
by generating a large sequence and retaining only the
first 1

2 or 1
4 of the data.

The periodic nature of Fourier synthesis can be
quite useful when generating landscapes for input to
spatial simulation models. If the simulation uses peri-
odic boundary conditions (i.e, the simulated landscape
is wrapped on a torus such that both the left and right
edges and the top and bottom edges are adjacent),
the use of periodic neutral landscapes avoids sudden

changes when an individual crosses from one edge of
the landscape and reappears on the other.

An alternative method of generating fBm that does
not produce periodic sequences is the mid-point dis-
placement method (Peitgen and Saupe 1988). Mid-
point displacement generates fractal landscapes be
recursively breaking line segments and displacing the
mid-points a random distance. The variance of the
displacements is scaled as a function of the length of
the line segments; each recursion reduces the segment
length (or scale) by12. The result is an approximation
of fBm that is not periodic. Mid-point displacement
also produces artifacts: because each point is displaced
only one time, the resulting distribution of increments
is non-stationary. Furthermore, mid-point displace-
ment involves a geometric progression of frequencies
(i.e., fn+1 = rfn) and is thus related to Weirstrauss
functions (Mandelbrot 1982), whereas Fourier syn-
thesis builds sequences from a linear progression of
frequencies. Either method is sufficient for most uses
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in modeling. However, when validating mathematical
theory, the biases introduced by various methods of
generating fBm need to be considered.

The dimension of fBm

Given a supportEt ∈ RN with dimensionN , a plot
of X(Et) versusEt is contained inE = N + 1 di-
mensions:N dimensions forEt and one forX(Et). The
quantityE is referred to as the embedding dimension
of the sequenceX(Et). For an fBm with embedding
dimensionE, the fractal dimension of the surface is
approximately given byE − H (Mandelbrot 1982).
However, some care is necessary in defining the fractal
dimension of fBm because fractional-Brownian sur-
faces are not, strictly speaking, self-similar, but rather
self-affine (Barnsley 1988). Under successive magni-
fications, a fBm will scale differently with respect to
space or timet than with respect to heightX(t). Given
a fBmX(t), if one rescales the sequence by a factor
0 < r < 1 such thatX′(t ′) = rX(rt), the increments
will not be properly rescaled. In order to preserve
the original scaling properties, the increments must be
rescaled by the factorrH such thatX′(t ′) = rHX(rt).

The lack of self-similarity in fBm leads to some
ambiguity in defining a fractal dimension. A more pre-
cise definition stems from the concept of a zero-setZ

(Mandelbrot 1982). The zero-set of a fractal embedded
in E-dimensions is simply the set of all zero-valued
points in the sequence, i.e.,Et ∈ Z if X(Et) = 0. Since
taking the zero-set removes the height dimension, the
remaining spatial dimensions can be rescaled at will;
hence the zero-set is self-similar and has a well defined
fractal dimensionD = E−1−H (Peitgen and Saupe
1988).

H and1/f noises

Spectral approximation of fBm is most accurate for
0 ≤ H ≤ 1. In practice,H can be varied outside this
range to produce highly smooth sequences and highly
rough sequences. However, for 0> H > 1, one is no
longer dealing with approximations to random walks
and the relationship given in equation 1 does not hold.
Furthermore, settingH = 0 does not produce random
white-noise. From equation 2, note thatH = 0 results
in a 1-D spectral density of 1/f , whereas a purely ran-
dom sequence results in a 1/f 0 spectrum which would
require anH equal to−0.5. According to equation 1,
H = −0.5 implies a decreasing variance with increas-
ing distance, which is of course untrue for a purely
random sequence.

The relationship betweenH < 0 and fBm is re-
solved by noting that a Brownian random-walk (1/f 2)
is the integral of white noise (1/f 0). White noise is
discontinuous and nowhere differentiable; however,
it’s integral, a Brownian walk, is continuous, yet still
nowhere differentiable. The transition from continu-
ous sequences forH ≥ 0 to discontinuous sequences
for H < 0 explains why equation 1 no longer applies.
Thus, one can define a set of discontinuous fractional
white noises with−1 ≤ β < 1 whose integrals are
fractional-Brownian sequences (Feder 1988).

Multifractals and wavelet synthesis

Multifractal sets are the composition of fractal sets,
each with a different scaling relation (Feder 1988).
Thus, for multifractal patterns, the Hurst exponent
H can be replaced by a family of exponentsH(q).
The spectrum of scaling exponents is usually found by
examining the power-law relationship between scale
and various statistical moments of local measures on
the multifractal pattern (Feder 1988; Milne 1992; Ott
1993). In other words, unlike fBm, multifractal scal-
ing is non-stationary with respect to space or time:
each spatial location can have a different scaling ex-
ponent. Multifractal patterns can arise in situations
where local contingencies affect the processes gener-
ating landscape pattern. Localized patterns can simply
be the result of historical landscape features created
by ecological processes operating at widely different
time scales. For example, Solé and Manrubia (1995)
have suggested that variation in the recolonization
rate of tree-fall gaps in tropical forests can result in
multifractal patterns.

The wavelet transform is an ideal spectral method
for analyzing multifractal patterns (Arneodo et al.
1988; Muzy et al. 1991, 1993) and other hierarchi-
cal pattern in landscapes (Bradshaw and Spies 1992;
Bradshaw and McIntosh 1994; Dale and Mah 1998).
Wavelet transforms are closely related to Fourier
transforms, but involve the use of spatially localized
spectral components. The mathematics of wavelets
are quite technical [a thorough introduction can be
found in Daubechies (1992)]. However, programs for
computing wavelet transforms are widely available.
Roughly speaking, the wavelet transform represents
a pattern as a set of localized spectral components
(i.e., wavelets), each weighted by a wavelet coefficient
aφ(t) whereφ is the scale or level of the transform and
t is the spatial location or translation of the wavelet.
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The actual transform involves two filters: a scaling
function or father wavelet is used to average the data
at each level (in effect rescaling the data) and a mother
wavelet (or just wavelet) which extracts detail from
the sequence. The output from the scaling function is
used as input to the next level of the transform, and
the output from the wavelet filter is the wavelet coef-
ficients. To synthesize random patterns, theaφ(t) are
chosen from a random distribution and then inverse
wavelet-transformed.

Wavelet synthesis has a number of advantages over
Fourier synthesis. Because wavelet coefficients can be
specified locally, it is possible to generate fractal pat-
terns where the Hurst exponent varies across the land-
scape. A non-stationary Hurst exponent corresponds
to a multifractal pattern. In general, to precisely repro-
duce multifractal patterns, one should constrain all of
the momentsq of the input noise to match the desired
spectrumH(q) for a given multifractal pattern. For
demonstration purposes, it was sufficient to varyH in
a simpler manner. Figure 5 shows a multifractal fBm
whereH has been varied from 0.0 along the center-
line of the image to 1.0 along the edges. The result is
reminiscent of tectonic faulting.

Another advantage of wavelet synthesis is the wide
range of choices of wavelet bases. Wavelet bases are
constrained by certain mathematical requirements. As
a result, there is a trade-off between the smoothness
of the wavelet and its size. Compact wavelets tend
to be sharper and less continuous, whereas longer
wavelets can be relatively smooth (see Figure 4). The
choice of wavelets allows one to alter the texture of
generated sequences, independent of scaling proper-
ties. Low-order wavelets will produce rougher, more
discontinuous sequences. Longer high-order wavelets
can produce smoother images.

O’Neill et al. (1992) introduced a neutral land-
scape model based on Mandelbrot’s (1982) random
curds. Random curdling recursively subdivides the
plane into blocks. At each level of the recursion,
blocks survive with a probabilityp and are subdivided
again at the next level. Blocks that don’t survive are
assigned a value 0 and are thereafter ignored. The re-
sulting pattern is a fractal dust related to Cantor sets
(Mandelbrot 1982). A variant of curdling retains the
pattern generated at each scale and adds them together
to produce a fractal pattern. This form of random cur-
dling has a natural spectral representation in the Haar
wavelet basis (first row in Figure 4). Examples of these
curd-like fractals are shown in Figure 6.

Periodicity is a property shared by both Fourier
and wavelet transforms. Periodicity in the output im-
age can be corrected by generating a large image and
retaining only1

2 or 1
4 of the original. However, peri-

odicity is not intrinsic to the wavelet transform; it is
possible to construct non-periodic wavelet transforms
(Daubechies 1992) thereby eliminating any periodicity
in synthesized patterns.

Discussion

Despite the apparent differences among the models
discussed here, they can all be considered to be varia-
tions on a common theme. In the spectral representa-
tion, it becomes clear that all of these models can be
defined in terms of a spectral basis and a scaling rela-
tion between the amplitude and frequency of spectral
components (Table 1).

The importance of a common mathematical de-
scription of neutral models is that it allows one to
consider independently different aspects of pattern,
texture, and scale, and their influence on the spa-
tial properties of ecological landscapes. For example,
wavelet-based models could be used to analyze sta-
tionarity, isotropy, fractal-scaling, and continuity of
spatial patterns. In addition, understanding the re-
lationships among various landscape models allows
one to cast these analyses in much broader context;
the idiosyncrasies of a particular model is no longer
a deterrent to generalizing results across different
landscapes and different ecological processes.

Although not the main topic of this paper, spectral
methods may also be used for analysis of landscapes as
well as sythesizing artificial landscapes. Scaling expo-
nents may be estimated by fitting models to the power
spectrum of a landscape. Generally overlooked are
measures of the precision of such estimates and meth-
ods for hypothesis testing. The application of boot-
strapping and Monte Carlo techniques to the wavelet
transform is particularly promising. Because spectral
transforms are linear, traditional inference methods
such as ANOVA may be applied to the Fourier trans-
form of a spatial pattern (Dutilleul 1998). ANOVA of
the Fourier transform is mainly used to assess differ-
ences in periodicity among levels of the classification
factors and to determine if replicate time series share
similar periodicities. Fraction-Brownian noise is not
strictly speaking periodic. However, there is no reason
these methods cannot be generalized to study spatial
scaling. There is in fact an enormous literature on
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Figure 4. Wavelet synthesis of 1-D transects. Wavelet bases are the Daubechies (1992) series of order 1, 2, and 8. Wavelet order determines
the texture of the pattern: lower-order wavelets produce sharper edges; higher-order wavelets are more continuous.

spectral analysis of time series and spatial processes.
With respect to landscapes, an extensive review of
analysis methods was recently given by Gustafson
(1998).

In many respects, researchers have only scratched
the surface in the application of fraction-Brownian
landscapes and their derivatives (Appendix B). Most
studies have focussed on binary maps with suitable
habitat embedded in a mosaic of unsuitable habitat.
The real power in fractal landscapes may be as mod-
els of complex gradients. The emerging synthesis of
evolutionary and ecological theory strongly empha-
sizes the importance of regional landscape mosaics
in the organization of biological diversity. For ex-
ample, Thompson (1994) discusses many examples
of species that evolve quite different coevolutionary
specializations in different parts of their geographic
range. The spatial structure of landscapes is a key
component that determines the context in which these
coevolutionary specialization occur. Recent theoreti-
cal work has supported the idea that coevolutionary
relationships can vary along gradients, and in some
cases, the direction of the interaction may even re-
verse (Hochberg and van Baalen 1998). A promising

area for future modeling efforts would be to investigate
whether the introduction of complex gradients, such as
fractional-Brownian surfaces, alters the predictions of
these models.

Appendix

Spectral synthesis methods

The (continuous) Fourier transform of a sequence
X(t) of lengthT is

F(f ) =
T∫

0

X(t)e−2πif t dt, (3)

wheref is frequency,t is displacement in time or
space, andi represents the imaginary number

√−1.
By Taylor expansion of the complex exponential, it
can be shown that

reiφ = r cosφ + ri sinφ

thus relating equation 3 to a spectral representation
composed of sine and cosine functions. The result
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Figure 5. Multifractal surface generated via a wavelet synthesis. A 2nd-order Daubechies wavelet was used. Hurst exponents vary from 0.0 at
the center and 1.0 at the left and right edges.

Figure 6. Curd-like fractals generated via a Haar wavelet synthesis. Hurst exponents are 0.0, 0.5, and 1.0 from left to right.

Table 1. Summary of neutral landscape models

Model Spectrum Parameters Properties

Percolation map Segmented 1/f 0 0 ≤ p ≤ 1 Criticalp produces spanning cluster

Fractal curd 1/f β , Haar wavelet basis 1≤ β ≤ 3 Rectilinear texture, fractal scaling

Fractional-Brownian 1/f β 1 ≤ β ≤ 3 Continuous, nowhere differentiable

Segmented fBm Segmented 1/f β 0 ≤ β ≤ 2, 0≤ p ≤ 1 Patch edges have dimensionD = 2−H
Multifractal fBm 1/f β , varies spatially H(q) spectrum Fractals within fractals



488

of Fourier transforming a time series or spatial tran-
sect is a set of complex coefficientsaf exp(iφf ) with
amplitudesaf and phasesφf .

Using equation 2, one can generate fractional-
Brownian sequences and surfaces via the method of
spectral synthesis. For a 1-D fBm, the steps in the
procedure are
1. determine the Hurst exponentH ;
2. generateM random phasesφ1 . . . , φM uniformly

distributed on[0,2π];
3. generateM normally distributed random numbers
x1, . . . , xM ; multiply eachxf by 1/f β/2 to form
the amplitudesaf ;

4. form the complex coefficientsaf exp(iφf ) ≡
af cosφf + iaf sinφf ;

5. take the inverse (discrete) Fourier transform of
the coefficients (many software packages have a
routine for the discrete fast Fourier transform or
FFT);

6. convert the complex valued result to a real valued
result by dropping the imaginary part.
The procedure is easily extended to higher di-

mensions by setting the amplitude proportional to the
length of the vector of frequencies such that

S( Ef ) ∝
(

N∑
n=1

f 2
n

)− 1
2β

whereN is dimension of the support, i.e., the size of
the vector Ef . Note that the number of spectral coeffi-
cients required in the transform increases asMN ; thus,
the exponentβ must be adjusted to reflect the increase
in the number of spectral components. For a fBm with
support Ef ∈ RN , β = N + 2H . Examples ofN = 2
fractional-Brownian surfaces are shown in Figure 3.

Extensions of fractional Brownian models

The introduction of fractal neutral models is an impor-
tant contribution because it allows one to incorporate
spatial correlations into simulations and neutral stud-
ies of spatial pattern. Increasingly complex models of
spatial pattern can be generated by relaxing certain
assumptions of fBm such as isotropy or stationarity.
Despite the increasing complexity of these models,
they can still be considered neutral in the sense that
the models represent random ensembles of landscapes
whose properties are described by statistical averages.
These more complex neutral models could, for exam-
ple, be used to generate expected patch size distribu-
tions for landscapes that are fractal and stationary, but

non-isotropic, or any other appropriate combination of
parameters. In the following, I describe several useful
extensions of fBm for modeling landscape pattern.

Segmented fractional-Brownian landscapes

For simulations, it is often convenient to segment fBm
(Figure 7) to create landscapes of ones and zeros cor-
responding to habitat and non-habitat (e.g., Keitt and
Johnson 1995). To segment a fBm, all points above
some height are assigned a 1 and all points below are
assigned 0. Letting the critical height beXc, then the
landscapes are indexed by the parameterp defined as
the probability of a randomly chosenX being less than
or equal toXc. Forp = 1.0 the entire image is filled
with ones; forp = 1

2 half are ones, etc. A varia-
tion slices the fBm into multiple levels and assigns a
different label to each level.

The dimensions of the resulting clusters will be
somewhat higher than for the zero-set, since the in-
terior spaces of the zero-set are filled-in with ones.
Furthermore, the dimension of segmented fBm will
depend on the parameterp. At the extreme values of
p → 0.0 andp → 1.0, the dimension of the clusters
must approach 0.0 and 2.0 respectively, because in the
former case the set of ones is empty and in the latter,
the set of ones fills the entire plane.

Piece-wise log-linear scaling

In many cases, natural landscapes do not exhibit con-
stant scaling over all scales. Instead, scaling exponents
may differ across regions of the frequency spectrum
(Krummel et al. 1987). Multiple scaling regions re-
sult because different ecological and environmental
processes operate at different scales, each generating a
different scaling relation. The complete landscape pat-
tern is in effect the synthesis of the patterns generated
by these processes. It is simple to generate piece-wise
log-linear neutral landscapes via spectral synthesis by
taking advantage of the linearity of Fourier transforms.

From equation 3, note that the Fourier transform
is defined by an integral, or for discrete transforms a
summation. Integrals and sums are linear operations,
hence, Fourier transforms (and their inverses) have the
following properties

F(rX) = rF (X),

F (X + Y ) = F(X)+ F(Y ).
Thus, given the second property, one can simply con-
struct a series of landscapes, each filling in a region of
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Figure 7. Segmented fractional-Brownian surfaces (H = 1
2). From left to right:p = 0.2, 0.5, zero-set.

the spectrum according to particular scaling exponent,
and then adding all the landscapes together. An exam-
ple using two scaling regions is shown in Figure 8. To
produce the landscapes, the frequency spectrum was
broken into two regions, one containing the high fre-
quency components and the other, the low frequency
components. High and low regions were scaled with
Hurst exponents equal 1.0 or 0.0; spectral coefficients
were set to zero outside the scaling region for a given
sequence. The final images were created by adding
high and low frequency landscapes together.

Direction-dependent scaling

Natural processes that produce landscape pattern are
not necessarily isotropic: pattern forming processes
can be strongly direction dependent. Prevailing wind
direction, sun angle, water drainage down-slope, and
animal dispersal patterns can all exhibit direction de-
pendence. To model direction dependent scaling using
spectral synthesis, one only need introduce a differ-
ent Hurst exponent for each orthogonal direction. For
example, the Fourier transform of a 2-D surface gen-
erates 2-D coefficientsc(fx, fy). Thus, to generate a
2-D surface, one must specify coefficients in both the
x and y direction. LetHx be the Hurst exponent in
thex direction andHy be the Hurst exponent in they
direction, then

Hxy(fx, fy) = fxHx + fyHy
fx + fy ,

wherefx is the frequency of the spectral component
in thex direction andfy is the frequency of the spec-
tral component in they direction. To fully specify the
Fourier coefficients, it is necessary to computeHxy
for all combinations offx andfy . The resulting plane

of 2-D Fourier coefficient can then be inverse trans-
formed to produce direction-dependent scaling. An
example is shown in Figure 9.

Spatio-temporal landscapes

Natural landscapes are not static, but evolve through
time. It is therefore natural to consider dynamic
neutral-landscape models. Spectral synthesis methods
can be extended to high dimensional spaces and thus,
can also generate spatio-temporal landscapes with two
spatial dimensions and a time dimension. Further-
more, using direction dependent scaling, it is possible
to decouple temporal scaling from spatial scaling. To
model, for example, a landscape that had high rates
of disturbance and thus, low temporal correlation, one
can generate a series of landscapes with the appropri-
ate spatial scaling and tune their temporal correlation
by adjusting the Hurst exponent in the time dimension.
Two example landscapes are shown in Figure 10.

Lacunarity

Mandelbrot (1982) coined the term lacunarity to de-
scribe the extent to which a pattern contains gaps or
holes. Checkerboards, for example, have high lacu-
narity, whereas uniform random patterns have low
lacunarity. Lacunarity can also be applied to fractal
patterns; two fractal landscapes can possess the same
scaling exponents, but vary in their degree of lacu-
narity. In terms of landscape pattern, high degrees
of lacunarity indicate a scenario in which different
ecological processes generate pattern within restricted
and strongly separated scaling regions. For exam-
ple, the distribution of piñon-juniper woodlands in the
Southwest is likely controlled at fine scales by biotic
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Figure 8. Piece-wise log-linear surfaces. The Hurst exponent of the lower1
2 of the power spectrum (i.e. low frequencies) is given before each

row; the exponent for the upper1
2 of the spectrum is given atop each column.

Figure 9. Direction-dependent scaling with vertical (Hv = 0.0) and horizontal (Hh = 1.0) transects.

Figure 10. Correlated spatio-temporal landscapes. Time runs from left to right. The upper panel shows an uncorrelated temporal sequence; the
lower panel, a correlated temporal sequence.



491

Figure 11. Segmented landscapes with varying degrees of lacunarity. Lacunarity indices (rL) from left to right were 1, 0.2, 0.1, 0.05. The
landscape share the same scaling relation (H = 0.0) but differ in texture.

processes such as dispersal and seed predation, but at
broad scales by climate (Milne et al. 1996). Processes
acting on a pattern at widely different scales can lead
to strongly lacunary landscape patterns (Plotnick et al.
1996).

From the standpoint of spectral representation
(Figure 1), lacunarity is correlated with the size of
gaps between successive spectral additions (Peitgen
and Saupe 1988). For Weirstrauss functions, the scale
of each spectral addition follows a geometric series
such that thenth spectral component has a frequency
proportional to 1/rn with 0< r < 1, and the variance
of the increments scales proportional to 1/r2Hn. For
values ofr near zero, successive spectral additions are
spaced far apart in their frequencies. Thus,r can be
used as and index of lacunarity (Peitgen and Saupe
1988).

For Fourier methods, it is more appropriate to de-
fine the lacunarity index in terms of a linear sequence
of frequencies. Lettingf (n) be the frequency of the
nth spectral component, one can define a lacunarity
index

rL = 1

f (n+ 1)− f (n) (4)

For rL = 1, each successive spectral component has
a frequency one greater than the last, and results in
the standard approximation to fBm. For smaller val-
ues ofrL, the resulting images will exhibit increasing
patchiness or gappiness (Figure 11). For clarity, I refer
to the geometric lacunarity index defined in Peitgen
and Saupe 1988) asrG and the linear index defined in
equation 4 asrL.

Wavelet synthesis

The wavelet transform can be used to generate
fractional-Brownian noise (Figure 4). First, I define

the wavelet spectral density asSW (φ) = E[aφ(t)2].
The wavelet transform reduces the data sequence by
1/2 at each level; thus, the frequencyf is related to
the level of the transform byf = 2φ. In this sense,
the wavelet transform is related to the Weirstrauss
function or “lacunary” Fourier transform (Daubechies
1992) because it involves a geometric progression of
frequencies. As with the Fourier synthesis method, it
is necessary to define a scaling relation between fre-
quency and spectral density – for wavelets the same
expression can be used:

SW (f ) = 1/f β = 1/2φβ (5)

whereβ = N + 2H as previously defined. A useful
property of the wavelet transform is that the wavelet
coefficients of a pattern share the same scaling rela-
tion as the pattern itself (Arneodo et al. 1988). Thus,
to generate fBm using wavelet synthesis, one sim-
ply have to choose random wavelet coefficients and
scale the variance at each level according to equa-
tion 5. A simple method of generating fBm via wavelet
synthesis is as follows:
1. choose the Hurst exponentH ,
2. choose a wavelet basis for the transform,
3. wavelet transform a white noise signal (1/f 0),
4. multiply the wavelet coefficients at level 0 by 1/20,

level 1 by 1/2β , level 2 by 1/22β , and so on,
5. apply the inverse wavelet transform.

Confirmation of the correct 1/f β distribution of
fluctuations can be achieved by estimating the slope
of the log-transformed Fourier power-spectrum.
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