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Abstract

Theoretical studies of the stability of food webs have generally not incorporated space as a contingency affecting
coexistence of species. Here, I considered the importance of spatial heterogeneity on the stability of an individual-
based food web model. Individual agents diffused on a lattice of cells and interacted according to a set of probabilistic
interaction coefficients. Simulations were run on both uniform and non-uniform lattices. The model had two modes:
1. a mean-field mode with global interactions, and
2. a spatially localized mode in which species interacted within local neighborhoods.
Equilibrium number of species were compared among different simulations varying web connectance, interaction
strength, and lattice heterogeneity. Local interactions resulted in more species rich webs, indicating greater stability.
The addition of spatial heterogeneity to the lattice further altered relationships among species richness, web
connectance, and interaction strength, and increased coexistence among species. The results did not support the
stability criterion derived by May. However, an inverse relationship between web connectance and species richness
was observed suggesting that the product of connectance and species richness may govern the stability of real, finite
webs. © 1997 Elsevier Science B.V.
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1. Introduction

Since the time of Darwin’s (1859) meditations
on the ‘entangled bank’, ecologists have sought

explanations for the complexity and diversity of
ecosystems. Over the last 40 years, much of the
debate over ecological complexity has focused on
various notions of stability in trophically struc-
tured communities or ‘food webs’ (MacArthur,
1955; Elton, 1958; May, 1973; Pimm, 1982, 1991;
Cohen et al., 1990a). Empirical studies of food
web have generally considered patterns common
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among webs of varying size and complexity (Co-
hen, 1977; Sugihara et al., 1989; Hall and Raf-
faelli, 1991; Martinez, 1991, 1994; Pimm et al.,
1991). Theoretical food web studies have focused
on a somewhat different question: which food
web patterns are dynamically stable and are thus,
likely to be found in nature? (May, 1973; Pimm,
1982, 1991; Cohen and Newman, 1988). Most
food web studies have been based on static webs
from a single location (Closs and Lake, 1994).
Only recently have food webs studies incorpo-
rated spatial and temporal variation (Winemiller,
1990; Schoenly and Cohen, 1991; Closs and Lake,
1994) and non-equilibrium dynamics (Mickalski
and Arditi, 1995).

Spatial and temporal variation in species abun-
dance have important implications for theoretical
models of food webs. In particular, arguments
concerning the stability and complexity of ecosys-
tems based on non-spatial population models may
be affected by considerations of spatial dynamics.
Studies of species interaction in space have shown
that local, non-linear interactions can lead to
spatially heterogeneous population distributions
and violation of the ‘mean field approximation’
inherent in non-spatial models (Levin, 1974; Ches-
son, 1981; Kareiva, 1990; Durrett and Levin,
1994a; Keitt and Johnson, 1995). Spatial, non-lin-
ear models exhibit a range of dynamic patterns
including travelling waves and spatial chaos
(Nicolis and Prigogine, 1977; Mimura and Mur-
ray, 1978; Gerhardt et al., 1990; Hassel et al.,
1991; Vickers, 1991; Nowak and May, 1992;
Holmes et al., 1994).

Dynamic spatial patterns play an important
role in the coexistence of species by allowing prey
species or inferior competitors to persist in
ephemeral patches of low predator or dominant
competitor abundance (Huffaker, 1958; Comins
and Blatt, 1974; Caswell, 1978; Mimura and Kan-
on, 1986; Wilson et al., 1993). For example, Dur-
rett and Levin (1994a) considered the importance
of discrete individuals and spatial interactions on
the outcome of a two species game model. Both
for mutual competition and for predator-prey in-
teraction, Durrett and Levin (1994a) found that
individual discreteness and spatial interactions
significantly altered the model outcome when

compared with a corresponding non-spatial, con-
tinuous dynamical system. In simulations where
an inferior competitor persisted despite the pres-
ence of a dominant competitor, local abundances
were heterogeneous across the lattice, indicating
that the inferior competitor survived in ephemeral
patches where the dominant competitor had low
abundance, i.e. as a ‘fugitive species’ (Huffaker,
1958; Levin and Paine, 1974; Whittaker and
Levin, 1977; Tilman, 1994). Thus, species interac-
tions which are inherently unstable when modeled
without consideration of space can be stable when
modeled in a spatially explicit context.

Given that spatial fluctuations in population
abundance are important in determining coexis-
tence in simple, two species systems, spatial inter-
actions should also have important implications
for species coexistence in complex, multispecies
food webs. In this paper, I compared results from
an individual-based, spatially-explicit food web
model to the predictions of traditional, non-spa-
tial food web theory. I consider two main hy-
potheses:
1. Spatial interactions allow for greater complex-

ity in food webs than do non-spatial interac-
tions; and

2. Increasing spatial heterogeneity of the environ-
ment leads to greater coexistence of species
and hence increasingly complex food webs.

1.1. Stability and complexity

MacArthur (1955) and Elton (1958) originally
suggested that complex communities, those that
contain more species and more interactions,
would be more stable than simple communities.
Elton (1958) based his arguments on the observa-
tion that species poor communities often exhibit
population cycles and sudden pest outbreaks.
MacArthur (1955) argued that increased diversity
of trophic links among species would result in a
community more resistant to change when any
one species was removed. Later, May (1972, 1973)
showed that for simple community models, the
opposite was true; increasing complexity, in terms
of more species and greater number of interac-
tions, resulted in decreased system stability. May’s
work lead to a great deal of theoretical develop-
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ment of food web models (reviewed in Pimm
(1982)) as well as criticism (McNaughton, 1977;
Paine, 1988).

Much of the debate over stability and complex-
ity resulted from confusion over the precise mean-
ing of stability (Pimm, 1984; Closs, 1991). Pimm
(1991) identified five concepts associated with
community stability that have been applied at
three different levels of biological organization.
For example, May’s (1973) results were based on
a particular mathematical definition of stability,
whereas MacArthur (1955) considered resistance,
i.e. the ability of the community to remain near
equilibrium when one species abundance is abnor-
mally high or low. Elton (1958) equated temporal
variability in abundance with stability. Thus, it is
important to define precisely what one means by
stability. Since I will use stability in the mathe-
matical sense as a null hypothesis for comparing
spatial versus non-spatial models, I briefly outline
the analytical method of determining stability in
continuous, non-spatial population models.

Given a (possibly) non-linear system of differ-
ential equations describing population growth

dN(
dt

=F( (N( ) (1)

where N( is a vector whose elements contain the
abundance of each populations; stability is deter-
mined by examining the behavior of a small per-
turbation z̄ to an equilibrium solution
N( *=F( (N( *). If N( *+ z̄ remains bounded within a
small, finite distance from N( as t��, then N( * is
considered a stable solution to Eq. (1). If z̄ decays
such that N( *+ z̄�N( * as t��, then the solution
is asymptotically stable (Seydel, 1988).

As long as z̄ is small, the behavior of z̄ can be
approximated by taking a Taylor series expansion
about the equilibrium solution and casting out
second order and higher terms, which gives:

dz̄
dt

=Jz̄ (2)

where J is a matrix whose elements are the first
partial derivatives of F( . The matrix J is often
called a ‘community matrix’ because it describes
how a change in one species abundance near an
equilibrium solution with affect the abundance of

any other species. If for example, the interaction
between two species is negative ( jkl=dl/dkB0),
then a small increase in the first species abun-
dance (k) will result in a decrease in the abun-
dance of the second species (l).

Making certain assumptions (i.e. non-repeated
eigenvalues) the solution to Eq. (2) is given by

z̄t= %
m

i=1

j( ie
li t (3)

where m is the number of species; j( are constant
vectors and; l are eigenvalues of J. Recalling that
limt�� exp(lt)=0 for lB0, clearly the solution
will be asymptotically stable if the largest eigen-
value lmax is less than 0 and unstable if lmax\0.
In the case of complex eigenvalues, stability is
determined by the largest real part.

1.2. Stability in random Lotka-Volterra webs

The Lotka-Volterra form of Eq. (1) for a spe-
cies i e {1, 2, 3, …, m} may be written as:

dni

dt
=ni

�
bi+%

m

j

aijnj
�

(4)

where ni is the abundance of species i ; bi is the
intrinsic growth rate; and aij is a coefficient deter-
mining the effect of species j on species i.

May (1972) studied the statistical distribution
of eigenvalues for randomly constructed commu-
nity matrices. Species were assumed to be self-
damping (density dependent) so the diagonal
terms (i.e. jii) were set to −1. A fraction C of the
remaining off-diagonal interaction terms were as-
signed random values with mean zero and stan-
dard deviation s. The sign of the interaction term
determined the type of species interaction. A neg-
ative interaction represented predatory or para-
sitic interaction and a positive coefficient
represented mutualism. Elements of the commu-
nity matrix that were not assigned a random
number were set to zero which meant that the two
species corresponding to that row and column of
the matrix had no effect on each other. Thus, the
set of interaction coefficients, taken together,
defined a particular community structure.

May (1972) proposed that random community
matrices would be unstable if:
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Fig. 1. Upper bound on stable species coexistence predicted by Eq. (6).

s(mC)1/2\1 (5)

where m is the number of species. According to
May’s stability criterion, the stability of random
Lotka-Volterra webs should decrease as the num-
ber of species (m), interactions (C), and interac-
tion strengths (s) increase. Later, Cohen and
Newman (1985) showed that May’s criterion is
not correct for random Lotka-Volterra webs in
general, but only to a smaller class of food web
models. However, the inverse relationship be-
tween species number and connectance implied by
Eq. (5) does appear to hold (Pimm, 1982; Cohen
and Newman, 1988; Cohen et al., 1990b).

In this paper, I tested whether May’s stability
criterion applies to a set ten of finite population
interacting on a lattice. The relationship expressed
in Eq. (5) implies an upper bound on the number
of species that can coexist in a given food web.
Rearranging terms, the maximum number of spe-
cies expected to coexist in a community is

m=
1

s2C
(6)

This relationship is shown graphically in Fig. 1.
The prediction made by Eq. (6) is that a ‘species
saturated’ community starting from a point above
the surface in Fig. 1 will, in the presence of any
minute disturbance or noise, be subject to extinc-
tion and collapse down to a point near the maxi-
mum stable number of species. Thus, whether Eq.
(5) holds for the lattice-based model can be tested
by starting a series of simulations with many
species initially and recording the final number of
species after extinction have occurred.

2. Methods

2.1. A spatially-explicit food web model

To test the importance of spatial heterogeneity
on food web stability, I constructed a spatially-ex-
plicit, individual-based model of species interac-
tion occurring on a lattice. The implementation
was similar to the ‘interacting particle systems’
described by Durrett and Levin (1994b), but with
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aspects similar to a cellular automata model
(Wolfram, 1984; Hogeweg, 1988). Interactions
among individual organisms were simulated on a
lattice of cells. Only one individual was allowed to
occupy a given cell at any one time. Interactions
among individuals occurred if they tried to oc-
cupy the same cell at the same time. The outcome
of these encounters were determined by a set of
coefficients analogous to the interaction coeffi-
cients (aij) in the Lotka-Volterra model (Eq. (4)).

Simulations were run either in local interaction
mode or in a global interaction ‘mean-field’ mode.
When run in local mode, individuals moved to
one of their four nearest neighbor cells (i.e.
North, South, East or West) with equal probabil-
ity. Reflecting boundary conditions were used
such that no move occurred when an individual
attempted to move off the lattice. In the non-lo-
cal, ‘mean-field’ mode, individuals moved with
equal probability to any cell on the lattice,
thereby eliminating any spatial structure from the
model.

Updates to the lattice were asynchronous, i.e.
the outcome of each individual movement or in-
teraction was immediately applied to the lattice
before another individual was allowed to move.
All cells in the lattice were visited in random
order during each round of updates (henceforth
called an iteration) to avoid biases that could
occur from sweeping across the lattice in one
direction. Asynchronous updating better approxi-
mates the continuous time found in nature while
allowing for discrete individuals and interactions.
Synchronous updating, where all interaction out-
comes are determined before updating the lattice,
introduces a strong temporal granularity and is
responsible for many of the patterns observed in
discrete-time spatial models (Huberman and
Glance, 1993).

When an individual of species i attempted to
move to a cell occupied by an individual of spe-
cies j, the outcome of the interaction was deter-
mined by a set of interaction coefficients. The
interaction coefficients ranged from −1:0 to 1:0
and both the forward coefficient (aij) and the
backward coefficient (aji) were used. Two proba-
bilities were computed from the coefficients. The
first was the probability pm that an individual of

species i would move to a cell occupied by species
j. The probability of moving was determined by

pm(i, j )=
aij−aji+ �aij �+ �aji �

4
(7)

where aij is the effect (interaction term) of species
j on species i, and aji is the effect of species i on
species j. A successful move was determined by
comparing pm to a uniform random number
re[0, 1). If rBpm the move was successful; in
which case the individual of species i would oc-
cupy the new cell and the former occupant was
deleted from the lattice. Individuals always moved
when encountering an available, unoccupied cell.

Secondly, I computed the probability of repro-
duction

pr(i, j )=
!aij(0.5+0.25(1−aji)

0
aij\0
aij50

(8)

where symbols are the same as in Eq. (7). Repro-
duction could only occur after a successful move
to a new cell. Again, pr was compared with a
uniform random number to determine the out-
come. If reproduction was successful, then the
individual of species i would leave a copy of itself
behind at its original location. The result of a
successful move followed by reproduction was
one less individual of species j and one more of
species i.

The interaction coefficients in the individual-
based model are analogs of the coefficients in
May’s community matrices. The individual-based
model recasts the original Lotka-Volterra model
into a stochastic framework in which the macro-
scopic dynamics emerge from the individual
events rather than being derived under the as-
sumption of mass action.

Qualitatively, the interaction coefficients in the
individual-based model operate identically to
May’s model. For example, if species i has a
negative interaction on species j and species j has
a positive effect on species i, then the interaction
is predatory. The coefficients in the individual-
base model for a predatory interaction would be
aijB0 and aji\0. Similarly, in a community ma-
trix, a predatory interaction corresponds to aij=
dj/diB0 and aji=di/dj\0. Thus, in either
model, an increase in the predator population (i )
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Table 1
Summary of interactions

pm(i, j ) pr(i, j )aij aji Interaction type pm×pr

1.00 1.001.00 −1.00 1.00Predator-prey
0.00 0.000.00Prey-predator−1.00 1.00

Predator-prey 0.50 0.440.50 0.22−0.50
0.000.000.00Null0.00 0.00

0.00 0.00−1.00 −1.00 Competition 0.50
0.50 0.251.00 1.00 Mutualism 0.50

Amensal 0.50 0.751.00 0.380.00

would result in a decrease in the prey population
( j ) and vice versa.

In both the Lotka-Volterra model and the indi-
vidual-based model, as the absolute magnitude of
the coefficients increase, the ‘strength’ of the inter-
action increases. In the individual based model, as
the absolute magnitude of the coefficients (aij, aji)
increase, the probabilities of movement and re-
production during an encounter of species i with
species j increases; thus, the frequency of success-
ful predation by species i on species j increases.
Consequently, an increase in the population of
species i will result in a decrease in species j ; the
magnitude of the change determined by the mag-
nitudes of the interaction coefficients. Similarly, in
the community-matrix model, large absolute mag-
nitudes of the coefficients imply that a small
change in species i will cause a large change in
species j. Small absolute magnitudes in the com-
munity matrix imply a situation in which a small
change in species i has a small effect on species j.
This is what May (1973) referred to as interaction
strength.

The main difference between the coefficients
used in the two models is that the partial deriva-
tives in the community matrix represent the net
effect of species i on j, averaged over space and
averaged over all encounters. In the individual-
based model, the coefficient affect the outcome of
individual encounters. It is instructive to compute
probabilities of movement and reproduction for
different sets of interaction coefficients. This is
done in Table 1. Because the individual-interac-
tion coefficients were not, strictly speaking, equiv-
alent to the coefficients in the community
matrices, the symbol P is used instead of s to

represent the interaction strength in the individual
based model, defined as the mean square of the
probabilistic interaction terms.

Finally, two intrinsic growth parameters were
defined. The first parameter was a constant prob-
ability of mortality which was assessed on each
individual before calculation of movement and
reproduction probabilities. The second parameter
was the probability of reproduction on encounter-
ing an available, unoccupied cell.

2.2. Simulations

Simulations were run on both homogeneous
lattices, where all lattice-cells were available for
occupation, and on heterogeneous lattices, where
some cells were made unavailable for coloniza-
tion. Simulations on homogeneous lattices exam-
ined the effect of emergent patterns, generated
solely by the species interactions, on species coex-
istence and food web complexity. Simulations on
heterogeneous lattices explored the effect of spa-
tial heterogeneity of the lattice. Results from sim-
ulations on homogeneous and heterogeneous
lattices were compared.

2.2.1. Homogeneous lattices
Three sets of simulations were run on 100×100

cell, homogeneous lattices. All cells in homoge-
neous lattices were available for occupation. In
each set of simulations, a parameter space consist-
ing of connectance (C) and interaction strength
(P) was systematically explored. Connectance, or
the fraction of non-zero interactions, was varied
from 0.1 to 1.0 in 0.1 increments. Interaction
strength, defined as the expected mean square of
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the non-zero interaction terms, was also varied
from 0.1 to 1.0 in 0.1 increments.

Each lattice was seeded randomly with 254
species filling all cells in the lattice. Simulations
were allowed to run 5000 iterations and the final
number of species was recorded. In all cases, the
number of species reached an equilibrium value
before the end of the simulations. Ten replicate
simulations with independent random seed values
were run for each combination of connectance
and interaction strength for a total of 1000 runs in
each set.

The first set of simulations attempted to repro-
duce, within the constraints of the lattice-model
implementation, the assumptions implicit in sta-
bility analyses of Lotka-Volterra models used in
traditional food web studies (e.g. May, 1972,
1973; Pimm, 1982). Non-spatial dynamics were
simulated by using a global movement rule. Spe-
cies interactions were emphasized over intrinsic
growth and mortality by allowing all species to
reproduce when encountering empty cells and set-
ting the background mortality rate to 0.0.

As a comparison to the non-spatial simulations
and the prediction made in Eq. (6), a second set
of simulations was run with all parameters identi-
cal to the first set, except that local interactions
were used. Again, all species reproduced when
encountering empty cells and the background
mortality rate was set to 0.0.

A third set of simulations was run to examine the
importance of intrinsic mortality on species coexis-
tence. Parameters were the same as in the second
set, but with a 0.05 background mortality rate.
Simulations were run in local interaction mode.

2.2.2. Heterogeneous lattices
To test the effect of landscape heterogeneity on

species coexistence, I ran two additional sets of
simulations on heterogeneous lattices. Heteroge-
neous lattices had certain cells ‘masked’ or made
unavailable for occupation. Two types of masks
were used. Percolation masks (Stauffer and
Aharony, 1985; Gardner et al., 1987) were con-
structed by making lattice cells available for colo-
nization according to a probability p̂ (Fig. 2). The
remaining fraction of cells (1− p̂) were unavail-
able.

Fig. 2. Percolation masks. From left to right, fraction of
available cells is 0.1, 0.3, 0.5, 0.7, 0.9.

The second type of masks used were segmented
fractional-Brownian surfaces (Mandelbrot, 1982;
Keitt and Johnson, 1995). Fractional-Brownian
surfaces were constructed using the mid-point dis-
placement method of generating fractals described
by Saupe (1988). The surfaces were then seg-
mented, making all locations above the mean
available for colonization and all those below the
mean unavailable, such that for each lattice,
roughly 50% of the cells were available for colo-
nization. The degree of contagion among cells was
controlled by the Hurst exponent H ranging from
0.0 to 1.0 (Fig. 3). A Hurst exponent of 1.0
produced highly connected landscapes with most
of the available habitat lumped into one or a few
large patches. A Hurst exponent of 0.0 produced
highly fragmented landscapes composed of many
small habitat islands. Intermediate values for H
produced landscapes with intermediate levels of
connectivity; the available cells were distributed
among a few medium-sized patches and many
small patches. The effect of fragmentation (small
H) was to constrain the movement of individuals
which caused species interactions to be highly
localized within a given patch.

To make the relationship between the Hurst
exponent and landscape connectivity more intu-
itive, consider that, from the perspective of an
individual moving on the lattices, connectivity is a
function of how many neighboring cells are avail-
able for colonization. If all cells on the lattice
have zero available neighbors, then the effective
connectivity is zero because no individual can

Fig. 3. Segmented fractional-Brownian masks. From left to
right, Hurst exponents are 0.0, 0.25, 0.50, 0.75, 1.0.
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move. When all neighbor cells are available, con-
nectivity is at its maximum. Thus, the connectivity
of the lattice is a function of the number of ‘edge’
cells, i.e. those with mixed available-non-available
neighborhoods.

Based on fractal geometry (Mandelbrot, 1982),
it is easy to show that the number of edge cells in
the lattice is proportional to w2−H, where w is the
width of the lattice. Thus, the fraction of edge
cells is given by

P(e):w2−H/w2=w−H (9)

where P(e) is the fraction of edge cells in the
lattice. Therefore, as H approaches zero, the frac-
tion of edge cells approaches unity and connectiv-
ity is near zero. When H=1, the proportion of
edge cells is roughly 1/w, and connectivity is
maximized.

As was done for the homogeneous lattices,
simulations were run with connectance ranging
from 0.1 to 1.0. Interaction strength was held
constant at 1.0. A 5% rate of mortality was
included and movements were local. In addition,
5% of moves were global to allow species to
colonize isolated patches. Lattices were 100×100
cells in size.

2.3. Statistical analysis

For each set of simulations, I tested whether the
observed relationship between stability and com-
plexity matched that predicted from the stability
analysis of the non-spatial Lotka-Volterra webs.
Assuming that a ‘saturated’ community will col-
lapse to its maximum stable species richness, Eq.
(5) can be rewritten as

s(mC)1/2=1.

Adding spatial interactions could have two ef-
fects. First, it could alter the relationships among
number of species, connectance, and strength.
This would change the steepness of the curves
relating species richness to connectance and
strength in Fig. 1. Second, spatial interactions
could increase species richness over the entire
range of connectance and strength, raising the
entire surface in Fig. 1. Thus, we can generalize
Eq. (6) as

m=gsaCb (10)

where a and b determine the slope of the relation-
ships among species richness, connectance, and
strength; g is the intercept or number of species
when s=C=1. Log-transformed, Eq. (10) is
log m=a log s+b log C+ log g. I tested the hy-
pothesis that the estimated parameters, a, b, g

were equal to the expected values derived from
May’s stability criterion: a0= −2.0, b0= −1.0
and g0=1.0 (SAS procedure REG). Differences
between model runs were tested using ANOVA
(SAS procedure GLM). Each set of simulations
(global movement, local movement, local move-
ment with mortality) was considered a treatment
in a full factorial design (connectance× interac-
tion strength× treatment).

Data from simulations on heterogeneous lat-
tices were also fit to Eq. (10), except that P was
replaced with either p̂ or H. ANOVA was used to
test for a significant effect of spatial heterogeneity
on species richness.

3. Results

3.1. Emergent spatial patterns

Local species interactions resulted in a variety
of spatial patterns (Fig. 4). In many cases, travel-
ling wave patterns, involving three or more spe-
cies, were observed. Persistent wave patterns
occurred when there were cyclic chains of 9spe-
cies interactions, i.e. the spontaneous formation
of hypercycles (Eigen and Schuster, 1979). Occa-
sionally, stable patches of a single species formed.
Stable patches occurred when a patch of one
species was surrounded by other, non-interacting
species. However, often, these patches would
eventually disappear when an interacting species
(say a predator species) finally invaded the patch.

3.2. Species coexistence

For simulations using a global movement rule,
power-law relationships between species richness
and both interaction strength and connectance
were significant (R2=0.89, F2.997=3862, PB
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Fig. 4. Emergent spatial patterns for nine coexisting species.

spatial simulations using the same parameters
(Fig. 5). Again, the regression was significant
(R2=0.84, F2899=2414, PB0.0001) and interac-
tion strength had a relatively small effect on coex-
istence (a=0:26, F1897=4178, PB0.0001).
Connectance had a strong effect on species rich-
ness. The estimated value for b=2.54 was signifi-
cantly greater than the expected value
(F1897=1378, PB0.0001). The intercept was
larger than the expected value (F1897=140, PB
0.0001) and greater than that found for the non-
spatial simulations (Table 2) indicating an overall
increase in stability compared with the non-spatial
simulations. The flattening of the response curve
for low values of connectance in Fig. 6 was simply
due to the limitations of the model; no more than
254 species were allowed. Simulations where no
species went extinct were not included in the
statistical analysis.

Adding 5% mortality to the local interaction
model (Fig. 7) greatly reduced the effect of con-
nectance on species richness. The overall regres-
sion was significant (R2=0.74, F2997=1405,
PB0.0001). Interestingly, the estimated value of
b=0.99 was not significantly different from the
analytical result, b0=1.0, for non-spatial models
(F1997=0.19, P=0.66). However, the intercept
was significantly higher than the expected value
(g=1.88, F1997=632, PB0.0001) and over twice
as large as the intercept for the non-spatial simula-
tions, indicating that spatial interactions increased
model stability even in the presence of background
mortality. As with the previous two results, inter-
action strength had a relatively small effect on
coexistence (a=0.20, F1997=8833, PB0.0001).

Comparing all three sets of simulations on ho-
mogeneous lattices, both connectance and interac-
tion strength had a significant effect on species
coexistence (Table 3). A significant interaction
effect between connectance and strength was not
observed. Simulations with local interactions sup-
ported greater species richness than did the mean-
field simulations; local movement without
mortality resulted in the greatest species richness
followed by local movement with mortality, then
global movement (Tukey’s test; all comparisons
significant at a=0.05). Significant interaction
effects were found for connectance-by-treat-
ment, strength-by-treatment and connectance-by-

0.0001) (Fig. 5). However, the regression parame-
ters were significantly different from the expected
values for May’s stability criterion (Table 2). The
most pronounced difference was the weak effect of
interaction strength on species richness. The esti-
mated value of a= −0.04 was considerably
higher than the expected value (F1,997=19154,
PB0.0001), resulting in fewer species coexisting
than expected for low values of P. Connectance
had a stronger effect on coexistence than expected
(b= −1.25; F1,997=300, PB0.0001). However,
the difference between May’s criterion and the
lattice model in terms of stable number of species
was relatively small. For P:1.0, the difference
was at most two to three species. The estimate of
the intercept g=0.91 was significantly lower than
the expected value (F1,997=23, PB0.0001).
Again, the difference was not biologically mean-
ingful, predicting only 0.09 fewer species (0.91
versus 1.0) for P=1.0 and C=1.0. Thus, consid-
ering P:s:1.0, the number of coexisting species
was approximately the same as predicted by May’s
criterion. As interaction strengths decreased (P�
0), fewer species coexisted than predicted by May’s
criterion.

The results for local interactions with no mor-
tality (Fig. 6) were quite different than for non-
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Fig. 5. Simulated species richness using global movement.

strength-by-treatment (Table 3). Thus, the rela-
tionship between community structure and stabil-
ity is not as simple as suggested by studies that do
not incorporate spatial heterogeneity.

Two additional sets of simulations were run on
heterogeneous lattices. Simulations on percolation
maps produced a strongly non-linear response in
species richness to the degree of heterogeneity in
the lattice (Fig. 8). The number of species initially
increased as spatial heterogeneity increased, peak-
ing at p̂=0.3, and then decreased for small values
of p̂. The decrease in species richness was proba-
bly due simply to the decrease in total number of
available cells as p̂ decreased. A regression
through the log-transformed data was significant
(F2997=512, PB0.0001), but the R2 dropped to
0.51 as one would expect when fitting a linear
model to the non-linear pattern of species num-
ber. The effect of connectance on species coexis-
tence was somewhat reduced, compared with
other simulations with local interactions, as well
as lower than for the stability analysis results
(b=0.78, F1997=29, PB0.0001).

The effect of p̂ on species richness was tested.
Heterogeneity had a significant effect on number
of species (F9900=1127, PB0.0001). The relation-
ship between connectance and species coexistence
appeared to vary with lattice heterogeneity (Fig.
8). This resulted in a significant interaction effect
between connectance and p̂(F81 900=80, PB
0.0001).

Species richness was greater on increasingly het-
erogeneous fractal lattices (F101 099=235, PB
0.0001)(Fig. 9). Unlike the simulations on
percolation lattices, the increase in species richness
was roughly monotonic with increasing hetero-
geneity, thereby supporting the assertion that the
decrease for low p̂ was due to reduced area. A
significant connectance-by-Hurst-exponent inter-
action was found (F901 099=1.86, PB0.0001). The
regression estimate of b=1.06 was consistent with
other simulations using local movement (R2=0.85,
F21 097=3049, PB0.0001). The slope of the rela-
tionship between the Hurst exponent and number
of species was −0.67. Thus, more species coexisted
as the heterogeneity of the lattice increased.
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Table 2
Summary of regression results

a9S.E. b9S.E.Fig. Movement Mort. g9S.E.

−0.0490.014 0.9190.019−1.2590.0140.05 Global
−2.5490.037 1.5490.0366 Local 0.0 −0.2690.027

1.8890.025−0.9990.019−0.2090.0190.057 Local
−0.7890.040 —8 Locala 0.05 —
−1.0690.016 —9 Localb 0.05 —

a Local movement on percolation lattices.
b Local movement on fractal lattices.

4. Discussion

These results establish local interactions and
spatial heterogeneity as contingencies affecting the
coexistence of species. Adding spatial interaction
not only increased species coexistence compared
with non-spatial models, but also altered the rela-
tionship between interaction strength, connec-
tance and stability. Adding spatial heterogeneity
to the environment further altered stability-com-
plexity relationships and lead to increased coexis-
tence among species.

The simulated results did not agree in general
with May’s stability criterion for random commu-
nity webs. The major qualitative difference be-
tween the simulated results and May’s criterion
was the lack of a strong effect of interaction
strength on species richness. This may have been
due to the difference between the discrete proba-
bilistic interaction terms used in the lattice model
and the continuous partial differentials used in
community matrices. The lack of an effect of
interaction strength suggested that the magnitude
of the interaction probabilities affected primarily
the rate at which the communities collapsed to an
equilibrium, but did not greatly alter the final
number of species.

More important however were the comparisons
between the model when run in non-spatial mode
versus simulations with spatial interactions. Com-
paring the model to itself provides a robust con-
trol because all aspects of the implementation are
the same. The results from those comparisons
were clear; spatially structured food webs are
more stable in terms of number of coexisting
species than webs without spatial population

structure. Comparisons among simulations run
with different degrees of spatial heterogeneity in
the underlying lattice also control for the model
implementation, isolating only the effect of differ-
ent lattices. Those comparisons also showed that
coexistence and stability in food webs can be
altered by spatial considerations.

The inverse power-law relationship between
web connectance and number of species predicted
from May’s criterion was observed in all simula-
tions. This is contrary to the result found by
Cohen et al., 1990b that no simple relationship
between connectance and species richness governs
food web stability. Although Cohen et al. dis-
prove the generality of May’s criterion, their anal-
ysis is restricted to webs of infinite size. Food
webs in nature must be limited in size due to some
limiting resource. In the lattice model, space was
always a limiting resource on population growth.
The decrease in species richness with increasing
connectance observed in the lattice model suggests
a relationship similar to May’s for webs in which
some resource limits the maximum possible web
size.

In general, the rate (b) at which species richness
decreased with increasing web connectance was
similar to that predicted by Eq. (6). The exception
was the strong effect of connectance for simula-
tions with local interactions and no mortality. The
reason for the high degree of coexistence for low
connectance and no mortality has to do with the
constraint of allowing only a single individual to
occupy any given cell. Thus, for any individual to
move to an occupied cell, the current occupant
had to be removed from the lattice. This intro-
duced a correlation between the rate of movement
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Fig. 6. Simulated species richness with local movement.

across the lattice and the interaction terms (see
Table 1). For low values of connectance, the
situation often arose in which an individual was
surrounded by other species with which it had
zero interaction terms. In the absence of mortal-
ity, the entire lattice could become essentially
‘frozen’ in place with no individual able to move,
reproduce, or go extinct, explaining the high spe-
cies richness observed (Fig. 6).

The constraint of allowing only a single individ-
ual in each cell emphasizes localization of species
interactions and hence the importance of space in
determining stability. Similarly, cellular automata
models which have been applied to modeling eco-
logical systems are strongly spatial, being both
discrete in space and time (Hogeweg, 1988;
Molofsky, 1994). Other spatial models allow for
greater mixing of individuals by allowing multiple
individuals within a patch or cell and decoupling
interactions from dispersal. Examples include
metapopulation models (Hanski and Gilpin,
1991), partial differential equation models
(Holmes et al., 1994), and particle interaction

models (Durrett and Levin, 1994b). At the other
extreme, ordinary differential equation models
such as the Lotka-Volterra system assume a com-
pletely mixed system. Thus, these models repre-
sent a spectrum of different degrees of spatial
constraint on species interactions. The appropri-
ateness of a particular model will depend on the
how well it captures the spatial constraints of the
system being modeled.

There are a number of ways in which the
current model could be extended. For example,
constraints were not placed on the topology of the
randomly constructed webs. Feeding cycles were
allowed and often observed in the simulated webs.
Whereas the formation of stable ‘feeding cycles’ in
spatial simulations is interesting from the stand-
point of molecular evolution (Eigen and Schuster,
1979), they are not realistic in food webs (Cohen,
1977; Pimm, 1982). It would be interesting to
compare results from random webs to webs gener-
ated according to the trophic cascade model (Co-
hen et al., 1990a) which does not allow consumer
cycles. Other modifications might include intro-
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Fig. 7. Simulated species richness with 5% mortality added.

ducing differences in the movement rule depend-
ing on the trophic level of a species. For example,
predator species which typically have greater body
size than prey species (Peters, 1983) could be
allowed to move further or cover a greater num-
ber cells in each iteration (Milne et al., 1992). It

would also be interesting to explicitly model en-
ergetic constraints on movement, reproduction,
prey-handling, and basal metabolism based on
allometric scaling relations.

In conclusion, this study has shown that for
numerical simulations of species interactions on
lattices, the relationships among food web con-
nectance, interaction probabilities, and species
richness vary depending on whether interactions
are local in space, or global. Furthermore, the
introduction of spatial heterogeneity into the lat-
tice structure can also alter these relationships.
Thus, there is a need to include spatial consider-
ations in a theory of the stability and complexity
of ecological systems.
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Table 3
ANOVA table comparing model treatments

Source df MS F P

271.85 1950.83Connectance (C) B0.00019
9Strength (P) 4.66 33.43 B0.0001

0.17 1.23Connectance 0.085181

×strength
Treatment B0.00013685.75513.622

24.0517 172.57 B0.0001Connectance

× treatment
Strength 18 0.86 6.19 B0.0001

× treatment
153Conn.×strength 0.17 1.22 0.0351

× tmnt.
2610 0.14 – –Error
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Fig. 8. Species richness on percolation lattices.

Fig. 9. Species diversity on fractal lattices.
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