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In this paper, we present a conceptual framework for
investigating ecological patterns and processes at

regional to continental scales. Ecological phenomena
operate across a range of scales (Figure 1), but the develop-
ment of ecological theory of regions to continents lags
behind that of finer scales. Better understanding of broad
scales is needed because these are the extents over which
many environmental problems have their causes and con-
sequences. Our framework incorporates existing theories
from other ecological subdisciplines and environmental
disciplines, to promote broad-scale ecology as more gen-
eral, integrative, and predictive.

We define “macroscales” as regional to continental

extents with distances spanning hundreds to thousands of
kilometers (ie larger than landscapes; Urban et al. 1987).
“Components” at these spatial scales (Figure 2) are biologi-
cal (eg species, populations, communities), geophysical (eg
climate, physiography, hydrology, geochemistry), and social
(eg political systems, economies, cultures), and can span
timescales ranging from days to millennia. When interact-
ing with one another and with phenomena at other spatial
or temporal scales, these components constitute a
“macrosystem”; macrosystems ecology (MSE) is the study of
such extensive and multiscaled systems. This perspective
treats patterns and processes as dynamic and interactive,
both within and across scales of time and space.

n Motivations 

The emergence of MSE has been driven by three main
factors: pressing societal needs for ecological predictions
at these wider scales; the increasing focus on mechanistic
studies that cover broad extents across a range of ecologi-
cal subdisciplines; and a wealth of new methodological
and technological capabilities that enable scientists to
carry out such studies. These three interrelated issues will
continue to shape the development of MSE. 

Ecologists are increasingly asked to address environ-
mental problems and policies with causes and conse-
quences that operate over broad extents (Clark et al.
2001; Peters et al. 2011; Liu et al. 2013). For example, sci-
entists and policy makers are unsure how climate and
land-use changes will influence the provision of multiple
ecosystem services, at both local and regional scales (Qiu
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and Turner 2013). Ecologists have responded to such
broad-scale problems in two basic ways: by conducting
(1) numerous local studies in different settings and
attempting to scale the findings up and (2) studies that
focus on patterns and processes at the macroscale and
then incorporating finer scale mechanisms to explain
these phenomena.

For the first approach, ecologists have sought to expand
the spatial and temporal footprint of their studies. Over
the past several decades, this has largely been achieved by
integrating approaches from landscape ecology into other
ecological subdisciplines (Turner 2005). Expanding from
local to macro- and global scales requires accurate
description of macroscale heterogeneity, which can be
substantial. In cases where macroscale patterns and
processes do not interact with other scales, this approach
will be sufficient. In many cases, however, interactions

and processes at macroscales can result in large errors
through simple scaling, because macroscale processes
shape and respond to local processes. Species ranges and
landscape heterogeneity, for instance, mediate relation-
ships between climate and bird diversity (Rahbek et al.
2007); regional land-cover heterogeneity influences rela-
tionships between plant functional types and CO2 efflux
(Xiao et al. 2011); and both global economic and local
social relationships influence patterns of urbanization
(Seto et al. 2012). In such cases, explicit studies of sys-
tems at the macroscale are essential for regional- to conti-
nental-scale predictions (see WebReferences A). Unfor-
tunately, our present understanding of macroscales is not
sufficient to know in advance the situations where simple
scaling will work and where it will not.

For the second approach, ecologists and other scientists
have conducted studies that focus on patterns and

Figure 1. Macrosystems are composed of components that range in spatial extent from very broad (center image) to very fine (upper
right, lower left) and that can interact over very large distances. In this example, agriculture in the central US has allowed populations
of migratory lesser snow geese (Chen caerulescens caerulescens) to expand dramatically because of increased supply of food in
winter feeding grounds and along migratory routes. Increasing geese populations have led to the collapse of wetlands along Hudson
Bay, which serve as summer breeding grounds (background): See main text as well as Abraham et al. (2005) and Jeffries et al.
(2006) for details. All images are used under creative commons license.
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processes at macroscales. Such investigations have a long
history in biogeography and other disciplines, but recent
studies encompassing broad spatial extents have empha-
sized the need to consider mechanisms at much finer
scales. For example, macroecologists have studied patterns
across spatially extensive environmental gradients to
understand the drivers of species distributions, community
structure, and biodiversity (Brown and Maurer 1989).
More recently, biologists have used concepts and measure-
ments from organismal physiology, population genetics,
local adaptation, and community interactions to better
explain ecological patterns at macroscales, and to better
predict species responses to future environmental change
(Keith et al. 2012; see WebReferences B). Similarly,
researchers studying global climate have incorporated
finer scaled ecological processes such as fire, feedbacks
between vegetation and soil nutrients, and the physiolog-
ical responses of plants to climate and atmospheric chem-
istry to better understand the interactions between the
land and the atmosphere (see WebReferences C). The
convergence of these previously distinct scales of inquiry
has improved our ability to predict ecological patterns and
processes over broad and fine extents.

The integration of ecology across scales often requires
data that span greater spatial and temporal extents than
have traditionally been studied (Soranno and Schimel
2014). To increase the spatial and temporal extent of
their studies, ecologists are collating data from many
local studies (Klug et al. 2012), creating linked networks
of observations and experiments (Xiao et al. 2008; Fraser
et al. 2013), and documenting broad spatial and temporal
patterns with remotely sensed data (Schimel et al. 2013).
The integration of these diverse measurements across
multiple scales is enabled by a growing set of geospatial,
mathematical, ecoinformatic, and computational tools
(Levy et al. 2014; Rüegg et al. 2014). To take full advan-
tage of these capabilities, macrosystems ecologists will
need to build on a solid foundation of existing and emerg-
ing theory and continue to unite historically distinct dis-
ciplines. 

n A framework for MSE

Some ecological concepts and theories apply to ecologi-
cal systems at any spatial or temporal scale whereas others
are tied to specific scales (Pickett et al. 2007; Scheiner
and Willig 2011). At this early stage in the development
of MSE theory, we begin with the assumption that funda-
mental ecological concepts generally do apply to
macrosystems. The central tenet of our framework is that
macrosystems are hierarchical ecological systems, com-
prising biological, geophysical, and social components at
large extents (Figure 2), which interact with one another
and with components at broader and finer scales (Figure
3; Folke et al. 2011). We identify four types of interac-
tions among macroscale components that follow from
this hierarchical structure, and of which we have clear

examples. We also propose four important features that
may be common to most if not all macrosystems. We view
this framework as a starting point, to help ecologists iden-
tify patterns and processes that cannot be explained with
existing concepts, and for which new theories must be
developed. 

Macrosystems as hierarchies

Typically conceptualized as spatially and temporally
nested, hierarchies have lower levels (which provide the
mechanistic understanding for behavior at a given level)
and higher levels (which provide the constraints on that
behavior) of organization; in strict hierarchies, each
lower level has no measurable effect on the level above it
(Allen and Starr 1982; O’Neill et al. 1986). Two features,
although not necessarily unique to macrosystems, add
complexity to this basic hierarchical structure. First,
when lower levels (ie local scales) have a measurable
effect on the level above (ie macroscales), as may be true
of many macrosystems (see next section and Figure 3),
then hierarchies should be conceptualized as non-nested
rather than nested (Allen and Starr 1982). Second, spa-
tial and temporal scales are often assumed to covary
across a hierarchy, so that the process rates (sensu O’Neill
et al. 1986) of lower levels proceed faster than those at
higher levels. This typical pattern of covariation may be
weak in some macrosystems (Figure 4; Turner et al. 1995)
because different processes across the same spatial extent
proceed on temporal scales ranging from days (eg weather
fronts) to millennia (eg adaptation by natural selection).
Given the range of spatial and temporal scales inherent

Figure 2. Examples of phenomena that occur at macroscales.
Some of these phenomena are strictly biological, geophysical, or
sociocultural, but many have characteristics of one or two of
these themes. In addition, many of these phenomena are present
or can be measured at other spatial extents. ENSO = El
Niño–Southern Oscillation.
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in macrosystems, boundaries and scales of investigation
should be carefully selected to capture the processes of
interest (Weathers et al. 2013).

General classes of interactions in macrosystems

Although ecological systems can be studied at many
scales (Levin 1992), we present a simple framework
that depicts interactions among components at the
macroscale, and with components at finer and broader
scales (Figure 3). We propose that such interactions
are likely sources of emergent, novel, or unexpected
behaviors of macrosystems (Peters et al. 2011), and
thus the most compelling rationale for an MSE per-
spective. Although these types of interactions may
exist at finer scales, the particular components and
processes will often differ. For example, the processes
that link regions over long distances (eg dust storms,

species migrations) will often be distinct from the
processes that link ecological systems in close proxim-
ity (eg litter fall, foraging behavior). Some macrosys-
tems interactions will undoubtedly fall outside of our
framework, but we propose these four classes of phe-
nomena as a starting point: teleconnections, macro-
scale feedbacks, cross-scale interactions, and cross-
scale emergences.

Teleconnection

Originally defined to address interactions among distant
climatic systems, the term “teleconnection” has been
adopted by ecologists and other environmental scientists
to refer to any phenomenon that creates strong links
between distant and otherwise disconnected regions, via
the movements of organisms, materials, energy, or infor-
mation (Seto et al. 2012; Liu et al. 2013; see Web-
References D). For instance, agriculture in the midwest-
ern US subsidizes the population growth of snow geese
(Chen caerulescens caerulescens; Abraham et al. 2005), the
increased abundance of which has damaged subarctic
marshes (Jefferies et al. 2006).

Macroscale feedback

The effect of one macroscale component can be amplified
(positive feedback) or diminished (negative feedback) by
another macroscale component. For example, regional
vegetation cover both influences and responds to precipi-
tation, creating a potential positive feedback loop.
Models suggest that such feedbacks promote rapid and
persistent transitions between barren and vegetated states
in the deserts of Africa, and similar feedbacks occur
between tropical or boreal forests and their climatic sys-
tems (Chapin et al. 2008; see WebReferences E).

Cross-scale interaction

Processes at one spatial or temporal scale can interact
with processes at another scale, often resulting in nonlin-
ear dynamics with thresholds (Gunderson and Holling
2002; Peters et al. 2007). A regional driver variable such
as anthropogenic disturbance (ie agricultural land use)
influences the degree to which a local driver variable (ie
wetland area) of lake watersheds influences downstream
nutrients (Soranno et al. 2014). 

Cross-scale emergence

Components at local scales can interact and accumulate
across space to produce patterns and processes at the
macroscale, often referred to as emergent properties
(Peters et al. 2007). For instance, because of widespread
local decisions about land use and crop selection in the
US, severe drought resulted in large swaths of exposed
soil that collectively contributed vast quantities of dust to
the atmosphere during the early 20th century (Peters et
al. 2008). This and other examples illustrate how local
processes can dramatically reshape heterogeneity and
diversity at macroscales (see WebReferences F).

Figure 3. A hierarchical macrosystem in which components at
the macroscale interact with one another and with components at
local and global scales. Components at all scales are depicted as
ovals, with arrows representing the directional effects of one
component on another. At least four major types of interactions
can be important in macrosystems: teleconnections, cross-scale
interactions, cross-scale emergence, and macroscale feedbacks
(see text for definitions). Although a teleconnection is depicted at
the global scale, this interaction represents a unidirectional
interaction from one region to another. For clarity, only three
spatial extents are depicted; however, macrosystems will often
include components that operate at a larger number of spatial
extents (figure inspired by Folke et al. [2011]).
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Important features of macrosystems

Ecologists should use concepts and theories from ecological
systems at finer scales to conceptualize macrosystems but
should also consider features that may differ at broad scales.
We suggest that concepts of biocomplexity, heterogeneity,
and connectivity will be important in characterizing the
interactions among macrosystem components, as is true at
other scales. We also propose that “slow” variables and
human activities, while important for many ecological phe-
nomena, are likely to be of greater and more general conse-
quence in macrosystems. By testing existing ecological the-
ory with new observations, models, and experiments, future
studies will almost certainly add to and refine our under-
standing of the essential features of macrosystems.

Biocomplexity

The theory of biocomplexity addresses the properties that
often emerge from the interplay of biological, geophysical,
and social interactions that span multiple levels in a hierar-
chy (Levin 1992; Michener et al. 2001), but this framework
is only rarely applied to regions or continents. Because
macrosystems will typically include multiple types of inter-
actions (eg cross-scale emergence, feedbacks, teleconnec-
tions), changes in one macrosystem component are likely
to propagate through many other components, across mul-
tiple scales. The greatest potential for “surprise” may occur
when macroscale interactions involve links between phe-
nomena across levels of biological organization that are tra-
ditionally the purview of distinct ecological disciplines (eg
Raffa et al. 2008; see WebReferences G).

Heterogeneity and connectivity

Macrosystem components can vary across a wide range of
spatial and temporal scales. This heterogeneity, and its
effects on connectivity, can strongly influence macrosys-
tems interactions (Gunderson and Holling 2002; Peters et
al. 2011). In particular, spatial structure at one scale influ-
ences temporal stability at another (Cumming et al. 2012).
In river networks with high connectivity, temporal dynam-
ics and resilience at local scales can depend on macroscale
spatial heterogeneity and configuration (eg McCluney et al.
2014). For populations of sockeye salmon (Oncorhynchus
nerka) that breed in distinct basins, resilience at macro-
scales emerges from portfolio effects, in which independent
temporal variation among multiple populations at local
scales create more stable populations at broader scales
(Schindler et al. 2010). These properties of macroscale con-
nectivity and heterogeneity can themselves change over
multiple timescales (eg among isolated wetlands; McIntyre
et al. 2014). While such complexity is common to all scales,
the broad extent of MSE may present a particular challenge
in addressing interactions among heterogeneous compo-
nents (see WebReferences H).

“Slow” variables

Although frequently assumed to be constant and exter-
nal to ecological systems studied at finer scales, slow-

changing variables are often interacting components
of macrosystems (Figure 4; see WebReferences I). For
example, when measured at macroscales of space and
time, climate may be part of feedbacks with the land
surface, even when seemingly stationary at finer scales
(Wang and Schimel 2003). Similarly, large and infre-
quent disturbances become part of the disturbance
regime rather than rare events when viewed at a
macroscale (eg Turner and Dale 1998). For biota, the
potential scope and importance of eco-evolutionary
processes may be more influential at the macroscale
than at the local scale (Leibold et al. 2010). Thus,
long-term perspectives will be essential for under-
standing how slow variables shape the structure of
macrosystems and how they interact with processes at
finer scales (Redman and Foster 2008; Williams and
Baker 2012).

Figure 4. At each spatial extent, the components that make up
the system will operate at different rates. Each rectangle denotes
an arbitrary spatial extent. Each plot represents the frequency of
rates for different classes of phenomena at each extent (eg white
is climate, green is vegetation, and orange is dynamics of
mammals). Within a particular class (eg climate), processes at
broader extents usually, but not always, occur more slowly than
those at finer extents. Differences in temporal scaling
relationships among classes of phenomena mean that a
macrosystem at a given spatial extent may have components with
a wide range of timescales. This potential mismatch of spatial
and temporal scales requires that ecologists study hierarchical
systems at a range of spatial and temporal extents.
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Humans as components

Human activities are altering the Earth at virtually all
scales, but these effects are particularly difficult to ignore
when studying regions to continents. We argue that
human activities are key processes in nearly all macrosys-
tems and will be central to MSE research (Peters et al.
2011; Groffman et al. 2014). At local scales, human activ-
ities are still often treated as disturbances imposed on
ecological systems. At macroscales, politics, cultures, and
economies are components that accelerate timescales of
change, introduce novel teleconnections, and shape
other macrosystem interactions (see WebReferences J).

n Examples of macrosystems research

Understanding macrosystems will likely require ecologists
to integrate observations, concepts, and approaches
across a particularly wide range of spatial and temporal
extents (Levy et al. 2014). Since most studies will address
only one or a few aspects of a macrosystem, collaborations
and synthesis of data from multiple studies will be essen-
tial to advance MSE (Goring et al. 2014; Cheruvelil et al.
2014). This Special Issue includes several examples of
macrosystems research, including projects focused on
cities (Groffman et al. 2014), rivers (McCluney et al.
2014), wetlands (McIntyre et al. 2014), and lakes
(Soranno et al. 2014). Here, we briefly present three addi-

tional examples that highlight the
diversity and scope of recent macro-
systems research and the value of a
hierarchical, process-based frame-
work. In each example, we describe
key components at local, macro-, and
global scales, illustrate how they inter-
act with one another, and highlight
the outcomes of these interactions.

Feedbacks and tipping points in
the Amazon rainforest

The structure of vegetation at regional
extents can exert strong control over
climate through characteristics such as
albedo and processes such as transpira-
tion. Given that climate also influ-
ences vegetation, these interactions
can create positive or negative feed-
backs that may promote or erode stabil-
ity, and may create the potential for
abrupt transitions in vegetation and
climate over large areas (Chapin et al.
2008). For example, the Amazon rain-
forest is maintained by feedbacks oper-
ating at both local and macroscales.
Locally, feedbacks between fire regime
and vegetation structure promote

thresholds separating closed-canopy forest from open
savanna (Staver et al. 2011); the resilience of these possible
alternative states varies across the Amazon Basin because of
regional differences in rainfall (Hirota et al. 2011). At the
macroscale, the extensive area of the Amazon rainforest
promotes higher rainfall regionally, which in turn favors
closed-canopy forest (Chapin et al. 2008). In concert, these
local and macroscale feedbacks help maintain a wet climate
and dense vegetation throughout the Amazon Basin, but
models suggest that these same feedbacks could stabilize a
low-precipitation climate regime and extensive savanna
(Chapin et al. 2008; see WebReferences E). Regional-scale
transitions in vegetation are of global importance because
the Amazon and other land–atmosphere macrosystems
(boreal region, Sahel) are tipping points in the global cli-
mate system; potential changes in land–atmosphere feed-
backs of these systems create major uncertainties about
global budgets of carbon and energy (Lenton et al. 2008).

Anthropogenic changes ranging from the global econ-
omy and climate (eg economic drivers) to local land-use
decisions (eg forest clearing) are dramatically altering the
vegetation and climate of the Amazon Basin (Figure 5;
Davidson et al. 2012; see WebReferences E). Regional
and global demands for beef and other agricultural prod-
ucts (eg economic teleconnections) are driving the con-
version of forests to networks of pastures and roads, par-
ticularly in the southeastern portion of the Amazon
(Nepstad et al. 2008). At the same time, projected

Figure 5. Some key interactions within and across scales in the Amazon rainforest
macrosystem that include a macroscale feedback, cross-scale emergence, and a
teleconnection (see text for details). The image shows cattle grazing on land that has
been deforested.
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regional increases in temperature and pre-
cipitation due to global climate change are
also expected to favor rainforest loss
(Salazar and Nobre 2010). Together, land
conversion and global climate change may
clear or alter 55% of the Amazon rainforest
by 2030 (Nepstad et al. 2008). Local and
macroscale feedbacks have the potential to
amplify these changes. First, much of the
past and anticipated forest clearing has and
will occur in locations with marginal soils
and climate for wet forests, and local transi-
tions in land cover may spread over larger
extents, as altered local climate and fire
regimes influence tree–grass competition
(an example of cross-scale emergence;
Nepstad et al. 2008). Second, models sug-
gest that land-use change will reduce pre-
cipitation throughout the Amazon region,
including locations currently protected
from development (Coe et al. 2013). Our
present understanding of the Amazon rain-
forest thus illustrates how the resilience of
land–atmosphere macrosystems can depend on and influ-
ence local heterogeneity and global teleconnections.

Climate-change effects on species ranges of
butterflies 

Ecologists often try to forecast changes in geographic distri-
butions of species, especially ones with economic value,
functional importance, or imperiled status. Distributions
have often been forecast by relating the presence of a
species to the prevailing environmental conditions; how-
ever, emerging approaches incorporate a wider range of
ecological mechanisms (Kearney et al. 2008). These
approaches recognize that species ranges reflect not only
broad-scale factors such as climate and physiography but
also organismal responses to abiotic and biotic conditions
at much finer scales. Because species ranges are closely
linked to the interactions between phenomena at local
scales and macroscales (Figure 6), predicting shifts during
climate change requires approaches that integrate patterns
and processes across scales (see WebReferences B).

Consider efforts to predict the distributions of butterflies
(Figure 6). Interactions across scales shape geographic dis-
tributions, because phenotypes result from natural selec-
tion within and gene flow among populations. At fine spa-
tial and temporal scales, the fitness and population
dynamics of butterflies depend on their phenotypes, the
microclimate, and the abundance of predators, pathogens,
and host plants (Buckley and Kingsolver 2012). For exam-
ple, overwintering larvae are relatively immobile and par-
ticularly sensitive to microclimate (Radchuk et al. 2013).
In addition, the local interactions among all of the above
factors lead to the emergence of metapopulation dynamics
at broad scales (Figure 6). However, gene flow that drives

colonization and extinction, as well as adaptation,
requires connections among suitable habitats and will be
sensitive to local habitat loss (Wilson et al. 2009). For
example, when considering present and future climate a
cross-scale interaction occurs because habitat loss influ-
ences the effect of climate on metapopulation dynamics
(Figure 6). Finally, expansion of the range depends on
biotic factors such as the presence of host plants and the
absence of predators or pathogens. Clearly, researchers
who seek to predict distributions must integrate ecological
processes from local to macroscales.

Bark beetles, climate change, and grizzly bears

Irruptions of insects have occurred regularly for more than
12 centuries in coniferous montane forests (Esper et al.
2007), but recent warming has caused the largest outbreaks
on record in North America (Kurz et al. 2008). A
macrosystems perspective that integrates multiple spa-
tiotemporal scales and levels of organization helps us to
understand the complex causes and consequences of beetle
outbreaks (Figure 7; Raffa et al. 2008). Historically, the
mountain pine beetle (Dendroctonus ponderosae) was
excluded from high elevations by cold winters, but milder
winters have facilitated an expansion of its range to higher
elevations (Cudmore et al. 2010). At the same time,
warmer and drier summers have increased physiological
stress of host trees, such as whitebark pine (Pinus albicaulis),
and weakened their defenses (Raffa et al. 2013). Range
expansion enabled pine beetles to attack naïve trees, lead-
ing to more successful infestations (Raffa et al. 2008;
Cullingham et al. 2011). A variety of tree- and stand-level
characteristics determine whether beetle reproduction is
rapid enough to produce outbreaks, but these are mediated
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Figure 6. Some key interactions within and across scales that influence the
geographic ranges of butterflies and their response to climate change and habitat
loss (see text for details). The image shows a Portuguese dappled white butterfly
(Euchloe tagis).
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by landscape and regional-scale factors, including forest
management, that can obscure or reverse their effects (ie
by cross-scale interactions); many of these characteristics
also influence whether and how local infestations expand
and aggregate to become regional outbreaks (Raffa et al.
2008). More frequent beetle outbreaks thus reflect changes
in climate, mediated by local topography and the influence
of evolutionary history; these effects are amplified or sup-
pressed by local feedbacks among beetle abundance, forest
structure, and infection success, and by anthropogenic
changes at multiple spatial scales.

Beetle irruptions and associated changes in forest structure
and function have consequences for other ecological phe-
nomena across a range of spatial scales and levels of organi-
zation. Forest loss can alter regional albedo, fire regimes, and
productivity (Raffa et al. 2008), and can convert a net car-
bon sink into a large net source (Kurz et al. 2008). Outbreaks
also have cascading and unexpected effects on ecological
processes at local scales. Whitebark pine is a keystone
species, serving as a resource for vertebrate consumers
(Logan et al. 2010). Grizzly bears (Ursus arctos horribilis) rely
on the large, fatty seeds to survive hibernation, and poor
cone masts over large extents can drive bears into areas pop-
ulated by humans (Mattson et al. 1992), leading to increased
conflict between bears and people (Gunther et al. 2004).
Changes in the frequency and extent of pest outbreaks and
other disturbances are likely to produce similarly diverse, far-
reaching, and unexpected consequences in many macrosys-
tems (see WebReferences G).

n Conclusions

The ultimate goal of MSE is to advance our understand-
ing of broad-scale ecological systems. This emerging sub-
discipline builds on concepts and observations from other

ecological and environmental sciences,
adding a dynamic and mechanistic per-
spective to the understanding of
macroscale patterns and processes. We
believe this effort is essential if ecologists
are to study problems of societal relevance
and inform the policies that address them.
To be most effective, we argue that studies
of macrosystems must be focused on
macroscale patterns and processes, but
such studies will also link local and global
scales across both space and time, using a
wide range of approaches (Levy et al.
2014). The diversity of expertise needed to
adopt these approaches demands that MSE
be highly collaborative and interdiscipli-
nary (Cheruvelil et al. 2014; Goring et al.
2014). In particular, ecologists must pay
greater attention to information science
because of the massive datasets and intense
computational loads associated with
macrosystems research (Rüegg et al. 2014).

As MSE theory matures, we anticipate that the frame-
work presented here will provide a basis for integrating a
wider range of interactions among biological, geophysi-
cal, and sociological processes.
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