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Abstract

How soil processes such as carbon cycling will respond to future climate change depends on the
responses of complex microbial communities, but most ecosystem models assume that microbial
functional responses are resilient and can be predicted from simple parameters such as biomass
and temperature. Here, we consider how historical contingencies might alter those responses
because function depends on prior conditions or biota. Functional resilience can be driven by
physiological, community or adaptive shifts; historical contingencies can result from the influence
of historical environments or a combination of priority effects and biotic resistance. By modelling
microbial population responses to environmental change, we demonstrate that historical environ-
ments can constrain soil function with the degree of constraint depending on the magnitude of
change in the context of the prior environment. For example microbial assemblages from more
constant environments were more sensitive to change leading to poorer functional acclimatisation
compared to microbial assemblages from more fluctuating environments. Such historical contin-
gencies can lead to deviations from expected functional responses to climate change as well as
local variability in those responses. Our results form a set of interrelated hypotheses regarding soil
microbial responses to climate change that warrant future empirical attention.
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CONSIDERING MICROBIAL DRIVERS OF SOIL

PROCESSES

Broad interest in microbial responses to environmental change
is largely based on the uncertainty surrounding belowground
responses to global climate change. Some of that uncertainty
reflects our lack of a basic mechanistic understanding for how
soil microbes respond to environmental change and how those
responses scale to the ecosystem level. Perhaps the largest
challenge we face in developing such a framework is that the
majority of available information on microbial responses to
climate change is at the whole-soil or community level, reflect-
ing the aggregate functioning of many taxa responding simul-
taneously to the environment. We have a limited
understanding of species-level responses (e.g. Lennon et al.
2012) and how those scale up to function. Aggregate, commu-
nity-level soil function might be sufficient for models at the
ecosystem scale; alternatively, models that only consider
aggregate functioning may miss dynamics related to variation
among individuals or functional groups, or to diversity per se,
that could create variability within and across sites. The scale
and degree of mechanism in models required to optimise
model function remains unknown (e.g. Lawrence et al. 2009).
Historically, ecosystem models have largely ignored explicit

microbial controls, with process rates often directly propor-
tional to pool sizes (e.g. Parton et al. 1988; Li et al. 1997).
Such first-order models have nevertheless successfully simu-

lated ecosystem processes such as soil carbon cycling at large
spatial and long temporal scales (e.g. Melillo et al. 1995). Eco-
system process models are becoming more mechanistically
sophisticated, simulating process rates as a function of both
substrate and microbial biomass or enzyme pools (e.g. Sinsab-
augh & Moorhead 1994; Schimel & Weintraub 2003; Wang
et al. 2013). For example the recently developed ‘CLM micro-
bial model’ explains 50% of the variation in soil carbon by
explicitly simulating microbial biomass pools and decomposi-
tion via enzyme-driven, temperature-dependent Michaelis–
Menten kinetics (Wieder et al. 2013).
A common assumption in many models is that all microbial

taxa are functionally equivalent (Lawrence et al. 2009); this
assumption arises from the idea that high microbial diversity
and apparently broad distributions equate to ecological redun-
dancy (Allison & Martiny 2008). There is also mounting evi-
dence, however, for high beta-diversity in both bacteria
(Fierer et al. 2009) and fungi (€Opik et al. 2009). Furthermore,
microbial communities that differ in composition typically
also realise differential function under controlled conditions,
consistent with the idea of local specialisation (Strickland
et al. 2009). Hence, improved prediction may be achieved by
incorporating microbial diversity into process models. To
date, this has been done via functional groups, either within
or across trophic levels, and by varying traits among taxa
(e.g. Allison 2012). The simplest approaches to functional
groups include separate fungal and bacterial pools (Waring
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et al. 2013), active and dormant states in the microbial bio-
mass (Wang et al. 2014b) or generalists and specialists (Moor-
head & Sinsabaugh 2006). However, because community-level
function is an accumulation of individual life-history events
that determine population sizes and individual activity rates,
it makes sense to consider microbial community function from
the standpoint of population growth and regulation.
A multitude of factors regulate populations, but resource

depletion and associated competition are factors common to
nearly all populations (Tilman 1986). Given that microbial
soil decomposers, at least to first approximation, compete for
carbon as a single limiting resource, we are confronted with
Hutchinson’s ‘paradox of the plankton,’ in which there are far
more coexisting entities than limiting resources (Hutchinson
1961). What then allows for coexistence in microbial decom-
poser communities? An obvious hypothesis is the storage
effect, where temporal variation in the environment combined
with dormancy allows different players to flourish at different
times (Chesson & Huntly 1997). While it is known that a stor-
age effect can facilitate coexistence, less is known about how
temporal environmental variation affects the resilience of
communities to systematic environmental change and how
that affects soil function.
Here, we address two aggregate, community-level func-

tional responses that represent a range of possible responses
to environmental change: resilience, in which function is
maintained as expected purely based on abiotic conditions
in the face of environmental change, or historical contin-
gency, in which function depends on prior conditions or

biota (Fig. 1, Box 1). We consider microbial physiological,
community and evolutionary mechanisms that can impact
aggregate function in biogeochemical processes, how histori-
cal contingencies can constrain those mechanisms, and how
the interactions of mechanisms and constraints scale up to
community-level functional responses using a simulation
model.
In the model, we link individual microbial response mecha-

nisms to the broader question of how historical patterns of
environmental variation influence the resiliency of competi-
tively structured communities to a change in the environment.
This takes the form of a simple population-based model of a
microbial community vying for a single resource pool. Each
of the populations is given an environmental optimum analo-
gous to a preferred soil moisture or temperature, and the envi-
ronmental value is varied through time according to a
stochastic process. Using this model, we ask to what extent
does historical variation in the environment influence the out-
come of a systematic environmental change: is the community

(a) (c)

(b) (d)

Figure 1 Microbial community-level functional responses to environmental

change (DEnv) can show resilience (a–c) or legacies (d). Functional

resilience results from acclimatisation via (a) individual-level physiological

plasticity, (b) community shifts from either internal turnover or

immigration, or (c) evolutionary rescue in the form of rapid adaptation to

the new conditions. Legacy effects (d) occur when function deviates from

expectations based on abiotic conditions. Such legacies can result from

historical contingencies caused by effects of the previous environment on

either microbial genetic and functional capacity, or by priority effects and

biotic resistance, which can also positively feedback to each other. Here,

historical contingencies are shown as a reduction in ecosystem resilience,

but legacies could also result in elevated responses.

Box 1 Glossary of responses, mechanisms and constraints

Term Definition

Acclimation Adjustment of individual organisms to

a controlled or induced change in the

environment, such as in laboratory or

field experiments

Acclimatisation Adjustment of individual organisms to

a natural change in the environment

Adaptation Evolutionary process by which organisms

become better suited to the environment

via population genetic change resulting from

natural selection

Aggregate function Soil function resulting from sum of all

activities in the soil microbial community

Historical contingency Constraints on microbial responses created by

prior conditions that result in aggregate

functional responses to environmental change

dependent on either previous biota or

environments

Legacy Biotic and abiotic conditions created by prior

environments that persist when the

environment changes

Plasticity Degree to which an organism can change

phenotype in response to a change in

the environment

Priority effects Species present before or arriving first after

a change in the environment can affect

the community successional trajectory or

reassembly process

Recovery Time required for an ecosystem to recover to

a pre-disturbance state

Resilience Capacity of an ecosystem to tolerate

disturbance without switching to a

qualitatively different state controlled by

a different set of processes; here we consider

resilience to translate into aggregate

functional responses to environmental change

that reflect purely abiotic conditions

Resistance Degree of change in an ecosystem variable

following disturbance
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resilient or is its performance highly contingent on the past
environmental regime? Our intention in introducing a commu-
nity model is not to present an alternative to, or improve
upon, existing microbial models. Rather, we isolate a very
specific mechanism related to resource competition influenced
by a fluctuating environment.

ECOLOGICAL AND EVOLUTIONARY RESPONSE

MECHANISMS IN MICROBIAL COMMUNITIES

Soil function can exhibit resilience to a change in the environ-
ment via acclimatisation. In plants, acclimatisation occurs lar-
gely through shifts in individual plant physiology (Atkin et al.
2000). In soils, however, there are several potential underlying
mechanisms, as a consequence of aggregate function being
driven by a diverse microbial community (Fig. 1, Box 1,
Table 1). Community-level functional acclimatisation can
occur in response to environmental change if functionally
dominant microbial populations are generalists with broad
physiological capabilities that can adjust to new conditions
(Fig. 1a), if more specialised taxa with distinct functional
capabilities become active from dormant pools or via the arri-
val of immigrants (Fig. 1b), or if the environmental perturba-
tion leads to rapid microbial adaptation of functionally
dominant microbial populations (Fig. 1c). Alternatively, leg-
acy effects may be present whereby historical contingencies
prevent functional acclimatisation, resulting in potential devia-
tions from responses expected based purely on abiotic condi-
tions when the environment changes (Fig. 1d). For example
evolutionary specialisation to the previous environment via
local adaptation could determine the degree of functional
resilience to a change in the environment (Fig. 1d). Each of
these mechanisms is discussed in more detail below; under-
standing their relative importance will allow us to be more
broadly predictive about belowground responses to environ-
mental change across the landscape.

Physiological responses

Community-level functional plasticity and acclimatisation
through individual physiological changes appears to be com-
mon (Fig. 1a, Table 1) (Malcolm et al. 2009). At the individ-
ual level, physiological response curves to soil moisture can be
taxon-specific, and both generalist and specialist strategies are
found (Lennon et al. 2012). Yet functional plasticity does not
always occur, nor is it necessarily adaptive. For example
among 12 ectomycorrhizal fungi, there was a wide range of
variability in respiratory acclimation across a range of temper-
atures, with only three isolates acclimating to higher tempera-
ture (Malcolm et al. 2008).
Physiological plasticity in microbial taxa may reflect a gen-

eralist strategy with regard to a given set of environmental
conditions. We incorporate this concept into our modelling by
assigning each population a one-dimensional environmental
niche function, which determines resource assimilation rate
and ultimately competitive ability. This niche function inte-
grates to a constant value so that it either possesses a high
peak and narrow tails, corresponding to a specialist, or gentle
peak and broad tails, corresponding to a generalist. Taxa with

broader fundamental climatic niches may have a higher prob-
ability of avoiding extinction and maintaining continuous
activity as the environment changes compared to taxa with
narrower environmental tolerances. However, plasticity can
also be costly to maintain and can reduce fitness if environ-
mental predictability is poor or if novel environmental condi-
tions generate low-fitness phenotypes (Chevin et al. 2013).
Furthermore, generalists are expected to have lower overall
function compared to specialists, given observed trade-offs
between, for example stress tolerance and growth rate (Len-
non et al. 2012), optimal growth and metabolic switching
(Schuetz et al. 2012), and growth rate and growth yield (Lip-
son et al. 2009). Based on such trade-offs, the proportion of
generalists vs. specialists in the microbial community will
directly affect the rate and extent of community-level func-
tional change in response to a large change in the environ-
ment.

Shifts in community composition

Microbial community composition can play a role in both
plastic and constrained soil functional responses to altered
environments based on the influence of composition on eco-
system process rates (e.g. Gulledge et al. 1997; Strickland
et al. 2009; Hawkes et al. 2011). As the environment fluctu-
ates, rapid changes in microbial community composition can
be caused by shifts in the relative abundance of taxa already
present (Table 1) (DeAngelis et al. 2010; Cregger et al. 2012)
via classic resource-based competitive dynamics (Tilman
1986). Alternatively, community composition can be altered
by local dormancy and resuscitation or by immigration from
the regional species pool (Lennon & Jones 2011; Wang et al.
2014b). For example in soils that experience periods of drying
and rewetting, microbial communities can cycle through
repeated and predictable states based on distinct resuscitation
strategies of different taxa that reflect physiological traits
(Fig. 1b) (Placella et al. 2012). Dispersal from the regional
species pool may rescue local function if species sorting
results in the presence of taxa best suited to the changed envi-
ronment (Fig. 1b) (Van der Gucht et al. 2007; Lindstr€om &
Langenheder 2012). Species sorting may occur more often for
environmental specialists, whereas generalists should be more
likely to assemble stochastically (Langenheder & Szekely
2011).

Evolutionary processes

Microbial evolution plays a role in determining whether
aggregate functional responses to environmental change are
plastic or locally specialised. Adaptation to the new environ-
ment can allow populations to recover, a process termed ‘evo-
lutionary rescue’ (Gonzalez & Bell 2013) (Fig. 1c, Table 1).
For example evolutionary rescue was observed in yeast popu-
lations subjected to salt stress and was more likely in larger
populations with prior stress exposure (Gonzalez & Bell
2013). Conversely, microbial evolutionary responses to a
change in the environment may be restricted by existing local
adaptation, which can inhibit selective sweeps (Dykhuizen &
Dean 2004) and hinder the potential for evolutionary rescue
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Table 1 Examples of reported microbial responses to a change in rainfall, moisture or osmotic stress

Climate/habitat Treatment Duration

Community or population

response Functional response HC References

Field experiments

Atlantic heathland,

continental forest-

steppe, Mediterranean

shrubland

Summer rain exclusion 10–13 years Growth rates of fungi and

bacteria and microbial

community composition

differed among sites, but not

treatments

Soil respiration differed

among sites, but not

treatments

N Rousk et al.

(2013)

Chihuahuan desert

grassland

Supplemental

precipitation (+25% in

summer, winter or

both)

7 years Resistance for 2 years, then

increased microbial biomass

and shift in microbial

community structure

Elevated enzyme

activities after initial

2 years

Y Bell et al. (2014)

Temperate old-field Field rain 50% or

150% of ambient

1.1–2.6 years Enzyme activity more

sensitive to moisture

in drought plots

N Steinweg et al.

(2012)

Mediterranean

grassland

Summer drought &

rewetting

5 months Bacteria community

composition shifted, but

fungi were resistant

Y Barnard et al.

(2013)

Humid tropical forest Summer rain exclusion

with and without prior

summer exclusion

2 summers Shifts in microbial community

composition, but resistance

with repeat exposure

Y Bouskill et al.

(2013)

Semiarid pi~non-juniper

woodland

Increased (+18%) or

decreased (�50%)

precipitation

1 summer Soil microbial community

composition and abundance

varied more with seasonal

monsoons than treatments

N Cregger et al.

(2012)

Temperate grassland,

wheat field

Field rainfall exclusion,

laboratory drought

(40%) and rewetting

4 months field,

2 weeks

laboratory

Field drought legacies, with

microbial community

composition and abundance

affected more in soils with

prior drought

Y de Vries et al.

(2012)

Combined field and laboratory experiments

Semiarid shortgrass

steppe

Field rainfall at 25, 50,

or 100% of ambient;

laboratory incubations

at five soil water

potentials

11 years field,

36 h and

6 months

laboratory

All drought treatments caused

a change in bacteria

community composition

relative to ambient; active

bacteria depended more on

current than historical

moisture in laboratory

Prior field treatment

contributed to

respiration in short-

term laboratory

incubations, but in the

longer-term only

current moisture

mattered

N Evans et al.

(2013)

Continental tallgrass

priarie

Increased summer field

rain (160%), constant

or wet-dry cycles in

laboratory

10–12 years field,

6 h laboratory

Microbial community

composition reflected both

field and laboratory moisture

conditions

Y Williams (2007)

Temperate tallgrass

prairie

Field drought 50%

longer than ambient;

four 20-day dry-rewet

periods in laboratory

10 years field,

80 days

laboratory

Shift to more stress-tolerant

life history strategies with

more frequent dry-wet cycles

Lower initial

respiration in delayed

compared to ambient

Y Evans &

Wallenstein

(2012, 2014)

Mediterranean meadow Increased rainfall

(120%) in winter or

spring; constant

moisture in laboratory

4–7 years field;

4 weeks

laboratory

incubation

Community composition of

fungi and bacteria shifted

seasonally more than with

rain addition; treatments

affected fungi at some dates

Decomposition rates

higher in spring rain

plots during time

period when fungal

communities shifted

N Cruz-Martinez

et al. (2009),

Hawkes et al.

(2011)

Temperate managed

grassland

Soils dried and rewet to

50% moisture

4 days or 1 year

drying, 150 h

incubation

Growth rates of bacteria and

fungi depended on duration

of prior drying

Respiration response to

rewetting depended on

duration of prior

drying

Y Meisner et al.

(2013)

Continental tall- and

mixed-grass prairies

Field rain gradient,

laboratory short or

long wet-dry cycles

12 weeks

laboratory (six,

2-week cycles)

Respiration and enzyme

activities responded

similar to laboratory

treatments regardless

of site origin

N Tiemann &

Billings (2011)

(continued)
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(Schiffers et al. 2013). Local adaptation to the previous cli-
mate can constrain responses to a novel climate (Fig. 1d); for
example the magnitude of soil responses to rewetting can be
limited by prior drought events (G€oransson et al. 2013),
which may act as selective sweeps. Similarly, taxa that are
locally adapted to non-climatic conditions, such as soil prop-
erties (Belotte et al. 2003), can create biotic resistance in the
community if this prevents establishment of taxa better suited
to the new climate (Fig. 1d).

HISTORICAL CONTINGENCIES IN SOIL FUNCTIONAL

RESPONSES TO ENVIRONMENTAL CHANGE

Historical contingencies can occur in aggregate soil function
when the environment changes, but unexpected or novel
responses occur because the previous microbial community
continues to dominate or other aspects of the environment
that drive microbial function endure (Fig. 1d). In some cases,
prior conditions can lead to an increase in anticipated func-
tional responses, such as when earlier genetic change in the
community positions microbial taxa for unique evolutionary
responses to environmental change (Blount et al. 2008). In
other cases, reduced or sub-optimal function occurs (Table 1,
Fig. 1d). Analogous processes may occur in our modelling,
where a diverse range of niche optima can be maintained in
a fluctuating environment. Under a rapid environmental
shift, rare types able to persist in the historical community
may emerge as dominants in the changed environment. Any
lag in community-level functional acclimatisation created by
historical contingencies is directly pertinent to how we model
ecosystem responses to climate change, as it determines the
time frame and magnitude of response, as well as whether or
not predictions can be made based on a straightforward rela-
tionship of microbial activity to environmental conditions. If
legacies occur, the underlying mechanisms and temporal scale
of persistence will be key to understanding their relevance
for predicting future ecosystem function in a changing cli-
mate.
Soil legacies related to climate change are a current topic of

debate (Table 1). For example legacy effects have been
observed in soil microbial responses to altered precipitation in

both temperate grasslands and wet tropical forests (Evans &
Wallenstein 2012; Bouskill et al. 2013), but not in five Euro-
pean shrublands subjected to long-term growing season
warming and drought treatments (Rousk et al. 2013). The
disparity in results may reflect different experimental treat-
ments, initial conditions such as microbial functional diversity
and redundancy, or prior environmental conditions, but the
small number of studies precludes simplification. More
broadly, we might expect historical contingencies to be more
common when the new environment falls outside the range of
conditions experienced previously (Waldrop & Firestone
2006).
The characteristics of previous environmental conditions

also affect how soil microbes will respond to a novel climate.
Fluctuations can create community-level functional resilience
to future climate change either through greater physiological
breadth of individual taxa (generalists) or the presence of a
range of taxa with specific physiologies (specialists). Fluctuat-
ing environments can lead to coexistence via temporal or spa-
tial niche differentiation (Chesson & Huntly 1997), which
could generate broader specialist diversity and buffer commu-
nity-level aggregate function in the system. This effect is
enhanced when greater differentiation among species in their
environmental responses leads to asynchrony among taxa (Lo-
reau & de Mazancourt 2008). Conversely, a lack of fluctua-
tions may reduce the ability of local microbial communities to
respond to change, resulting in a dependency on immigration
to drive acclimatisation.
Beyond the absolute magnitude of historical environmental

variation, we may also consider the pattern of fluctuations.
Environmental fluctuations are typically autocorrelated, either
tending to move in the same direction as recent changes (posi-
tive autocorrelation) or tending to switch directions in an
oscillatory fashion (negative autocorrelation). Greater auto-
correlation (either positive or negative) leads to a larger long-
term deviation from the mean. These patterns could influence
community composition directly by increasing the overall
magnitude of fluctuation, or indirectly by possibly altering,
for example the balance of specialists versus generalists. Tem-
poral autocorrelation of environmental drivers varies across
landscapes (Jones & Briffa 1992), possibly generating commu-

Table 1. (continued)

Climate/habitat Treatment Duration

Community or population

response Functional response HC References

Maritime forest Field growing season

rain reduction (70%),

laboratory dry-rewet

2 years field,

1 week

laboratory

Bacterial growth curves shift

based on field history, but

cumulative growth

indistinguishable

Respiration response to

rewetting slower and

reduced in field

drought soils

Y G€oransson et al.

(2013)

Laboratory experiments

Yeast strains grown in

96-well plates in

laboratory

Initial osmotic stress

across initial range of

0 to 150 g/L NaCl,

then all in final

150 g/L

Transfer every

72 h, 8 initial

and 4 final

transfers

Adaptation to high salt stress

in initial conditions;

evolutionary rescue events in

final concentration depended

on initial conditions

Y Gonzalez & Bell

(2013)

Field and laboratory experiments are included; the combination of field and laboratory allows for a more robust assessment of potential historical contin-

gency effects.

HC, historical contingencies; observations indicated by Y (yes) or N (no).
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nities with different degrees of sensitivity to future climate
shifts. Thus, we expect the degree of functional resilience to
depend not only on the magnitude of the environmental shift
relative to historical conditions, but also on the pattern of his-
torical environmental fluctuation.

MODELLING COMMUNITY RESPONSES TO

ENVIRONMENTAL CHANGE

The factors outlined here that influence microbial community
responses to climate change suggest complex outcomes that
may defy simple extrapolation. Under these circumstances
modelling can be used to explore potentially non-intuitive
behaviour owing to the simultaneous effects of multiple gov-
erning factors. We constructed a simplified model to examine
how individual-level microbial responses scale up to ecosystem
responses in a changing environment (Fig. 2, Table 2, Sup-
porting Information). While not a microbial model per se, we
extract a number of essential features of microbial community
responses to a change in the environment. We explicitly mod-
elled the following response mechanisms: (1) Physiological
plasticity via specialist-generalist trade-off in physiological
breadth, and (2) community composition shifts via competi-
tive dynamics and dormancy. We explored these response
mechanisms in the context of environmental change, given dif-
ferent historical patterns of environmental variation that
could constrain responses. See Supporting Information for the
full model code.
Other factors not explicitly included in the current version

of the model have some implicit parallels. For example the
ability to adapt to new conditions and create evolutionary res-

cue is not included, but local adaptation is partly reflected in
the idea of specialists. Similarly, immigration is not modelled,
but effects may be similar to those generated by the introduc-
tion of microbial strategies from dormant pools. In contrast,
there is no parallel for abiotic legacies such as soil properties;
on their own, these might constrain responses in a manner
similar to that of environmental history modelled here, but
undoubtedly their explicit consideration would interact with
the environmental fitness function to create greater complex-
ity. Incorporation of these other factors is the logical next
step in this modelling effort.

Physiological responses: specialist-generalist trade-off

Our starting point for understanding microbial responses and
resilience in a variable environment is the assumption of a
specialist-generalist trade-off, which affects the potential to
acclimatise to new environments. Although we do not explic-
itly model physiological acclimatisation within species, com-
munity-level selection for generalist species has much the same
effect, albeit without the ability of individuals to dynamically
adjust allocations influencing specialisation.
We focus on the concept of a trade-off in environmental

tolerance. This species-specific environmental tolerance influ-
ences both the rate of resource consumption, and hence com-
petitive dynamics, and the rate of transition between dormant
and active states. We begin with a univariate descriptor of the
environment X = X(t) (for more details on X(t) see section on
environmental conditions below). We then model the fitness
of species i according to the Gaussian density function
gi Xð Þ ¼ N X; li; rið Þ. The species-specific parameters li and ri
determine the niche optimum and niche breadth respectively.
This formulation introduces an explicit trade-off in the maxi-
mum fitness: gi lið Þ / 1=ri. Hence, species can be more toler-
ant of a wide-range of environmental conditions, but at the
cost of reduced competitive ability relative to specialists. Gen-
eralists also exhibit a more gradual switch to dormancy as the
environment departs from li, the niche optimum (see section
on dormancy below).

Changes in community composition: competitive dynamics

We focus here on competition for a single resource pool. This
formulation isolates the role of environmental variation in
maintaining diversity from other potential niche mechanisms
such as resource specialisation. In addition, this allows us to

Table 2 Model parameters, dimensions and default values, as well as relative sensitivities of resource, active biomass and dormant biomass to the parame-

ters

Symbol Description Dimensions Default value Resource Active biomass Dormant biomass

I Resource input rate Mass/time 0.01 74 � 0.2 5.1 � 0.58 4 � 1.2

a Per-unit resource loss rate constant 1/time 0.0025 �3.4 � 0.19 �0.61 � 0.57 0.47 � 1.2

s Uptake half-saturation Mass 0.2 6.1 � 0.2 �8.7 � 0.58 �5.8 � 1.2

r Maximum resource uptake rate constant 1/time 0.095 �14 � 0.19 20 � 0.56 16 � 1.2

b Active biomass loss rate constant 1/time 0.019 2.1 � 0.19 �26 � 0.55 �22 � 1.2

u,v Dormancy function shape parameters None 8.0 2.5 � 0.18 �19 � 0.53 55 � 1.1

/ Dormancy flux rate constant 1/time 0.48 �2.9 � 0.21 21 � 0.63 �61 � 1.3

c Dormant biomass loss rate constant 1/time 0.0038 �0.39 � 0.19 �0.094 � 0.57 �0.67 � 1.2

Figure 2 Model diagram showing state variables (circles) and material

‘carbon’ fluxes (arrows). The expressions give the flux rates for the

resource and ith species. For symbol definitions, see text and Table 1.
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understand impacts on resource pools, analogous to soil car-
bon or nutrients. Resource dynamics are given by

dR

dt
¼ I� aR�

XN

i¼1

fi Xð ÞAi

where R is resource quantity, I is resource supply rate, a is
resource loss rate, and Ai is the active biomass of species i.
Here, upper-case symbols denote dynamic quantities (time
indices are omitted) and lower-case symbols denote constants.
Species-specific resource uptake is given by

fi Xð Þ ¼ gi Xð Þ rR

sþ R

where r is the maximum growth rate and s is the half-satura-
tion coefficient. Fluxes of the active microbial biomasses are
given by

dAi

dt
¼ fi Xð Þ � bð ÞAi �Qi

where b accounts for respiration and mortality and Qi is the
flux of biomass into the dormant state (see next section on
dormancy). Because the biomass loss rate b is the same across
species, in a constant environment we expect that the species
with the greatest fitness fi Xð Þ, that is the species closest to its
optimal niche for whom li � Xj j takes the smallest value, will
deterministically exclude all other species. Hence, the only
mechanism maintaining diversity in our model is temporal
variation in fitness rank owing to a fluctuating environment.

Changes in community composition: dormancy

Particularly for environmental specialists, dormancy can be a
key mechanism allowing for survival in a changing environ-
ment. We modelled the flux between dormant and active
pools as a function of a species’ perceived environmental
stress. We define stress as fitness relative to its maximum,
ĝiðXÞ ¼ giðXÞ=giðliÞ, and furthermore assume that the transi-
tion to dormancy is a nonlinear switch-like function. We
chose the cumulative density of the Beta distribution, which
we denote by b z; u; vð Þ, where u and v are shape parameters
that influence how sharply function switches as z approaches
unity. This formulation captures the essential features of
stress-induced transition to dormancy. A more detailed con-
sideration of microbial dormancy mechanisms can be found
in Wang et al. (2014a).
With the definition wi ¼ b½ĝiðXÞ; u; v�, the dormancy flux is

given by

Qi ¼ / 1� wið ÞAi � wiDi½ �

where / is the maximum rate and Di is the dormant biomass.
This function has two extremes: /Ai when fitness is zero
and �/Di when environmental conditions lead to maximal fit-
ness. Our parameterisation of the Beta function (u = v = 8)
results in a roughly linear increase in /i over relative fitness
0:25\ĝiðXÞ\0:75 and approximately constant (either near 0
or near 1) outside this range. Note that relative fitness in this
context is relative to a species’ own maximum, not relative to
the community-wide average fitness.

With these assumptions, change in the dormant biomass of
the ith species is simply

dDi

dt
¼ Qi � cDi

where c sets the mortality rate of dormant biomass. Species
transition to dormancy when their fitness is low and become
active when the environmental conditions are more favourable.

Environmental conditions

We modelled environmental variation using a first-order auto-
regressive time series model. Because the community model is
continuous in time, we simulated time series according to a
two-scale process. Below a threshold time scale, ds, we gener-
ated a locally smooth deterministic function
X tð Þ ¼ j xs0þds; xs0þ2ds; xs0þ3ds; . . .; xs0þndsð Þ where jð�Þ is a linear
interpolating function and xs are samples from a coarse-scale
stochastic model. For the coarse-scale component, we used a
first-order autoregressive model

xsþds � �x ¼ qðxs � �xÞ þ es

where �x is the mean environmental value. Environmental
noise es was sampled from the normal distribution N 0; rEð Þ
where rE sets the magnitude of environmental variation (the
label ‘sd’ is used in the tables and figures to designate rE).
The autoregressive parameter q determines the autocorrelation
pattern of environmental fluctuations (the label ‘ac’ is used in
the tables and figures to designate q). For q < 0, the environ-
ment rapidly oscillates between high and low values. This
leads to ‘blue noise’ with a spectrum biased towards high-fre-
quency variance. When q < 0, the environmental values take
long excursions above and below the mean. This produces a
‘red noise’ spectrum dominated by low-frequency variation.
The time series mean �x is bounded and stationary for
�1 < q < 1. We used a threshold time scale ds = 1 day.

Parameterisation and parameter sensitivities

As the model was as a theoretical exercise, we did not base
parameters on measured data. Modelled turnover times of
carbon and microbial pools vary widely in the literature, in
part because different models partition these pools in different
ways and in part because empirical estimates vary among
studies. We chose our default parameters (Table 2) such that
the turnover times of the resource and active and dormant
biomass pools were reasonably consistent with those of Wang
et al. (2013), a particularly well-documented and calibrated
study, whose representation of dissolved carbon and microbial
pools is analogous to our resource and active biomass pools.
For a single species with li = 0.0 and ri = 1.0 simulated in a
constant optimal environment (�x ¼ 0:0, rE = 0.0), the turn-
over of the resource pool was 20 days, consistent with the
20 day turnover of dissolved organic carbon in the model of
Wang et al. (2013). Active biomass under these conditions
turned over every 53 days compared to 132 days in Wang
et al. (2013). Turnover time of dormant biomass was set
at five times that of active biomass, or 265 days. Order of
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magnitude variation in these turnover rates will have little
impact on our basic conclusions.
We also conducted a sensitivity analysis of our model. We

varied all parameters simultaneously over 1000 replicate runs.
Parameters were perturbed in each replicate by multiplying
each by a log-normal deviate with log-mean = 0.0 and log-
standard-deviation = 0.25. We equated sensitivity to the
regression coefficients of a model with the steady-state output
as the dependent variables and parameter values as the inde-
pendent variables.

Simulations with environmental history and environmental change

We examined the influence of two historical environmental
factors, environmental variation (sd = rE) and environmental
autocorrelation (ac = q) on how microbial communities
respond to a change in the environment. Environmental
change was represented by an applied press disturbance of
magnitude pr ¼ D�x, which alters the mean environmental con-
dition in the time series. Each of the three factors was sam-
pled from a uniform distribution: pr varied from 0.0 to 2.0, ac
varied from �1.0 to 1.0 and sd varied from 0.0 to 2.0. A total
of 4000 random combinations of pr, ac and sd were generated
and used for simulations.
These simulations proceeded in three phases. During the first

phase of the simulations, we constructed a community by ran-
domly introducing species at an average rate of one per
100 days. New species niche optima were drawn from a normal
distribution with zero mean and unit standard deviation, niche
breadths from a log-normal distribution with log-mean zero
and log-standard-deviation one. After the assembly phase, the
model was simulated for an additional 1000 years without
immigration. These extended periods of simulation were neces-
sary to allow the community to reach a steady-state composi-
tion. Prior to the third phase, the output of the model was
sampled over an additional 10-year pre-disturbance period. The
environmental change was then applied (the mean environment
shifted an amount prescribed by the variable pr). We then simu-
lated for an additional 1000 years to allow the model to reach a
new equilibrium. The recorded output was averaged over a final
10-year post-disturbance period. Throughout the simulations,
species whose total active and dormant biomass fell below one-
part-per-million were culled from the model on a daily basis.
Community-level function was in the form of soil resource

use, where 100% resource use represented full acclimatisation.
Because the effect of the environmental change was often
approximately binomial (either 0 or 100% resource utilisation;
Fig. 3), we fit a GLM to the results with resource utilisation
greater than 50% as the dependent variable. In all cases,
treatments were entered into the model as continuous ordered
variables, not discrete contrasts. The GLM results are sum-
marised in Table 3.

MODEL RESULTS

Sensitivity

Model sensitivities are given in Table 2. Total resource input
rate constant (I) had the largest impact as it controls the total

resource and biomass accumulations. Maximum microbial
uptake rate (r) and half-saturation coefficients (s) also showed
high sensitivity across all pools. Active biomass loss rate (b)
was sensitive for biomass pools. Interestingly, the shape
parameters (u, v) of the dormancy switch were highly sensitive
for both active and dormant biomass pools indicating that
shifts in the propensity to switch between active and dormant
states has a strong influence on biomass accumulation and
distribution between active and dormant pools.

Interaction between historical fluctuations and abrupt environmental

change

The magnitudes of the environmental change had strong influ-
ences on acclimatisation of resource use. When the size of the
environmental shift was large, resource utilisation declined,
indicating a collapse in the microbial community owing to
poor fitness in the altered environment (Fig. 3). This collapse
occurred despite the mechanisms supporting resilience we dis-
cuss in the following sections, suggesting a cautionary note
with regard to abrupt environmental change: a sufficiently
large perturbation can overwhelm both individual species
physiological plasticity (here, niche breadth) and the capacity
of the community to exhibit a compensatory response in
which previously maladapted species flourish under the new
environmental regime.
Interestingly, the relationship between historical environ-

mental variation and resource utilisation was not monotonic,
instead showing a strong unimodal ‘humped’ relationship in
most cases and especially for intermediate levels of environ-
mental change (Fig. 4). The mechanism underlying the col-
lapse of the community at high environmental standard
deviations is likely the strong inherent penalty (maximum
growth trade-off) of being a generalist with broad physiologi-
cal tolerance. Large environmental standard deviations should
favour more plastic generalists, but their average fitness will
still be small relative to specialists in a more constant environ-
ment. Collapse at low historical environmental variation is
more puzzling. Clearly, a lack of historical environmental var-
iability (sd = 0.0) resulted in communities that were more sen-
sitive to an environmental change than those that experienced
past environmental variation (Fig. 4). The result is a peaked
response at intermediate levels of historical variation (Figs 3
and 4). The obvious explanation is that a lack of historical
environmental variation leads to dominance by a single or

Table 3 Influence of environmental characteristics on the probability that

resource utilisation is above 50%

Variable Estimate Standard error z-value

Intercept 5.56 0.63 8.9

Environmental change (pr) �7.44 0.79 �9.4

Environmental variation (sd) �1.90 0.47 �4.1

Environmental autocorrelation (ac) 1.01 0.68 1.5

pr 9 sd 1.90 0.58 3.3

pr 9 ac 2.65 0.65 4.1

sd 9 ac �2.18 0.38 �5.7

Estimates are regression coefficients from a binomial GLM.
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small number of specialist that cannot survive in the altered
environment. The competitive exclusion of generalist and
non-optimal specialists is roughly analogous to the evolution-
ary mechanism of local adaptation leading to specialisation
on a narrow niche. This, in turn, may inhibit acclimatisation
to new environments if specialisation limits evolutionary
rescue.

Influence of environmental autocorrelation

Changes in the frequency of similarity in historical environ-
ments over time, that is environmental autocorrelation, also
exhibited a unimodal response (Fig. 5), albeit not as consis-
tently as did historical environmental variation. For environ-
mental variation (sd) less than 1.0 and intermediate levels of
environmental change, positive autocorrelation appears to
impart greater resilience, perhaps because the greater long-
term variation associated with strong autocorrelation may
maintain a larger community of generalists. At higher levels of
environmental variation (sd > 1.0) it appears that strong auto-
correlation, whether positive or negative, reduces resilience.
This again likely is a result of the greater long-term variation
associated with strong positive and negative autocorrelation.
The magnifying influence of autocorrelation on long-term

environmental variation may have led to greater effective envi-
ronmental variation and subsequent extinction (Fig. 4).

Influence of environmental variation on pre- and post-disturbance

niches

Environment variation strongly influenced the niche properties
of the assembled communities (Fig. 6). Community average
niche breadth (�r) in particular shows a strong positive
relationship to environmental variation, clearly indicating that
niche specialists were disadvantaged in the more variable
scenarios. Community average niche optima (�l) conform to
the mean environment pre-disturbance and increase in
response to the post-disturbance increase in the environmental
mean. The effect is most dramatic at intermediate envi-
ronmental variability (sd � 0.5) where many average commu-
nity optima show strong tracking of environmental change
owing to growth of more fit species and extinction of less fit
species post-disturbance. Per-species average active and dor-
mant biomass decreases with increasing environmental varia-
tion. (The distinct vertical structure of active pre-disturbance
biomass is likely driven by cases where the community relaxed
to a single species consuming all of the resource, two species
sharing the resource, etc.) Average dormant biomass shows a
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Figure 3 Resource utilisation fraction (0 = resource not utilised; 1 = full resource utilisation) as a function of environmental change (pr). Each row

corresponds to a different historical environmental variation (sd) and each column to a different level of historical environmental autocorrelation (ac). The

three treatments (pr, ac, sd) were each drawn from a uniform random distribution and then binned into the indicated intervals. The line is a loess fit

through the points. The shaded region indicates standard errors of the loess curve. Points are plotted with 25% transparency such that isolated points

appear grey and clusters of points appear in increasingly darker shades.
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large increase post-disturbance indicating that this is a key
mechanism for species persistence under environmental
change. While average per-species active biomass declines with
increasing environmental variation, total resource utilisation,
the product of number of species, their fitnesses and biomas-
ses, is maximised at intermediate environmental variation
(Fig. 4).

DISCUSSION

Based on results of the simulations, acclimatisation responses
can interact with legacies of previous environmental condi-
tions to affect both microbial community function and com-
position in the face of climate change, making outcomes less
predictable than if neither or only one factor was at play. Spe-
cifically, the degree of acclimatisation was highly dependent
on how the balance of generalists and specialists shifted with
the magnitude of the environmental change (pr), historical
levels of environmental variation (sd) and historical patterns
of autocorrelation (ac). Although we did not address all possi-
ble microbial response mechanisms, the dynamics captured
here suggest a role for microbial mechanisms in driving local
variability in soil functional responses to environmental
change.

Intermediate levels of historical variation in particular had a
strong influence on the resilience of communities (Fig. 6). This
result can be explained by the maintenance of a large pool of
moderately generalist species in the pre-disturbance species
pool. The greater range of niche optima in the more diverse
communities leads to a greater chance of a compensatory
response to environmental change by pre-adapted species.
Further increases in environmental variation generated still
greater average niche breadth, but there is a tipping point
where the negative influence of being a generalist begins to
reduce species richness, range of niche optima, and overall
resilience of the community. Although the specific details of
this mechanism depend of course on the resource supply rate
and metabolic maintenance costs, these results give strong
support for an intermediate disturbance mechanism regulating
species richness and community resilience to environmental
change. These results are consistent with predictions of the
intermediate disturbance hypothesis (Connell 1978). The pri-
mary difference between the mechanism operating here and
most applications of the intermediate disturbance hypothesis
is that our ‘disturbances’ operate symmetrically: there are no
community-wide ‘good’ or ‘bad’ epochs. A directional fluctua-
tion in the environment can either harm or benefit any given
species dependent upon its assigned niche optimum and
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Figure 4 Resource utilisation fraction (0 = resource not utilised; 1 = full resource utilisation) as a function of historical environmental variation (sd). Each

row corresponds to a different environmental change (pr) and each column to a different level of historical environmental autocorrelation (ac). The three

treatments (pr, ac, sd) were each drawn from a uniform random distribution and then binned into the indicated intervals. The line is a loess fit through the

points. The shaded region indicates standard errors of the loess curve. Points are plotted with 25% transparency such that isolated points appear grey and

clusters of points appear in increasingly darker shades.
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breadth. It remains to be determined whether this represents a
fully stabilising versus equalising mechanism sensu Chesson
(2000). Furthermore, in experimental settings the effects of
disturbance on microbial abundance, composition and func-
tion do not consistently follow the intermediate disturbance
pattern (reviewed in Griffiths & Philippot 2013) suggesting
that a better understanding of detailed mechanism may be
required to generalise this result.
By modelling individual responses to climate change, the

simulation results establish a plausible scenario under which
the magnitude and pattern of historical environmental varia-
tion influences the functioning of niche-based, competitively
structured communities in response to a change in the environ-
ment. Depending on the degree of environmental change and
the environmental history, both resilience and collapse could
result from plasticity (environmental generalists) or adaptation
(environmental specialists). Obviously soil microbial communi-
ties are far more complex and subject to additional positive
feedbacks not incorporated in the current model. For example
other ecosystem process models have incorporated microbial
traits or functional groups explicitly related to resource use
rather than the environment (e.g. Moorhead & Sinsabaugh
2006; Orwin et al. 2011; Allison 2012; Waring et al. 2013).
Future models could incorporate simultaneous consideration

of environmental and resource-based traits in the context of a
changing environment, including feedbacks between the envi-
ronment and resource pools. Nevertheless, more work will be
required to determine the level of detail necessary to success-
fully model these effects at higher levels, such as longitudinal
time series of responses to environmental change for soils from
different environmental histories, accounting for both function
and different taxa or functional groups.
Even the simple niche-based mechanisms addressed here

resulted in complex patterns of resource use related to the pre-
vious environment that could scale up to microbe-driven local
variability in ecosystem responses to environmental change.
Such local variability might prevent extrapolation across sites
or ecosystems without additional understanding of how spe-
cific local controls might be generalised. For example if accli-
matisation of microbial resource use, such as decomposition
of dissolved organic matter, depends on both the historical
environment and the degree of environmental change, then
there is likely to be a high degree of local variability in how
ecosystem processes such as soil carbon cycling respond to cli-
mate. One relatively simple outcome of the current model was
that microbial communities from more constant environments
were more sensitive to environmental change, and did not
acclimatise well. This paradoxically could imply that systems
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Figure 5 Resource utilisation fraction (0 = resource not utilised; 1 = full resource utilisation) as a function of historical environmental autocorrelation (ac).

Each row corresponds to a different environmental change (pr) and each column to a different level of historical environmental variation (sd). The three

treatments (pr, ac, sd) were each drawn from a uniform random distribution and then binned into the indicated intervals. The line is a loess fit through the

points. The shaded region indicates standard errors of the loess curve. Points are plotted with 25% transparency such that isolated points appear grey and

clusters of points appear in increasingly darker shades.
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with constant conditions, such as moisture availability, may
be less resilient than those that experience harsher, more vari-
able conditions, which are usually considered more fragile.
Clearly under some conditions acclimatisation will occur,
whereas under other conditions historical contingencies will
cause soil microbes to function at a lower level than
expected under climate change, with large consequences for
the terrestrial carbon cycle. Empirical quantification of these
relationships might allow for relatively simple modification to
large-scale models.
Local variability in potential acclimatisation will be partic-

ularly relevant in situations where communities are dispersal-
limited and composition is largely a function of local interac-
tions (B€uchi & Vuilleumier 2014). Absent a large influx of
new variants that can thrive in the changed environment,
mechanisms for resilience are limited to compensatory shifts
in physiology or community composition, modelled here, or
in rapid evolutionary change, which we did not address
(Fig. 1). Both physiological and compositional changes have
been documented and modelled for real-world soil microbial

communities (e.g. Allison et al. 2010; Hawkes et al. 2011;
Placella et al. 2012; Waring et al. 2013), but dispersal and
rapid evolution remain poorly understood (e.g. Lindstr€om &
Langenheder 2012; Wilkinson et al. 2012; Adams et al.
2013).
Our current model is highly simplified to extract the essen-

tial features of a competitively structured community in a var-
iable environment. However, future work could expand in a
number of directions. A natural extension would be to con-
sider a spectrum of potential resources, which would add
opportunities for resource niche specialisation. Resource use
also depends on other specific factors not addressed here, such
as temperature, substrate quality and the annual time span of
microbial activity (e.g. Xu et al. 2014). An additional consid-
eration would be soil enzyme kinetics that feedback to the
carbon pool as addressed in Allison et al. (2010) and Wang
et al. (2013). A combination of modelling studies and experi-
ments will be needed to improve our understanding of the
links between microbial individuals and soil function.
Empirical tests of microbial responses to environmental

change can further inform future predictive models that
account for climate change. Manipulations that expose whole
soils to new conditions can speak to aggregate functional
responses (e.g. Bradford et al. 2010), but we can generally
only infer that several mechanisms are likely operating simul-
taneously in the microbial community. However, as sequenc-
ing and isotope technologies continue to develop and their use
becomes more widespread, it will be easier to distinguish
microbial response mechanisms. Zaneveld et al. (2011) suggest
that the combination of phylogenetic and genomic approaches
can be used to reveal local adaptation in microbial communi-
ties. For in situ detection of both function and identity at the
level of individual cells, nano-scale secondary ion mass spec-
trometry links high-resolution microscopy with isotopic analy-
sis (Li et al. 2008). This is particularly powerful when
combined with stable isotope probing to track specific func-
tions (Pett-Ridge & Weber 2012). To examine how microbial
response mechanisms vary by local environments, these meth-
ods could be applied to soils from environmental gradients
that have been experimentally manipulated in common gar-
dens or in the laboratory (Kreyling et al. 2014).

CONCLUSIONS AND FUTURE DIRECTIONS

Historical contingencies will act together with both ecologi-
cal and evolutionary mechanisms in microbial responses to
climate change and their impacts on soil processes. Future
studies that aim to partition the relative importance of
potential physiological, community and evolutionary
response mechanisms, as well as their context-dependence,
will aid in our understanding of how ecosystems will
respond to climate change. In particular, ecosystem predic-
tions could be improved by knowledge of how these mecha-
nisms affect the time frame of and potential lags in
acclimatisation, the relationship between historical environ-
mental conditions (including environmental variability) and
responses to new environmental conditions, and the relative
importance of non-climatic, abiotic conditions, such as soil
resources, vs. climatic factors in microbial responses. Such
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mechanistic studies will enhance our understanding of basic
microbial biology, and should be broadly applicable to
microbial processes in soil. Given the potential for positive
feedbacks to climate change from soil carbon pools that are
double the size of current atmospheric pools (Schlesinger &
Andrews 2000), these timely efforts have practical applica-
tions as well.
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