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With the increasing concern about species conservation, a need exists for quantitative
characterization of species’ geographic range and their borders. In this paper, we survey
tools appropriate for the quantification of static spatial patterns related to geographical
ranges and their borders. We then build on these static methods to consider the
problem of changes in geographic range through time. Methods discussed are
illustrated using lark sparrow data from the North American Breeding Bird Survey.
While there is no such thing as the ‘‘best’’ or ‘‘only’’ method to analyze species
geographical range and border, we show that a series of methods can be used in
sequence to provide complementary and useful quantitative information for species
occupancy of range. Indeed, the location of species’ borders estimated at different times
can be compared to identify locations where species expand or go locally extinct. The
ability to delineate accurately species’ ranges will be useful to conservation biologists,
managers and ecologists.
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There are a number of theoretical and practical reasons

to quantify spatial pattern in species’ ranges and their

borders (Hoffmann and Blows 1994, Gaston 2003). With

increasing concern about species conservation, it is

important to obtain quantitative descriptions of species’

range structure and extent of geographical ranges of

species to provide accurate information for management

purposes (Lawton 1993). Specific questions related to

the quantitative characterization of species’ ranges and

their borders that need to be addressed include: (i) how

large are geographic ranges?; (ii) how can geographic

range boundaries be identified?; (iii) are range bound-

aries gradual or sharp transitions?; (iv) are the shapes of

species’ boundaries jagged or smooth?; (v) how much

variation in the use of the landscape is found within

range boundaries?; (vi) are there internal boundaries?;

and (vii) is the range fragmented? Once some of these

questions have been answered, other questions naturally

arise, such as: with what attributes of the landscape

(both abiotic and biotic) are the various structures of a

species’ range associated? How does the structure of a

species’ range vary through time?

To answer these questions, maps that accurately

delineate the geographical range of a species are nee-

ded. The characterization of species’ ranges is, however,

complicated by their spatial and temporal dynamics. For

many species, ranges may expand in some geographical

regions while contracting in others (Hengeveld 1990).
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Hence, descriptions of species range boundaries require

not only that borders are determined accurately at any

given point in time, but also that these limits can be

characterized in terms of their shape and width (Maurer

1994, 1999, Curnutt et al. 1996, Maurer and Nott 1998,

Gaston 2003). Furthermore, it is important to identify

the internal distribution of abundance within range

boundaries. Indeed, large variations in abundance result

in gaps within a species’ range that can create internal

borders (Brown et al. 1996). Hence the quantification of

spatial pattern of the outer species’ border limit, as well

as within-species range boundaries, may help to resolve

outstanding questions in spatial ecology such as the

importance of source and sink demography (Pulliam

1988).

The exercise of producing species’ range maps is not

new (Rapoport 1982) and in fact is common in

biogeography (Hengeveld 1990, Maurer 1994, Gaston

2003). Similarly, the delineation of ecological boundaries

to better understand the relationship between boundary

structures and their functions is an active research area

in ecology (Cadenasso et al. 2003, Fagan et al. 2003,

Strayer et al. 2003). Here, we want to present recent

approaches that can be used to better characterize the

location of geographic range borders as well as changes

in these locations (Gaston 2003). Specifically, we present

an overview of the different quantitative methods

specific to: (1) the delineation of species’ distributional

limits; (2) the characterization of the spatial pattern of

the border itself (e.g. shape, width); (3) the quantification

of spatial variation of species abundance within the

range; and (4) the detection of changes in geographic

range structure through time.

Lark sparrow (Chondestes grammacus ) distribution

data from the North American Breeding Bird Survey

(BBS, Robbins et al. 1989) will be used to illustrate these

methods and facilitate the comparison among them in

terms of their abilities to describe and quantify species

ranges and their borders. (Further examples may also be

found in Gaston 2003.)

Case study data: lark sparrow

This sparrow is distributed throughout the Great Plains

of North America (Fig. 1) and prefers open woodlands

and savannah habitats throughout its range. Its breeding

range extends from northern Mexico to southern

Canada and as far east as West Virginia (where it is

rare). By far, it is most common in the southern Great

Plains, particularly from northern Texas to southeastern

Colorado.

Historically, lark sparrows were limited to the west,

but expanded their range with forest clearing in the

eastern North America (Rising 1996). With extensive

forest regrowth, however, eastern populations have

declined. The species is migratory, wintering throughout

the southern United States and Mexico, so that in

south western North America breeding and wintering

ranges overlap.

Issues related to data

Our ability to detect and characterize both species’ range

and border is limited by the quality and types of data

available. Typically, ranges are delimited using sample

data and these may be either local abundance or simply

presence and absence (Maurer 1990, 1994). The accuracy

of sample data is strongly influenced by the spatial (grain

and extent) and temporal (duration and frequency)

resolution at which data are collected and interpreted.

Furthermore, field data have inevitably some degree of

uncertainty due to measurement errors resulting either

from species misidentification, incorrect abundance

counts, or lack of accurate location information. Hence,

inferences regarding range structure are limited by the

spatial resolution of data. In some cases, resolution can

have only a minor effect on analytical outcomes and

consequent conclusions (Hawkins and Porter 2003,

Blackburn et al. 2004). Most of the time however,

sample sites are generally quite local compared to the

scale of species’ ranges such that interpolation or

aggregation of data is necessary to characterize species’

ranges. This process can generate sampling error even if

none is present at the level of sample sites. For instance,

sampling error may be introduced when one assumes

that a species is absent from a region because it is absent

from all sites sampled within the region. The species may

be found within the region at localities not in the

sampling design.

With mobile species, other considerations need to be

taken into account. These include decision rules to

determine when to stop sampling the outer species’

border and when a species is locally extinct at a given site

Fig. 1. Relative abundance distribution map of lark sparrow,
from 1966 to 1995, computed by resampling the presence-
absence data of BBS routes using 28�/28quadrats.
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based on occurrences through time (Green and Young

1993, Reed 1996). Thompson (1992) proposed several

types of adaptive spatial designs to sample mobile

species such as using a given sampling step, or distance

between sampling sites, until at least one individual is

encounter and then exhaustively counting individuals in

the immediate neighbourhood. This approach can be

appropriate in the centre of the species’ range but not at

the border. At the border, other approaches should be

used such as the one suggested by Green and Young

(1993) where the sampling effort necessary to detect rare

species is calculated assuming either a Poisson or

negative binomial distribution of abundances (McArdle

1990).

Besides measurement error, other sources of varia-

bility (e.g. demographic, environmental, dispersal) affect

our ability to locate species’ borders accurately. Unlike

plant species that are sessile, animal species are mobile

so their abundance within their range fluctuates from

year to year (Guo et al. in press). The magnitude of these

fluctuations varies according to both demographic and

environmental variability. The ability of species to

disperse as a function of landscape fragmentation also

can limit species expansion (Holt and Keitt 2000).

Species’ range maps based on only one year of data are

less accurate, sometimes drastically so (Gibbons et al.

1993), than those based on multiple years of records.

Indeed, given inherent species demographic variation,

species’ range maps based on spatial time series data

longer than the species generation time are more likely to

be reliable as they integrate population fluctuations. The

analysis of long space�/time series needs to be subtler

than simple aggregation. Indeed, the major drawback

of aggregating temporally in long time series is the

risk of missing expansion or extinction events. Species’

range borders are probabilistic entities, and the challen-

ging task is to characterize this probability profile

in space, and how it shifts in time. When accurate

species’ range maps are available, combining several

years of data could indicate the maximum extent of the

range.

Species’ border analysis

Approaches to delimit species’ range boundaries (Fig. 2)

are similar to those used to detect ecotone and

ecological boundaries (Jacquez et al. 2000, Fagan et al.

2003) and those used to characterize species home range

(Worton 1995a). With presence�/absence data, a home

range boundary can be determined by linking all

the point locations such that no angle between points

exceeds 1808 using the minimum convex polygon

algorithm or the a-hull algorithm, as recommended

by Burgman and Fox (2003). This procedure minimizes

the effect of extreme points that might enlarge a species’

range artificially. Presence and absence data can also

be aggregated at a coarser spatial resolution such

that relative abundance data (e.g. Fig. 1 where

presence�/absence data from the BBS routes were

resampled using 28�/28 quadrats to obtain relative

abundance data) and other edge detector methods can

be used.

The method used to detect boundaries depends on the

spatial structure of the sampling protocol (regularly

versus irregularly spaced samples; abundance versus

presence�/absence; Jacquez et al. 2000). In remote

sensing, detection of boundaries is achieved by measur-

ing gradients (i.e. rate of change) among locally neigh-

bouring pixels using edge detection kernels known

as edge filters (Fagan et al. 2003). There are several

algorithms, called operators or image enhancement

filters, which are available in most GIS and remote

sensing software packages. Such kernel operators

use moving windows of four, nine, or even more

pixels. Gradients computed from 3�/3 windows are

smoother than those computed from 2�/2 windows

(such as lattice-wombling; Jacquez et al. 2000),

and hence reduce more of the noise. These operators

are sensitive to noise, making it necessary to smooth

the data first. Smoothing the data can be achieved either

by aggregating adjacent cells obtaining fewer larger

cells or by using a Gaussian filter that preserves the

same number of cells. Efficient filters are those that

both reduce the noise and enhance boundaries, such as

the Canny adaptive filter or the scale�/space techniques

(Fig. 3) using the Laplacian of Gaussian algorithm

(Faghih and Smith 2002, Hay et al. 2002). The

scale�/space techniques perform a series of smoothing

using a Gaussian kernel of increasing size, allowing

the detection of boundaries persistence across scales

(Csillag et al. 2001). The size of the window is critical, as

is the quadrat size in field data, in the trade-off between

noise reduction and the ability to accurately localize

boundaries as well as detecting boundary zones. Finally,

given the inherent degree of uncertainty attributed to

field data, fuzzy logic has recently been used to detect

boundary zones (Lowell 1994, Wang and Hall 1996,

Jacquez et al. 2000).

Border’s delineation

Convex hull polygon Edge detectors

Lattice-wombling

Space-scale filter

Moment measures

Point data Grid data

Fig. 2. Methods to delineate boundaries according to data type.

OIKOS 108:1 (2005) 9

 16000706, 2005, 1, D
ow

nloaded from
 https://nsojournals.onlinelibrary.w

iley.com
/doi/10.1111/j.0030-1299.2005.13146.x by U

niversity O
f T

exas L
ibraries, W

iley O
nline L

ibrary on [04/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Moments measures

When the distribution of a species has been quantified in

terms of presence�/absence data over a uniform sampling

grid, as is often the case in regional distribution atlases

(Gibbons et al. 1993), these presences and absences can

be used to produce an estimate of the position of any

location occupied by the species with respect to the range

edge. One such measure is simply the average distance

(D0) of that site from all other occupied sampling

locations (Blackburn et al. 1999). This average distance

will be small when the location in question is centrally

positioned relative to other occupied locations on the

sampling grid, and will increase the closer the site is to

the periphery of the species’ distribution. No attempt is

made to quantify exactly where the edge of the species

distribution lies. This may be advantageous in circum-

stances where a range edge is diffuse, or where a measure

of the distance to the range edge does not well represent

how peripheral a particular location is. For example, the

two shaded occupied grid squares in Fig. 4a are both

close to the range edge, but the one on the right is more

peripheral in terms of the overall distribution of the

species. This difference is embodied in the average

distances of these sites from all other occupied grid

squares, values of which for every occupied grid square

are shown in Fig. 4b. Clearly, this measure requires

taking into account some level of spatial autocorrelation

if variation in the magnitude of a variable (e.g. local

abundance) is studied using data on that variable from a

high proportion of all occupied squares. The maximum

value of D0 also varies with range size, and so requires

standardization for comparisons of ranges over time,

populations, or species.

Boundary shape and width

Since more than one process can interact in the creation

and maintenance of boundaries (environmental condi-

tions and species interaction), boundary shape and

width may vary widely along the periphery of a species’

range. To detect different boundary shape behaviours,

different landscape metrics (Gustafson 1998, Fortin et al.

2003) and others (Maurer 1994) can be computed for

subsections and the values compared (Fig. 5). Similarly,

these landscape metrics might be useful in describing the

species’ range.

For ranges here a finite ‘‘boundary’’ has been

determined, but for which there is only one dimension

(i.e. a line). Fractal dimension can be computed to

characterize boundary level of spatial complexity (Man-

delbrot 1982). With respect to species’ borders, multi-

fractal analysis (Feder 1988, Milne 1992) allows one to

study spatial variation in the dimension of the range

boundary and therefore can be used to infer changes in

Fig. 3. Species’ border based on scale-space filter using 28�/28 quadrats of lark sparrow. (a) yearly boundary for 1981 to 1985. (b)
number of yearly delineated boundary per quadrat from 1981 to 1985 [grey shade 1�/1, grey shade 2�/2, grey shade 3�/3, grey
shade 4�/4, and black�/5]. (c) number of yearly delineated boundary per quadrat from 1966 to 1995 [grey shade 1�/1 to 5, grey
shade 2�/6 to 10, grey shade 3�/11 to 15, grey shade 4�/15 to 20, and black�/20 to 30].
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processes limiting a species’ distribution in different

geographical regions.

Species’ boundaries are rarely lines, but should instead

be represented as gradients, boundary zones in abun-

dance. These boundary zones may vary in intensity and

width along the entire species’ border. To investigate that

the boundary width is not an artefact of the sampling

design, species’ border persistence can be assessed in

delineating boundary using different spatial unit resolu-

tions (Csillag et al. 2001), and by then computing the

minimum and maximum boundary zone widths as the

minimum and maximum distances between the two

edges of the boundary zone (McIntire 2003). Note that

population variability along the border can only be

detected when abundance data are available.

Comparing boundary shape

Once the border is delineated, it could be of interest to

detect differences in boundary shape and changes in

location (Fig. 6). Kaufman (1998) developed two

metrics, the perimeter/area measurement (following

Rapoport 1982) and the edge-consistency index (ECI)

to compare boundary shape for subsections of the range.

The perimeter/area allows a fractal-type analysis of the

range boundary, where data quality or other conditions

make multifractal analysis inappropriate (Maurer 1994).

This method requires the delineation of a range bound-

ary, but is evaluated at the level of grid squares. The ECI

allows for the comparison of range edges based on

presence�/absence data from grid squares. Often, data

Fig. 4. (a) Lark sparrow
distribution represented by
presence (1) and absences (empty
squares) across a sampling grid of
28�/28 of the presence/absence
data of BBS routes from 1966 to
1995. (b) The average distance of
each of the occupied grid squares
in (a) from all other occupied
squares, D0, which equals

Xn�1

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
((jx � xij)

2 � (jy � yij)
2)

q

n � 1

where x and y are the co-ordinates
of the focal square, xi and yi are the
co-ordinates of the ith occupied
square, and n is the total number
of occupied squares (rounded
down to the nearest integer).

Border’s characterization

Fractal dimension
Perimeter/area measurement

Minimum and maximum
Boundary zones

Shape Width

Fig. 5. Methods to characterize boundary’s shape and width.

Quantifying changes

Edge-consistency index
Overlap statistics

Polygon change statistics
Area-based tests

Border Range

Fig. 6. Methods to analyse borders and ranges changes.
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are too coarse to allow for an accurate delineation of a

range edge, and this method makes those data available

for analysis. Both metrics can be applied to questions

where there are a priori predictions about differences in

variability of the range edge between subsections of the

range for a group of individuals, species, or taxa. For

example, one could compare northern and southern

edges for a group of species and test for inequality of

directional differences based on hypothetical predictions.

The perimeter/area measures boundary geometry and, in

the subsection of range examined, compares the number

of grid squares through which the boundary passes to

those where the species is present. The ECI measures the

consistency of the edge relative to the coordinate system

(e.g. latitude). These metrics permit the evaluation and

comparison of subsections of the range edge, while being

sensitive to the limits of the data (Kaufman 1998).

These calculations are made to utilize presence�/

absence of a species across the grid system and to

compare the shape and placement of the boundaries for

selected subsections (such as northern and southern

range boundaries). For these metrics, the range needs to

be contiguous relative to quadrats (see Kaufman 1998

for criteria making ranges amenable to analysis via these

metrics); therefore, the metrics are here computed for the

lark sparrow using 38 lat/long quadrats. The ECI

requires only presence�/absence data and tests for the

level of correspondence to, in this example, latitude. The

perimeter/area requires the delineation of a boundary

(here, based on a minimum convex polygon) and tests for

the geometric complexity of that boundary. Both indices

range from low values (always �/0) up to 100. An ECI of

100 means that the range edge corresponds perfectly to a

row of latitude, whereas low values mean that a weaker

relationship exists with latitude. For the example of lark

sparrow, the ECI value is 66.7 for the northern boundary

and 42.7 for the southern boundary. A perimeter/area of

100 means a high level of complexity or that the range

boundary passes through every quadrat where the

species is present in the tested section, whereas low

values mean more ‘‘linear’’ or simple geometries. For our

avian example, the perimeter/area value is 68.2 for the

northern boundary and 80.9 for the southern boundary.

That means, for the lark sparrow that the northern edge

has a tighter correspondence to a single latitude than

does the southern edge, and that the northern edge is

more linear or regular than the southern edge.

In some circumstances, it may be of interest to

compare the ranges’ border of different species, or the

border of a single species estimated by different methods

or at different times. Further, one may wish to compare

empirically identified species limits with those predicted

by theories or models (Holt and Keitt 2000). Compar-

isons between empirical borders estimated at different

times can be useful to stress areas of potential species

extinction and expansion, while comparisons between

empirical and theoretical borders can highlight some

ecological or evolutionary processes not included in the

theoretical models. Comparisons between empirical and

theoretical boundaries also provide the opportunity to

test the predictions of theory. For example, Kaufman

(1995) proposed that species tend to be limited by

different factors at high latitudes than at low ones�/

that abiotic factors are most limiting at high latitudes

and decrease in importance toward the tropics, while

biotic interactions are most limiting in the tropics and

decrease in importance as abiotic factors become limit-

ing. Kaufman (1998) further developed this idea for the

high-and low-latitude boundaries of individual ranges

and predicted, for example, that species distributed

across that temperate zone would tend to have ranges

where the high-latitude edge would more closely parallel

latitude and be more geometrically simple or ‘‘linear’’

than the low-latitude edge. This prediction was based on

the idea that, because abiotic factors (e.g. temperature)

are relatively well correlated with latitude and because

biotic interactions (e.g. competition) would tend to

exclude, by chunks, the potential parts of the species’

range, abiotically produced range edges would be more

highly related to latitude and geometrically simple than

biotically limited range edges. For mammals in the

temperate zones of the New World, the data were

consistent with these predictions and high latitude edges

paralleled latitude more closely and were more linear in

geometry than low latitude edges (as was also true for

our example of the lark sparrow).

While several methods exist to delineate boundaries

and to characterize boundary shape, not that many

statistics exist to quantify their movements. Fortin et al.

(1996) proposed a series of overlap statistics to test

whether boundaries from different sources overlap

spatially or not. These overlap statistics compute the

minimum spatial distance between boundaries based

from different data sets and their significance is assessed

using randomization tests. They can allow us to dis-

criminate between boundaries that completely coincide

spatially for one part of the species’ range (OD: direct

overlap statistic) from those parts where boundaries

are not overlapping (OM: minimum spatial distance

statistics). Here, we investigate whether or not lark

sparrow boundary location fluctuates through time, we

computed these two overlap statistics on boundaries

delineated using three different time periods (5, 10, and

15 years) based on the lattice-wombling edge detector

algorithm (Jacquez et al. 2000). The results of the direct

overlap statistic OD (Table 1) inform us that the species

border locations (i.e. pixels that are forming the bound-

aries) overlapped more within one another in the earlier

part of the time series (1966 to 1985) having values

around 94 (94, and 96) than in the later part (1986�/

1995) where the values decreased to 90 and 85. This was

true of boundaries delineated using both 5-year and 10-

12 OIKOS 108:1 (2005)
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year periods; when the 15-year period was used the

overlap was of 88 locations. The results of the minimum

spatial distance statistic OM (Table 1) are providing

information about the degree of movement (distance)

between the two compared boundaries. When compar-

ing the results of the two overlap statistics, we detect that

while there are more boundary locations at the same

location earlier (as indicated by the OD), there is also the

most distance between the boundaries at other locations

(as illustrated in Fig. 3). These overlap statistics are

therefore informative about the spatial dynamics of the

boundaries and whether or not these movements are

significant.

Species’ range pattern analysis

As species occupancy varies over its geographical range,

the characterization and quantification of the species

spatial abundance can provide valuable insights about

this response to environmental changes and habitat

alterations. Here we present two families of techniques

to perform such spatial pattern quantification (Fig. 7).

Kernel density methods

The problem of identifying a species’ range is compar-

able to identifying an individual’s or group’s home range,

although at a higher level of organization. Simply

drawing a line around some estimate of the range is a

less than optimal solution. As mentioned above, the

localities utilized by individuals, packs or species varies

with time. Furthermore, the utilized localities may not be

visited with equal frequency. It is therefore more useful

to represent a species’ range with a density surface

portraying the probability that a species can be detected

in a locality (Fig. 8).

This change in thinking helps the researcher to realize

that the concept of the species’ range as some fixed area

within which all individuals of a species will be found is

at best an idealization, and at worst, specious. None-

theless, species’ ranges can still be characterized and

compared. The species’ range can be opera-

tionally defined as the area where the probability of

finding an individual of the species is greater than some

defined value. Alternatively, the range could be defined

as the area containing some arbitrary proportion (such

as 0.95 or 0.99) of the total species’ population. This

concept has been utilized successfully in the study of

home ranges (Worton 1989a, b, 1995a, b, Seaman and

Powell 1996).

A number of methods are available for the estimation

of probability densities (Izenman 1991). One of the most

widely used approaches is kernel density estimation. The

kernel density estimate has a number of very attractive

statistical properties. It is a true probability density

function, and furthermore, it is very easy to bootstrap

from the kernel density estimate (Worton 1995a, b). This

means that the kernel density estimate is more than

just a heuristic graphical representation, but can be

used as a probability density function in statistical

analyses. Bootstrapping can also be used to construct

confidence intervals for range estimates (Kern et al.

2003). Simulations have shown that kernel density

estimation based estimates of home range perform well

compared to other methods (Worton 1995a, b, Seaman

and Powell, 1996, Kenward et al. 2001, Kernohan et al.

2001, Girard et al. 2002, Matthiopoulos 2003). Silver-

man (1986) and Scott (1992) provide very readable

Table 1. Overlap statistics between boundaries based on lattice-
wombling for lark sparrow over different period of time. (ex.:
1966�/1970: 5 years presence�/absence summed to produce a
species’ range boundary). All the values are significant at
a�/0.05.

Years OD OM

(distance in 8)

1966�/1970 compare to 1971�/1975 94 0.512
1971�/1975 compare to 1976�/1980 94 0.457
1976�/1980 compare to 1981�/1985 96 0.336
1981�/1985 compare to 1986�/1990 90 0.359
1986�/1990 compare to 1991�/1995 85 0.312
1966�/1975 compare to 1976�/1985 93 0.429
1976�/1985 compare to 1986�/1995 85 0.483
1966�/1980 compare to 1981�/1995 88 0.435

Range’s characterization

Landscape metrics

Semivariance

Wavelet

Kernel density methods

Kriging 

Pattern Interpolation

Fig. 7. Methods to analyse the spatial pattern of ranges and to
map them.

Fig. 8. Kernel density map of lark sparrow relative abundance,
from 1966 to 1995, computed by resampling the presence�/

absence data of BBS routes using 28�/28 quadrats. Bandwidth
selected by jackknife crossvalidation.

OIKOS 108:1 (2005) 13
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introductions to the theory and application of kernel

density estimation.

Geostatistics

Ecological and evolutionary processes that set species’

range boundaries may influence not only the shape of

the range border, but also local variation in abundance

across the species’ range (Maurer 1999). Spatial pattern

across the entire species’ range can be quantified using

global spatial statistics and geostatistics (Legendre and

Fortin 1989, Cressie 1991, Maurer 1994). The basic

process assumed by global spatial statistics, to range

border estimation, is that the abundance of a species is

determined by geographical scale variation in ecological

conditions (Villard and Maurer 1996). These spatial

statistics quantify, therefore, the intensity and scale of

spatial pattern by estimating the degree of spatial

autocorrelation using either variogram function or

spatial autocorrelation coefficients (Legendre and Fortin

1989). These global spatial statistics assume however

that the spatial process is stationary such that it can be

parameterized with the same values for the entire extent

of the study area. Spatial stationarity implies that the

statistical moments describing variation in abundance do

not change over space. Lack of stationary occurs in the

presence of trend or local variability in variance across

the entire study area. Many geographic ranges probably

do not meet this requirement since there is a definite

pattern in abundance across geographic ranges (Brown

et al. 1996, Maurer 1999). If there is a spatial trend in the

data, then a geostatistical model can still be used if large-

scale variation in abundance can be attributed to

changes in environmental conditions across geographic

space (below). When species abundances are influenced

by several different processes over the entire range, the

assumption of stationarity of the global spatial statistics

are not fulfilled and spatial characterization should be

performed using local spatial statistics (Boots 2002) or

wavelets analysis (Bradshaw and Spies 1992, Dale and

Mah 1998) which are less sensitive to departure from

stationarity and could be used to quantify species’ range

spatial structure.

Geostatistical methods of estimating the within-range

variation in abundance use data obtained for a collection

of grid cells (pixels) within a species’ geographic range

(Maurer 1994, Villard and Maurer 1996). The goal of

the spatial analysis using geostatistics is to first estimate

the spatial variation in abundance from these sampled

sites using the semivariance function and then to use this

information about the spatial autocorrelation to inter-

polate values, called kriging, at unsampled locations

(Fig. 9; Legendre and Fortin 1989, Cressie 1991, Maurer

1994).

Several modifications of the basic semivariogram and

kriging procedures can be used when the available data

depart from the basic assumptions requires for estima-

tion of spatial variation in abundance. When abundance

data are available and it is suspected that the data show a

spatial trend, the assumption of stationarity cannot be

made. Universal kriging can be used, however to

quantify the spatial trend and estimate spatial auto-

correlation of the residuals (Cressie 1991). When the

spatial pattern shows non-linearity that cannot be fitted

by a polynomial function, nonlinear kriging can be used

(Goovaerts 1997). When presence�/absence data are

used, kriging is based on the indicator variogram. An

indicator variogram that quantifies the spatial structure

of binary data, or of quantitative data that are converted

to binary data by using an arbitrary threshold, can be

used to map the spatial pattern. Finally, species may

respond to different types of habitats within their

geographical range. In such circumstances, stratified

kriging offers a way to interpolate over regions that

have different spatial variances due to some change in

strata types. For example, in fragmented landscapes, it is

inappropriate to krige deciduous forest and agricultural

lands using the same semivariance function. Instead, the

spatial dependence should be determined separately for

each habitat type and then spatial pattern should be

interpolated using stratified kriging (Wallerman et al.

2002).

Range changes

Changes in species’ ranges (Fig. 6), defined as polygons,

can be characterized using Sadahiro and Umemura

(2002) polygon changes analysis which describe polygon

dynamics in terms of their spatial (geometric) dynamics

using six primitive events: (1) generation: appearance of

a polygon, (2) disappearance: loss of a polygon, (3)

expansion: increase in area, (4) shrinkage: loss of area,

(5) union: two polygons merging, and (6) division: a

Fig. 9. Kriged map of the lark sparrow lark sparrow relative
abundance, from 1966 to 1995, computed by resampling the
presence�/absence data of BBS routes using 28�/28 quadrats.

14 OIKOS 108:1 (2005)
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polygon splitting into two. Also, in the same spirit as the

overlap statistics for comparing boundary locations,

Maruca and Jacquez (2002) proposed to test difference

in polygon locations using area-based tests comparing

the amount of area overlapping between polygons.

Species’ range prediction

Species spatial distribution is linked to the specific

habitat requirements. The amount and spatial config-

uration of habitats are however also spatially dynamic.

Hence, species geographical range extent and spatial

pattern is linked to the availability and arrangement of

habitats. Spatial and quantitative data about habitats

can be extremely useful in the estimation of species’

boundaries. Indeed, knowledge of species habitat and

climate requirements can be used to obtain a probabil-

istic map of species occurrence based on logistic regres-

sion and predictive models (Davis et al. 1998, Pearce and

Ferrier 2000, Guisan and Hofer 2003, Sutherst 2003,

Loiselle et al. 2003). Such probabilistic maps can be used

to locate a potential species’ border. Habitat information

can also be combined with kernel density information to

improve boundary predictions (Matthiopoulos 2003).

Spatially explicit population dynamics can be useful for

delineating source portions of a species’ range in data

rich situations (Lele et al. 1998). Predictions based on

habitat covariates can be very important in regions

where the biota has not been exhaustively surveyed,

allowing range analysis to be extended beyond limited

observations.

Conclusion

There is no such thing as the best method to delineate

border and characterize range. In fact, the choice of the

most appropriate methods is guided the combination of

data type, data quality, and research questions. Here our

goal was to stress how the combination of existing and

novel quantitative and spatial statistics could be used in

a complementary way to better describe species’ geo-

graphical range. This wealth of statistical methods

comes, however, with a suite of technical challenges

related to the spatial and temporal resolution of the data:

too fine a resolution would portray highly fragmented

species occupancy patterns and range edges that seem

exceedingly variable, while too coarse a resolution would

not pick up species responses to environmental changes

and changing land use pressures. Taxonomic accuracy is

also a fundamental problem as species taxonomy is a

moving target: speciation events do occur and the novel

abilities that separate species into sub-species may

become more and more apparent with intensive study.

Having these concerns in mind, the spatial statistics

presented here can still be used to produce reliable

species’ range maps, which are needed for conservation

purposes. By doing so, important questions regarding

the identification of the locations where species expand

or go locally extinct can be investigated by comparing

the locations of species’ borders estimated at different

times. Caution should be taken when comparing historic

geographic ranges, which presumably reflect thousands

of years of species dispersal, occupancy and speciation,

with recent estimates of geographic ranges which are

based on a few decades of data in highly changing

landscapes. Hence, a comparison of historic and current

geographic ranges based solely on their physical proper-

ties (size, limits and pattern) may be misleading, akin to

comparing apples to oranges.
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