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Biologists seek an understanding of the biological and environmental factors determining local community diversity. 
Recent advances in metacommunity ecology, and neutral theory in particular, highlight the importance of dispersal 
processes interacting with the spatial structure of a landscape for generating spatial patterns and maintaining biodiversity. 
The relative spatial isolation of a community is traditionally thought to have a large influence on local diversity. However, 
isolation remains an elusive concept to quantify, particularly in metacommunities with complex spatial structure. We 
represent the metacommunity as a network of local communities, and use network centrality measures to quantify the 
isolation of a local community. Using spatially explicit neutral theory, we examine how node position predicts variation 
in alpha diversity across a metacommunity. We find that diversity increases with node centrality in the network, but only 
when centrality is measured on a given scale in the network that widens with increasing dispersal rates and narrows with 
increasing evolutionary rates. More generally, complex biodiversity patterns form only when the underlying geography has 
structure on this critical scale. This provides a framework for understanding the influence of spatial geographic structure 
on global biodiversity patterns.  
A fundamental task of basic and applied ecology is to under-
stand what determines local community diversity (Ricklefs 
1987, Brown 1995, Rosenzweig 1995). Ecological theory 
increasingly suggests that local diversity depends on spatial 
dynamics occurring on larger scales. Many ecological com-
munities are embedded in a metacommunity, a network of 
local communities linked through dispersal. Recent theory 
has established the importance of these connections for 
changing and propagating ecological dynamics (Levin 1992, 
Hubbell 2001, Holt 2002, Amarasekare 2003, Leibold et al. 
2004).

A key variable in most spatial biological theory, including 
metapopulation (Hanski 1999), biogeographic (MacArthur 
and Wilson 1967), and metacommunity theory (Hubbell 
2001, Leibold et al. 2004) is isolation of a patch or com-
munity. However, isolation is a scale dependent concept 
(Keitt et al. 1997), and the relevant scale for determining 
local diversity is often unclear. Communities may be isolated 
relative to their local landscapes, in a regional network of 
patches, or relative to the rest of their entire biogeographic 
province. Which scales of isolation control local diversity? 
And what biological parameters set those scales?

Ecological neutral theory (Hubbell 2001, Chave 2004) 
provides a quantitative, mechanistic framework for under-
standing biodiversity patterns in metacommunities in  
terms of a minimal set of stochastic biological processes. It 
resides at one extreme in a continuum of metacommunity 
models that vary in their emphasis on the importance of 
niche differences, species interactions, and stochastic spatial  
effects on shaping ecological communities (Leibold et al. 
2004, Alonso et al. 2006, Leibold and McPeek 2006). 
Despite its limitations, in certain cases it has proven surpris-
ingly capable at predicting community patterns found in 
nature (Hubbell 2001, McGill et al. 2006, Muneepeerakul 
et al. 2008).

Neutral theory highlights spatial effects due to the cen-
tral role of dispersal limitation in determining community 
structure. However, as many of the neutral models explored 
in the literature are either spatially implicit (Hubbell 2001, 
Etienne 2005) or constructed with two dimensional land-
scapes (Durrett and Levin 1996, Bell 2000, Hubbell 2001, 
Chave and Leigh 2002, Condit et al. 2002, Rosindell and 
Cornell 2007), the consequences of spatial complexity for 
neutral pattern are still largely unknown.

Recent work (Muneepeerakul et al. 2007, 2008, Economo 
and Keitt 2008) has sought to address this limitation by rep-
resenting neutral metacommunities as networks, with local 
communities (nodes) connected by the capacity for dispersal 
(links or edges). Networks are ideally suited for represent-
ing a set of units with complex connections among them, 
and their utility across disciplines (Strogatz 2001) has led to 
the wide application of a common set of quantitative tools 
(Newman 2003). In ecology, spatially complex landscapes 
can be represented as a graph (Keitt et al. 1997, Urban 
and Keitt 2001, Bodin and Norberg 2007, Economo and  
Keitt 2008, Estrada and Bodin 2008, Minor and Urban 
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2008, Urban et al. 2009). The structure of the graph could 
reflect, for example, the arrangements of islands in an  
archipelago or mountains in a range. An advantage of the 
network framework is a sophisticated set of quantitative 
tools available for characterization of network structure 
(Urban and Keitt 2001, Newman 2003). We seek to identify 
which concepts and tools may be useful to spatially explicit 
metacommunity theory.

In the spatially implicit neutral model, differences in 
diversity among local communities are driven by migra-
tion rates from the metacommunity and the local commu-
nity size (Hubbell 2001, Etienne 2005, 2007). Migration 
rate is commonly measured by m, or the probability an 
individual originated outside the local community. This 
general idea can be traced back to classical island biogeog-
raphy theory, which emphasized the importance of island 
isolation on alpha diversity (MacArthur and Wilson 1967). 
In the network model (Economo and Keitt 2008), the 
migration rate (m) corresponds to node degree, the num-
ber of links a community has with other communities (or 
the sum of their weights). This places an emphasis on the 
immediate neighborhood of a node on determining alpha  
diversity.

However, in a network of communities, diversity may 
not simply be a function of connectivity with neighboring 
patches as those patches may serve as stepping stones to other 
regions of the metacommunity. If diversity cascades through 
the patch network in this manner, local diversity would be 
driven by metacommunity structure at broader scales than 
the local neighborhood. This requires a more sophisticated 
implementation of the concept of isolation.

Here we consider equilibrium alpha diversity at different 
rates of migration (edge weights) and speciation, in two 
model networks with different types of complex structure. 
These are a dendritic graph with a tree-like branching topol-
ogy, and a modular graph with connected clusters of nodes. 
The dendritic graph allows for relatively easy visualization 
of node position in the network, and increases variation in 
topological distance compared to more complex topologies. 
The modular graph is intended to echo the complexity 
arising from hierarchically patchy landscapes. To further 
focus the problem, we only consider symmetric networks, 
where migration is equal in both directions between two 
communities.

We use ‘network centrality’ measures to quantify the posi-
tion of a node in a metacommunity. These statistics, originally 
developed by the social sciences (Freeman 1978, Wasserman 
and Faust 1994, Scott 2000), and are used across disciplines 
to quantify network topology. We use them as different quan-
titative implementations of the concept of patch isolation in 
spatial ecology and biogeography. Centrality measures vary in 
their emphasis on short range or long range connections and 
how paths between nodes are interpreted. Such measures have 
been used before to quantify local and regional node position 
in landscape networks (Estrada and Bodin 2008). Establish-
ing which of these predict neutral diversity, and under what 
biological conditions, reveals fundamental properties of how 
spatial structure drives neutral diversity pattern in complex 
metacommunities. It also represents the first implementation 
of network isolation concepts for metacommunities that are 
applicable well beyond neutral theory.
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Methods

A network concept of isolation in a metacommunity

We used a variety network centrality measures to quantify 
the position of a node in a metacommunity with network 
structure. Node isolation is the inverse of node centrality. 
Each measure highlights a different aspect of network topol-
ogy. 1) ‘Degree centrality’ is simply the number of links a 
node has with other nodes or the sum of their weights. In a 
landscape, this corresponds to the flux of dispersal directly 
entering a node from other nodes. 2) The ‘geodesic close-
ness centrality’ (Wasserman and Faust 1994, Scott 2000) 
is the average shortest path length between a node and all 
other nodes in the network. This measures the position of a 
node in the broader landscape, literally how close a node is 
to all other nodes. Note that a node with high closeness can 
have very low degree, and vice versa. 3) The ‘resistance close-
ness centrality’ is identical to geodesic closeness except the 
resistance distance (McRae 2006) takes the place of geodesic 
distance. The resistance distance, which is derived from cir-
cuit theory, shortens when there are multiple paths between 
nodes while geodesic distance is solely determined by the 
shortest path. 4) ‘Eigenvector centrality’ (Bonacich 1972) 
scores nodes based not only by the number of connections 
with neighbors, but also by the importance of their neigh-
bors. The metrics thus far all have a particular spatial scope, 
with degree centrality a function of local structure and the 
rest a function of structure of the entire network. As a final 
metric, it is desirable to have a statistic that can be tuned to 
reflect structure on intermediate scales. 5) We thus introduce 
the ‘k-neighborhood’ – the number of other nodes that are 
within a geodesic distance k from the focal node. The degree 
centrality is the size of the k-neighborhood when k  1. 

As measures of global position of a node in the network, 
we favored measures of closeness centrality over between-
ness centrality (Wasserman and Faust 1994, Scott 2000). 
Betweenness centrality considers how often a node is tra-
versed on either shortest paths or random walks between 
other nodes, which are important in cases where one may 
need to identify key connecters in networks of information 
flow. To understand why we would favor closeness central-
ity, consider a node that is near the geographical center of 
the network but has only one link connecting itself to the 
network (a dead end). Such a node would have short path 
lengths to many other nodes – a high closeness centrality – 
but would never be intermediate on paths between another 
pair of nodes. Thus the node would have the lowest possible 
betweenness score, the same betweenness as a truly periph-
eral node in the most isolated regions of the network. This 
makes it a non-ideal measure of the topological position only 
with regards to the processes of interest in this paper. Here 
we seek to understand how the global position in the net-
work, which should differ between a dead end link near the 
center of the network and a dead end in a peripheral region, 
affects diversity. 

The centrality measures were calculated on the adja-
cency matrix. Degree centrality is simply the number of 
links connected to a node. Closeness centrality is generally 
a measure of the position of a node relative to the rest of the 
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network, usually calculated as the average distance between 
a node and all other nodes. We calculate two variants of 
closeness centrality based on two measures of network dis-
tance (Wasserman and Faust 1994, Scott 2000). Geodesic 
closeness centrality is based on geodesic distances (shortest 
path lengths) which we found using Dijkstra’s algorithm. 
Resistance closeness centrality uses the resistance distance,  
which we calculated using the method described by McRae 
(2006). Resistance distance and geodesic distance are equiva-
lent for tree-like graphs, such as the dendritic network used 
in this paper. The closeness measure for node i was then sim-
ply the inverse of the mean distance between i and all j, using 
either distance metric. Eigenvector centrality is the eigenvec-
tor associated with the largest eigenvalue of the adjacency 
matrix, and essentially ranks nodes not only by their imme-
diate connections but the degree of those connections. The 
size of the k-neighborhood of node i is the number of nodes 
within a geodesic distance k of the focal node.

Network construction

We built two networks with complex spatial structure, one 
with a tree like, dendritic topology (Fig. 1) and one with 
modular structure (Fig. 2). As the focus of our paper is how 
the position of a node in a metacommunity affects diversity, 
we avoided networks that had overly symmetric or entirely 
random topologies, as in both of those cases, node position 
tends to be similar across the network. The dendritic network 
was assembled by randomly connecting nodes, but with the 
constraints that the 200 nodes should have 199 bidirectional 
links, and it should be one connected component (all nodes 
must be reachable on a path from all other nodes). We cre-
ated the modular network by generating subnetworks with 
random topologies, then haphazardly connecting those  
(connectance  0.022). The property featured in the latter 
network is sometimes called community structure (Girvan 
and Newman 2002) in the network literature, but to avoid 
confusion with the concept of biological community struc-
ture, we use the ‘modular’ label which is also familiar to 
ecologists (Olesen et al. 2007).

Neutral diversity theory

The neutral model we examine here assumes a constant 
metacommunity and local community size. In each genera-
tion, an individual is drawn randomly from a parent in the 
same community with probability mii, from another node j 
with probability mij, and is a new species with probability v. 
We refer to v as the speciation rate, but it also could repre-
sent immigration from a large source pool. The set of all mij, 
is the migration matrix M, and describes the structure of the 
metacommunity. For the purposes of this paper, all migra-
tion rates (links) in the metacommunity are set to the same 
value and all community sizes Ni are equal.

We used the quantitative method developed in a previous 
paper (Economo and Keitt 2008), for calculating expected 
neutral diversity in a network of communities under these 
assumptions. The method adapts equations originally devel-
oped from neutral population genetics theory. The quantity 
we wish to calculate is the probability of identity in state fij 
of two individuals chosen from communities i and j (i.e. the 
probability the two individuals are the same species). This 
probability can then be converted to diversity statistics such 
as Simpson’s index of diversity 1 − fii (Simpson 1949). In 
this paper, our measure of alpha-diversity is the Simpson 
concentration (fii) converted to an effective species richness,  
f  –1

ii  that does not converge as diversity becomes large (this is 
also sometimes called Simpson’s index or Simpson’s recipro-
cal index) (Hill 1973). Probability of identity can be calcu-
lated with the following recursive equation (Economo and 
Keitt 2008):
Two sampled individuals are the same type if neither has spe-
ciated since the previous generation (the first term), and 1)  
they were from parents of the same type from different 
patches (the first summation) or 2) they were from different 
parents of the same type located in the same patch (second 
summation), or 3) they had the same parent (coalesced) in 
the previous generation (third summation). For a network of 
n nodes, there are n2 (i,j) pairs, and thus n2 linear equations 
in this form describe the system at equilibrium. Since there 
are n2 unknowns in n2 equations, the system can be solved 
for the vector 



f  of all fij . For the analyses in this paper, used 
Eq. 1 to construct an n2 x n2 matrix X, and the right side as 
a vector q  of length n2, where:
and δi,j is the Kroenecker delta (δi,j  1 only when i  j  
and is 0 otherwise). The formula =



Xf q  can then be solved 
for the vector 



f  of probability of identities.
Results

Figure 1a–b represents the degree and geodesic closeness cen-
trality on the dendritic network, and Fig. 2 plots resistance 
closeness centrality and degree centrality on the modular 
network. Notice that degree centrality is dependent on the 
local neighborhood of a node, while geodesic closeness inte-
grates the position of the node in the entire metacommunity. 
Similar plots for both networks and all centrality statistics are 
presented in Supplemental material Appendix 1 Fig. S1.

Figure 1b–d plots alpha diversity of each node at different 
rates of migration. As migration rate increases, alpha diversity 
increases for all nodes at the expense of beta diversity, as was 
demonstrated in a previous analysis (Economo and Keitt 
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2008). In each panel, color variation was normalized to the 
most diverse community. This allows us to visually exam-
ine the variation in diversity across the network and across 
parameter values, which are presented in both Fig. 1c–f and 
Supplemental material Appendix 1 Fig. S2. When dispersal 
is low, (Fig. 1c), it is apparent that node diversity (color) is 
only a function of the local connectivity, nodes near the cen-
ter of the network, but only connected to one other node, 
have a similar diversity to a node that has one connection 
but is on the periphery of the node. The diversity pattern 
closely resembles the pattern created by degree centrality 
(Fig. 1a). As migration is increased by an order of magnitude 
(Fig. 1d), the most diverse nodes are now not simply those  
with high degree, but those occurring at a confluence of branches, 
making them within a few steps of a larger number of nodes 
4

than those near the periphery. As migration is increased fur-
ther (Fig. 1e), the most diverse nodes are those that connect 
large branches, or major divisions in the spatial structure of 
the metacommunity. Finally, when migration is highest, the 
most diverse nodes are those most central to the entire meta-
community (Fig. 1f ). 

We examined the correlations of network centrality mea-
sures with node position, which should quantify the transi-
tion observed in the visual patterns of Fig. 1. In Fig. 3, the 
alpha diversity of each node in the dendritic and modular 
networks, is plotted as a function of three different measures 
of node centrality and four different migration rates. For 
resistance closeness centrality (Fig. 3a, 3d), which integrates 
the position of the node in the entire network, correlations 
with alpha diversity are stronger when migration rates are 
Figure 1.  Visualization of centrality and diversity patterns in a metacommunity with network structure. Node degree (a) and closeness 
centrality (b), and equilibrium alpha diversity at various migration rates (c–f ), across the dendritic network. For the latter, v = 10–5 and  
Nk = 200 000.



high, and lower when migration rates are low. Degree cen-
trality (Fig. 3b, 3d), a local measure, is strongly correlated at 
low migration rates but increasingly becomes less correlated 
at higher migration rates. Eigenvector centrality is relatively 
weakly correlated with diversity at any migration rate. This 
appears to be because eigenvector centrality picks out the 
most highly connected cluster and assigns nodes within it a 
higher score than even nodes that have similar connectivity 
in another section of the network (Supplementary material 
Appendix 1 Fig. S1d).

These correlations are presented in Fig. 4, showing the 
tradeoffs of local versus network wide controls on alpha 
diversity. The centrality metrics are not uncorrelated with 
each other, having a high degree also decreases distance to 
other regions of the network (particularly in relatively small 
networks such as these). 
At extremes of low and high migration, which can be 
seen in Supplementary material Appendix 1 Fig. S2, alpha 
diversity is nearly constant across the metacommunity. This 
is because each node becomes an independent community 
(when migration is low) or the metacommunity is effectively 
panmictic (at high migration). At high migration rates, and 
spatial position of a node has little effect on diversity pat-
terns, alpha diversity is constant across the metacommunity. 
At the other extreme, when migration is very restricted,  
each individual node becomes a unique community, and 
again alpha diversity is basically constant across the meta-
community. Variation in alpha diversity, a proxy for the  
complexity of spatial pattern, peaks at intermediate migration  
(Fig. 4c–d). 

It is clear in Fig. 4c–d, that variation peak shifts at dif-
ferent speciation rates. This implies that, given a physical 
Figure 2.  The modular network used in this paper with nodes colored by degree centrality and resistance closeness centrality.
Figure 3.  Alpha diversity of local communities (nodes) plotted as a function of three centrality metrics for the dendritic and modular 
networks, at different rates of migration. As migration rates increase, network-scale centrality measures (resistance closeness) better predict 
diversity, while smaller scale metrics (degree centrality) predicts diversity variation better under restricted migration. Eigenvector centrality 
only weakly predicts alpha diversity. Speciation rate and local community size were held constant, v  10–5, Nk  200 000.
5



landscape structure, there is a particular combination of 
migration and speciation rates that produces complex spatial 
variation in alpha diversity. Or, put another way, for a given 
taxonomic group with certain propensities for dispersal and 
evolution, they will form complex biodiversity patterns and 
respond to geographic features only when there is landscape 
structure on a particular spatial scale. 

Degree and closeness centrality measure node position  
relative to the local and global structure of the network, 
respectively, with each predicting alpha diversity when migra-
tion is high or low. We use the size of the k-neighborhood as 
a metric that measures spatial structure as scale is increased. 
This metric is the number of unique nodes within k steps 
of the focal node (degree centrality is k-neighborhood when  
k  1). Figure 5 plots the correlation of alpha diversity with 
the size of the k-neighborhood. When migration is low, k  1 
has the most predictive power. As migration increases the 
most relevant value of k, which is a surrogate for spatial scale, 
increases. 

Discussion

These results illustrate both the promise and challenges for 
a network concept of isolation in metacommunities. The 
centrality measures capture different aspects of network 
structure, all of which are likely relevant to metacommunity 
dynamics and should be useful for a wide range of studies. 
In the neutral scenario considered here, the general idea 
that more isolated areas have depressed diversity in a neutral 
metacommunity is supported. However, it is clear that no 
single quantitative definition of isolation universally predicts 
6

this variation. Rather, isolation predicts diversity only when 
measured on a critical scale in the network, which is scaled 
by the relative rates of dispersal and evolution. When migra-
tion is more restricted, isolation depresses diversity only 
when calculated locally. As migration increases relative to 
speciation, isolation best predicts diversity when calculated 
at successively greater scales in the network. 

This implies that for a given taxonomic group with 
particular propensities for dispersal and speciation, corre-
lations between isolation and alpha diversity should only 
be observed at certain spatial scales. This may explain why 
the isolation component of the island biogeography effect, 
which is usually arbitrarily defined as a distance to another 
land mass, is only sometimes observed. In general, more dis-
persive groups should show a correlation between isolation 
and alpha diversity on greater spatial scales. For example, the 
fine scale arrangement of islands in an archipelago would 
have little effect on diversity variation in a highly dispersive 
group, which would be driven more by the position of the 
archipelago in a broader network of archipelagoes rather 
than isolation within the archipelago. For a more sedentary 
group, only the fine scale structure of an archipelago, and 
not the broader regional context, would set diversity of an 
island. More generally, for complex biodiversity patterns to 
form in a landscape due to neutral processes, the geography 
must have structure on this critical scale. 

These results have relevance to several other well-known 
biogeographic phenomena. Geometric effects on diversity 
patterns have been much discussed. These include the pen-
insular effect (Simpson 1964), which proposes a decrease 
in diversity towards the terminal end of peninsulas. This is 
commonly explained by reduced colonization rates due to 
the geometry of the underlying spatial template. Neutral 
theory also predicts a peninsular effect, but only if migration 
and speciation rates are in the right balance to reflect that geo-
graphic feature. Mid-domain effects (Colwell and Lees 2000) 
predict diversity to peak in the middle of a domain, a pattern 
that is sometimes – but not always exhibited, and explanations 
Figure 4.  Performance of different centrality statistics across param-
eter values. Spearman rank correlation coefficients of node alpha 
diversity and network centrality metrics are plotted for the (a) den-
dritic and (b) modular network. The geodesic and resistance close-
ness centralities are equivalent for the dendritic network. Variation 
in alpha diversity across the network, as measured by coefficient of 
variation, is presented in c–d. For a given speciation rate, variation 
peaks at an intermediate migration rate. The black line reflects a 
speciation rate of v  10–5 corresponding to the correlations in 
(a–b), the grey dashed line is v  10–6, and grey dotted line is v  
10–4. Thus, for a given topology, variation in alpha diversity depends 
strongly on the relative rate of speciation and migration.
Figure 5.  Performance of scale-specific centrality. Spearman rank 
correlation coefficient of alpha diversity and the size of the k- 
neighborhood at different migration rates and values of k. Larger k 
reflect structure on larger spatial scales, and better predict diversity 
at higher migration rates. Speciation rate and local community sizes 
were held constant, v  0.00001, Nk  200 000.



have been offered by a number of mechanisms including 
stochastic neutral effects (Rangel and Diniz-Filho 2005). 
This can be generalized to a network, where a network-wide 
most central node takes the place of geographic center of 
a domain. Our results suggest that the mid-domain effect 
does not always hold under neutrality in a spatially complex  
landscape, as migration becomes more restricted, regional 
spatial structure overrides the broader metacommunity geome-
try; so mid-domain effects may be more localized or not pres-
ent at all. However, the basic conclusion that neutral theory 
can cause mid-domain effects in some regions of parameter 
space is supported, and also is in accord with results from 
population genetics (Wilkins and Wakeley 2002). 

These results also highlight how neutral processes can 
produce elevated diversity in nodes that connect different 
regions of the network. In a dendritic network (Fig. 1), 
for certain migration values, the nodes that connected two 
branches had elevated diversity. These offer a neutral hypoth-
esis for biogeographic mixing zones (Spector 2002), instead 
of an overlap in environments, certain transitional areas may 
occur due to geometric effects, those patches that connect 
disparate portions of the network will receive a mix of species 
from the two areas.

Our understanding of ecological neutral theory is overall 
still influenced largely by the behavior of spatially implicit 
models, but this spatially explicit model provides different 
answers to some basic properties of neutral diversity pat-
terns. The migration parameter m, defined as the fraction of 
individuals in a local community that originated in another 
patch, along with the local community size Nk, are often 
considered to be the two main parameters setting local 
diversity. The spatially explicit model considered here clearly 
demonstrates that in many cases local diversity is set not by 
the number of individuals migrating into that patch, but  
by its position in a larger neighborhood of patches, or if 
migration is strong enough, the entire metacommunity. This 
spatial diversity cascade occurs at regions of higher migra-
tion, the local m value is swamped by the flow of diversity 
through the metacommunity. 

A reverse-time perspective

Neutral dynamics can be viewed from equally valid forward 
or reverse-time (coalescent, Kingman 1982, Rosindell et al. 
2008) perspectives. In this case of our results, some under-
standing can be gained by considering the latter. Our model 
predicts diversity in terms of probability of identities, the 
probability that two individuals randomly chosen will be 
the same type. Conceptually, we are tracing ancestry of two 
individuals backwards in time and ask if they coalesce before 
either lineage has speciated. For the case of alpha diversity, 
we choose two individuals from the same spatial location. 
This depends on how quickly the two lineages move (via ran-
dom walks) away from each other in backwards time, because 
once they become spatially separated they must again enter 
the same locality before they coalesce. Individuals sampled 
from nodes that have few connections to other nodes (low 
degree), or in a region of the network that is not highly con-
nected to the rest of the network, such as a peninsular chain 
of nodes, will more likely be found in the localized region 
of the network at more distant times in the past, thus have 
more opportunity to coalesce before speciation. Increasing 
migration rate increases the spatial scale that the lineages 
are likely be found at any time in the past, reducing over-
all the probability of coalescence (and thus increasing alpha  
diversity) before speciation, but also making that diversity 
dependent on the structure of the network in that neigh-
borhood. Thus, at very low migration rates, two lineages 
are likely to either coalesce or speciate before leaving the 
node, making spatial location of the node relative to the 
metacommunity irrelevant. At intermediate migration, lin-
eages may travel some distance before speciation, but will 
not reach distant portions of the network, so the probability 
of coalescence is dependent on the structure of the limited 
local neighborhood of the network. At high migration, the 
lineages are more likely to explore distant regions of the 
networks before speciation or coalescence, and so its posi-
tion in the broader network becomes important. Finally, 
when migration is very high relative to speciation, the time 
scale is so long that the initial spatial position of the indi-
viduals becomes irrelevant for the long-term probability 
that the two will coalesce, and diversity is constant across  
nodes. 

Caveats and future directions

The speciation model used here assumes new species arise 
as a single individual, with equal probability across all indi-
viduals. Thus diversity is constantly being added to the meta-
community at all points equally, the patterns are generated 
by the subsequent flow of that diversity. Note that aside from 
speciation, this introduction of novelty could be interpreted 
as migration from a distant, large, source pool. As a model of 
speciation, there are undoubtedly cases where this is reason-
able, such as such as speciation by polyploidy in plants. How-
ever, there are probably many cases where spatial structure is 
important to the process of speciation itself. This implies an 
additional complexity –speciation rates, not only migration, 
may depend on spatial location. Future work, building upon 
recent neutral models (Hubbell 2005, Etienne et al. 2007, 
Mouillot and Gaston 2007, Aguiar et al. 2009), is needed 
to explore this issue and will likely require a different mathe
matical approach. 

The current analytical method is limited to relatively 
small networks (on the order of 200 nodes for sparse net-
works, much less for highly connected networks on a normal 
personal computer). One reason for considering network 
statistics, which can generally be computed easily on much 
larger networks, is that they may serve as a surrogate for pre-
dicting neutral diversity patterns. We find that they do, but 
that their performance depends on the parameters of the 
neutral model. It would be interesting if network statistics 
were developed that could be used to roughly predict diver-
sity patterns from topology, with migration and speciation 
rates as parameters, without resorting to the full analytical 
method. 

Here we focused on networks with a fixed topology and 
varied the strengths of the connections among nodes. This 
was intentional to highlight the interaction between these 
two aspects of spatial metacommunity structure. However, 
if we are comparing two different groups of species with 
different dispersal rates on the same physical landscape, it 
7



is possible that both topology and link weights would be 
different, because increased dispersal rate could result in 
longer range direct connections among nodes and a more 
connected topology. Of course, this would also depend on 
the nature of the intervening matrix and its interaction with 
the species life histories. To address this issue, an interesting 
future direction would be to consider how the physical struc-
ture of landscapes determines different metacommunity net-
work structures when some functional model of dispersal is 
applied, and how that changing structure results in different 
diversity patterns. 

Our results show that network structure is a strong deter-
minant of local diversity, and that network tools predict that 
relationship. This is an important step towards a rigorous 
understanding of the connection between isolation and bio-
diversity patterns in complex metacommunities. This study 
also raises important questions about how metacommunity 
topology affects diversity processes under different models of 
ecological dynamics than the one considered here. Incorpo-
rating spatially explicit model structures into metacommu-
nity theory, which are more realistic depictions of natural 
landscapes, is likely to change the outcomes of a wide range of 
metacommunity dynamics. The question is not a trivial one 
as understanding the processes driving biodiversity pattern is 
critical for designing effective strategies to maintain it.

Acknowledgements – EPE acknowledges the financial support of a 
NSF IGERT Fellowship and a NSF Graduate Research Fellowship.

References

Aguiar et al. 2009. Global patterns of speciation and diversity. – 
Nature 460: 384–387.

Alonso, D. et al. 2006. The merits of neutral theory. – Trends Ecol. 
Evol. 21: 451–457. 

Amarasekare, P. 2003. Competitive coexistence in spatially structu-
red environments: a synthesis. – Ecol. Lett. 6: 1109–1122. 

Bell, G. 2000. The distribution of abundance in neutral communi-
ties. – Am. Nat. 155: 606–617. 

Bodin, Ö. and Norberg, J. 2007. A network approach for analy-
zing spatially structured populations in fragmented landscape. – 
Landscape Ecol. 22: 31–44. 

Bonacich, P. 1972. Factoring and weighting approach to clique 
identification. – J. Math. Sociol. 2: 113–120. 

Brown, J. H. 1995. Macroecology. – Univ. of Chicago Press. 
Chave, J. 2004. Neutral theory and community ecology. – Ecol. 

Lett. 7: 241–253. 
Chave, J. and Leigh Jr, E. G. 2002. A spatially explicit neutral 

model of beta-diversity in tropical forests. – Theor. Popul. Biol. 
62: 153–168. 

Colwell, R. K. and Lees, D. C. 2000. The mid-domain effect: 
geometric constraints on the geography of species richness. – 
Trends Ecol. Evol. 15: 70–76. 

Condit, R. et al. 2002. Beta-diversity in tropical forest trees. – 
Science 295: 666–669. 

Durrett, R. and Levin, S. 1996. Spatial models for species–area  
curves. – J. Theor. Biol. 179: 119–127. 

Economo, E. and Keitt, T. 2008. Species diversity in neutral meta-
communities: a network approach. – Ecol. Lett. 11: 52–62. 

Estrada, E. and Bodin, Ö. 2008. Using network centrality measures 
to manage landscape connectivity. – Ecol. Appl. 18: 1810–1825. 

Etienne, R. 2005. A new sampling formula for neutral biodiversity. – 
Ecol. Lett. 8: 253–260. 
8

Etienne, R. 2007. A neutral sampling formula for multiple samples 
and an exact test of neutrality. – Ecol. Lett. 10: 608–618. 

Etienne, R. et al. 2007. Modes of speciation and the neutral theory 
of biodiversity. – Oikos 116: 241–258. 

Freeman, L. 1978. Centrality in social networks. Conceptual 
clarification. – Social Networks 1: 215–239. 

Girvan, M. and Newman, M. 2002. Community structure in 
social and biological networks. – Proc. Natl Acad. Sci. USA 
99: 7821–7826. 

Hanski, I. 1999. Metapopulation ecology. – Oxford Univ. Press. 
Hill, M. 1973. Diversity and evenness: a unifying notation and its 

consequences. – Ecology 54: 427–432. 
Holt, R. D. 2002. Food webs in space: on the interplay of dynamic 

instability and spatial processes. – Ecol. Res. 17: 261–273. 
Hubbell, S. 2001. The unified neutral theory of biodiversity and 

biogeography. – Princeton Univ. Press. 
Hubbell, S. P. 2005. The neutral theory of biodiversity and 

biogeography and Stephen Jay Gould. – Paleobiology 31:  
122–132. 

Keitt, T. H. et al. 1997. Detecting critical scales in fragmented 
landscapes. – Conserv. Ecol. <www.consecol.org/> 1: 4 (online). 

Kingman, J. F. C. 1982. On the genealogy of large populations. – J. 
Appl. Prob. 19: 27–43. 

Leibold, M. and McPeek, M. 2006. Coexistence of the niche and 
neutral perspectives in community ecology. – Ecology 87: 
1399–1410. 

Leibold, M. et al. 2004. The metacommunity concept: a frame-
work for multi-scale community ecology. – Ecol. Lett. 7:  
601–613.

Levin, S. 1992. The problem of pattern and scale in ecology: the 
Robert H. MacArthur award lecture. – Ecology 73: 1943–1967. 

MacArthur, R. H. and Wilson, E. O. 1967. The theory of island 
biogeography. – Princeton Univ. Press. 

McGill, B. J. et al. 2006. Empirical evaluation of neutral theory. – 
Ecology 87: 1411–1423. 

McRae, B. H. 2006. Isolation by resistance. – Evolution 60:  
1551–1561. 

Minor, E. and Urban, D. 2008. A graph-theory framework for 
evaluating landscape connectivity and conservation planning. – 
Conserv. Biol. 22: 297–307. 

Mouillot, D. and Gaston, K. 2007. Geographical range size  
heritability: what do neutral models with different modes  
of speciation predict? – Global Ecol. Biogeogr. 16: 367–380. 

Muneepeerakul, R. et al. 2007. A neutral metapopulation model  
of biodiversity in river networks. – J. Theor. Biol. 245:  
351–363. 

Muneepeerakul, R. et al. 2008. Neutral metacommunity models 
predict fish diversity patterns in Mississippi–Missouri basin. – 
Nature 453: 220–222. 

Newman, M. E. 2003. The structure and function of complex net-
works. – SIAM Rev. 45: 167–256. 

Olesen, J. et al. 2007. The modularity of pollination networks. – 
Proc. Natl Acad. Sci. USA 104: 19891–19896. 

Rangel, T. and Diniz-Filho, J. 2005. Neutral community dynamics, 
the mid-domain effect and spatial patterns in species richness. – 
Ecol. Lett. 8: 783–790. 

Ricklefs, R. 1987. Community diversity: relative roles of local and 
regional processes. – Science 235: 167–171. 

Rosenzweig, M. 1995. Species diversity in space and time. –  
Cambridge Univ. Press. 

Rosindell, J. and Cornell, S. J. 2007. Species–area relationships 
from a spatially explicit neutral model in an infinite landscape. – 
Ecol. Lett. 10: 586–595. 

Rosindell, J. et al. 2008. A coalescence approach to spatial neutral 
ecology. – Ecol. Inf. 3: 259–271. 

Scott, J. 2000. Social network analysis: a handbook. – Sage. 
Simpson, E. 1949. Measurement of diversity. – Nature 163: 688.
Simpson, G. 1964. Species density of North American recent  

mammals. – Syst. Zool. 13: 57–73. 



Spector, S. 2002. Biogeographic crossroads as priority areas for  
biodiversity conservation. – Conserv. Biol. 16: 1480–1487. 

Strogatz, S. 2001. Exploring complex networks. – Nature 410: 
268–276. 

Urban, D. and Keitt, T. 2001. Landscape connectivity: a graph-
theoretic perspective. – Ecology 82: 1205–1218. 
Urban, D. et al. 2009. Graph models of habitat mosaics. – Ecol. 
Lett. 12: 260–273. 

Wasserman, S. and Faust, K. 1994. Social network analysis: methods 
and applications. – Cambridge Univ. Press. 

Wilkins, J. and Wakeley, J. 2002. The coalescent in a continuous, 
finite, linear population. – Genetics 161: 873–888. 
Supplementary material (available online as Appendix O18272  
at www.oikos.ekol.lu.se/appendix). Appendix 1: Fig. S1a-d and  
Fig. S2a-g.
9


