
L E T T E R
Species diversity in neutral metacommunities:

a network approach

Evan P. Economo* and Timothy

H. Keitt

Section of Integrative Biology,

University of Texas at Austin, 1

University Station C0930, Austin,

TX 78712, USA

*Correspondence: E-mail:

epe@mail.utexas.edu

Abstract

Biologists seek an understanding of the processes underlying spatial biodiversity

patterns. Neutral theory links those patterns to dispersal, speciation and community

drift. Here, we advance the spatially explicit neutral model by representing the

metacommunity as a network of smaller communities. Analytic theory is presented for a

set of equilibrium diversity patterns in networks of communities, facilitating the

exploration of parameter space not accessible by simulation. We use this theory to

evaluate how the basic properties of a metacommunity – connectivity, size, and

speciation rate – determine overall metacommunity c-diversity, and how that is

partitioned into a- and b-components. We find spatial structure can increase c-diversity

relative to a well-mixed model, even when h is held constant. The magnitude of

deviations from the well-mixed model and the partitioning into a- and b-diversity is

related to the ratio of migration and speciation rates. c-diversity scales linearly with

metacommunity size even as a- and b-diversity scale nonlinearly with size.
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I N T R O D U C T I O N

Understanding variation in species diversity and community

composition is a central problem in biology (Brown 1995;

Rosenzweig 1995). Neutral ecological theory links biodiver-

sity pattern to an elementary set of ecological and

evolutionary processes (Hubbell 2001). Despite this sim-

plicity, the theory holds promise for generating a set of

baseline expectations, and serves as a useful touchstone for

building more complex theory (Alonso et al. 2006). Recent

work has extended several dimensions of the model

including the mechanism of speciation (Hubbell 2005;

Etienne et al. 2007b; Mouillot & Gaston 2007), the density

dependence of population dynamics (Volkov et al. 2005),

the zero-sum assumption (Etienne et al. 2007a), among

others (Chave 2004). Here, we focus on the model of space

underlying the theory, moving beyond simple spatial

templates to develop theoretical results for metacommuni-

ties with more complex structure.

The neutral perspective views diversity as an outcome of

stochastic speciation, migration and ecological drift caused

by birth–death dynamics of individuals. This occurs in a

spatial context where a local community receives migrants

from a metacommunity (Hubbell 2001). Various implemen-

tations of this general idea can be found in the literature,

focusing on different aspects of neutral pattern (Chave

2004; McGill et al. 2006). McGill et al. (2006) classify neutral

metacommunity models as either spatially implicit, where the

local community draws migrants from a separate pool of

individuals, or spatially explicit, where the metacommunity is

an actual set of local communities with connections among

them. The degree to which the behaviour of a truly spatially

explicit metacommunity deviates from the spatially implicit

model is an open question. A somewhat different definition

for spatially explicit is used in the broader metacommunity

literature, for example by Leibold et al. (2004): �A model in

which the arrangement of patches or distance between

patches can influence patterns of movement or interaction.�
The theoretical approach we present is spatially explicit

according to both definitions.

Spatially explicit neutral models have been explored with

stochastic simulation and with analytic theory (Durrett &

Levin 1996; Bell 2000; Hubbell 2001; Chave & Leigh 2002;

Chave et al. 2002; Houchmandzadeh & Vallade 2003;

McGill et al. 2005; Zillio et al. 2005; Rosindell & Cornell

2007). However, little attention has been paid to how the
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internal structure of spatially explicit metacommunities

determines equilibrium spatial patterns under neutrality. As

neutral theory emphasizes the role of dispersal limitation,

the number and strengths of connections a local community

has with other communities will influence patterns of

species diversity and similarity. Beyond these primary

connections, the position of a community in the broader

metacommunity may have a cascading influence on the local

community.

Most spatially explicit applications of neutral theory have

been focused on two dimensional continuous habitats, some

specifically inspired by spatially extended lowland forest

communities (Chave & Leigh 2002). While this is a logical

approach for metacommunities extended in continuous

space, many real metacommunities are characterized by

discontinuous, or patchy internal structure. Habitats can be

distributed unevenly in space from landscape-level scales to

the largest scales, their distribution on and among conti-

nents. Network theory is a versatile framework for

representing these complex structures, where habitat

patches, islands, or even continents, are nodes in a graph,

and edges represent some rate of individual movement.

Network tools are commonly used in landscape ecology

(Urban & Keitt 2001), metapopulation ecology (Hanski

1999), and a variety of other fields where a set of units has

heterogeneous connections among them (Albert & Barabási

2002).

The present study examines how the network structure of

metacommunities determines patterns of diversity and

similarity among individual communities undergoing eco-

logical drift, speciation and dispersal. Central to the neutral

theory are stochastic biological rates interacting with spatial

constraints, and while spatial complexity complicates neutral

expectations, it also provides an opportunity to make use of

spatial pattern to discriminate neutral processes from

competing ideas in ecology. Neutral pattern should respond

to the structure of island archipelagoes and the shape of

domain boundaries – the geographic structure of the

metacommunity.

We develop analytical theory which predicts equilibrium

diversity patterns within and among localities in metacom-

munities with a diverse set of spatial structures. Following

previous spatially explicit theory (Chave & Leigh 2002), we

borrow tools from population genetics and derive spatially

explicit predictions for a family of diversity indices based on

the Simpson concentration (Simpson 1949). By connecting

this approach to network theory, we facilitate the investi-

gation of a broad set of questions about neutral diversity

patterns in structured geographies.

In this paper, we focus on a basic question about spatially

explicit metacommunities; how the broad scale structure of

the network controls patterns of a-, b- and c-diversity.

Using a well-mixed metacommunity as a benchmark, we

investigate the effects of spatial structure on overall

metacommunity c-diversity. Metacommunity diversity can

be partitioned into within a-community components and

among b-community components (Whittaker 1972; Lande

1996; Magurran 2004). We investigate how the basic

components of the model – connectivity, speciation, and

metacommunity size – determine spatial pattern under

neutrality.

T H E O R Y : N E U T R A L B I O D I V E R S I T Y P A T T E R N I N

A N E T W O R K O F C O M M U N I T I E S

The resemblance, if not identity, of ecological neutral theory

to the more mathematically mature neutral theory of

population genetics (Kimura 1983) allows concepts and

quantitative tools from the latter to be adapted by ecologists.

Indeed much of the extant ecological neutral theory has

been inspired at least in part by population genetics

(Hubbell 2001; Chave 2004; Hu et al. 2006). Here, we

follow a mathematical approach used in population genetics

and based on the concept of probability of identity to derive

novel theory for species diversity in networks of commu-

nities.

A common construction of neutral theory assumes point

speciation, with new species arising randomly as one

individual, with zero-sum stochastic community dynamics.

This model maps on exactly to the infinite alleles model of

population genetics (Kimura & Crow 1964; Hubbell 2001).

A useful concept in population genetics is the probability of

identity in state of two alleles chosen from a population. In

this model, two alleles are identical in state if – looking

backwards in time – their lineages coalesce into a common

ancestor before a mutation has occurred in either lineage.

This probability depends on both the coalescence time, how far

back in time existed most recent common ancestor, and the

rate at which mutations accumulate on the lineages.

Coalescence times will normally be dependent on popula-

tion sizes, migration rates and the spatial separation of the

sampled alleles, as the lineages have to move to the same

location before coalescing (Hudson 1991).

Identity probabilities underlie population genetics statis-

tics describing patterns of genetic diversity (Nei 1987).

Interestingly, we can convert these into diversity statistics

that are traditionally used by ecologists, a connection that

has been made before in the context of neutral theory

(Chave & Leigh 2002; Condit et al. 2002; Etienne 2005; He

& Hu 2005; Hu et al. 2006). The Simpson concentration, by

definition, is the probability that two individuals chosen at

random from a set are the same type (Simpson 1949). In

ecology, this is applied to individuals chosen from a

community (Magurran 2004) and is usually calculated

directly from the set of species frequencies. Therefore to

the extent that genetic models map on to ecological models,
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theory for allelic probabilities of identity in state also

mechanistically predict community diversity. We develop

this further and show how a host of metrics describing

diversity patterns in metacommunity with network struc-

ture can be analytically found using population genetics

theory.

Neutral ecological dynamics in a network of communities

correspond to migration matrix models (Bodmer & Cavalli-

Sforza 1968) in population genetics. In this representation, a

network of n local populations is represented by a stochastic

backward migration matrix (M ). Each mij reflects the fraction

of individuals in a given subpopulation i that originated from a

parent in subpopulation j in the previous generation, andP
j

mij ¼ 1. Edge weights mij, and local population sizes N can

vary to capture the underlying spatial structure of the

metacommunity. In the following derivation, directed net-

works (matrices where some mij „ mji) are permitted but

descendents of individuals in each node must be able to

eventually reach every other node (mii „ 1). Speciation rate v

takes the place of mutation, and reflects the per generation

probability of change in state of a single individual.

The probability of identity in state (fij) for alleles sampled from

communities i and j under the infinite alleles model can be

calculated with a recursive equation originally discovered by

Malécot (1951, 1970, and developed extensively by later

authors (Nagylaki 1980; Nagylaki 1982; Laporte & Charles-

worth 2002) The equation for the probability of identity in

state f 0ij in the current generation in terms of the set of fij in

the previous generation can be written as a recursion:

f 0ij ¼ ð1� vÞ2
X
k;l

mikmjl fkl þ
X

k

mikmjk

1

Nk

� �
ð1� fkkÞ

" #

ð1Þ
where k and l index over all n nodes. This converges to an

equilibrium (Nagylaki 1980):

f̂ij ¼ ð1� vÞ2
X
k;l

mikmjl f̂kl þ
X

k

mikmjk

1

Nk

� �
ð1� f̂kkÞ

" #
:

ð2Þ
We rearrange this equation to the form:

f̂ij ¼ ð1� vÞ2
X

k;l ;k 6¼ l

mikmjk f̂kl þ
X

k

mikmjk 1� 1

Nk

� �
f̂kk

"

þ
X

k

mikmjk

1

Nk

� �#
ð3Þ

Two sampled alleles are the same type if neither has mutated

since the previous generation (the first term), and (i) they

were from parents of the same type from different patches

(the first summation) or (ii) they were from different parents

of the same type located in the same patch (second sum-

mation), or (iii) they had the same parent (coalesced) in the

previous generation (third summation).

Equation (3) is linear and may be further rearranged and

written in the form:

ð1� vÞ�2̂
fij �

X
k;l

mikmjl f̂kl þ
X

k

mikmjk

1

Nk

� �
f̂kk

¼
X

k

mikmjk

1

Nk

� �
: ð4Þ

For a network of n nodes, there are n2 (i, j) pairs, and thus n2

linear equations in this form describe the system at equi-

librium. As there are n2 unknowns in n2 equations, the sys-

tem can be solved for the vector~f of all f̂ij . For the analyses

in this paper, we coded the left side of eqn (4) as a n2 · n2

matrix X, and the right side as a vector~q of length n2, where

XðijÞ;ðkl Þ ¼ ð1� vÞ�2dðijÞ;ðkl Þ �mikmjl þdk;l mikmjk

1

Nk

� �
ð5Þ

qðijÞ ¼
X

k

mikmjk

1

Nk

� �
ð6Þ

and where di,j is the Kronecker delta (di,j ¼ 1 when i ¼ j

and di,j ¼ 0 otherwise), and solved the formula X~f ¼~q for
~f with MATLAB. Migration and speciation rates as well as

local community sizes can take on any value without loss of

computational efficiency. This allows the exploration of

large regions of parameter space inaccessible to simulation.

The limitations are mainly in the number of nodes n in the

network; as the matrix of length n2 must be computationally

tractable. However, if most nodes in the network are con-

nected to a relatively small number of other nodes (likely a

common biological situation) large networks can be com-

puted with sparse matrix methods. In this paper, we used

sparse matrix routines for networks with > 30 nodes.

The set of all f̂ij represent the probability two individuals,

randomly chosen from within local patches i and j at any

locations in the network, are identical in state. In terms of

the neutral ecological model, it is the equilibrium probability

they are the same species. From these values, we can

calculate a number of diversity metrics of ecological interest

for the local and metacommunity.

a-diversity

As discussed before, fii is equivalent to the Simpson

concentration k or a local community i. In population

genetics, this is also related to the heterozygosity (1 ) fii) of

a population. This can be written as Simpson’s diversity

index ai:

ai ¼ 1� fii : ð7Þ
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For many purposes such as diversity partitioning, a raw

Simpson’s index is undesirable as a measure of a-diversity as it

converges to one as diversity increases unbounded, with highly

misleading behaviour (Jost 2006). The index can be linearized

by converting to an effective number of species or Hill number (Hill

1973), which is the species richness that would produce a given

Simpson’s index if all species abundances were equal:

DðaiÞ ¼ f �1
ii : ð8Þ

The average a-diversity expressed as Simpson’s index and as

an effective number of species over the whole metacom-

munity are:

aM ¼ ð1� �fkkÞ ð9Þ

DðaM Þ ¼ ð�fkkÞ�1 ð10Þ
where both averages are taken over all k.

c-diversity

Metacommunity diversity, or c-diversity, can be calculated

with similar averages. Averaging the whole fij vector gives

the Simpson concentration for the metacommunity, which

can be used to give the Simpson’s index and effective

number of species for the whole metacommunity:

c ¼ 1� �fij ; ð11Þ

DðcÞ ¼ ð�fijÞ�1 ð12Þ

where both are averaged over all (i,j) pairs.

b-diversity

b-Diversity, broadly speaking the component of diversity

reflected in differences among locations or samples, can also

be calculated using the Malécot equation. c-diversity can be

partitioned into independent a- and b-components with

multiplicative (Whittaker 1972) or additive (Lande 1996)

methods. Given the scaling problems of using raw Simpson

diversity indices, we can partition total metacommunity

(gamma) diversity into a- and b-components in terms of

Hill numbers. There is one caveat, problems of concavity

arise when calculating metacommunity-wide (but not node

specific) figures for a-,b- and c-diversity based on Simp-

son’s index when community weights are unequal (e.g. when

local community sizes are variable, see Jost (2006) for

further discussion). This paper will consider only networks

where nodes are the same size.

Multiplicative partition

An effective number of communities, the number of distinct

communities with the average a-diversity needed to account

for overall c-diversity, can be calculated as follows. In

panmixia, this is 1, if all communities are distinct, this is n,

the number of local communities:

Ce ¼
DðcÞ

DðaM Þ
¼

�fij
�fkk

ð13Þ

where averages are taken over all i, j and k nodes.

Additive partition

Additive partitioning calculates a b-diversity value in the

same units as a- and c-diversity. The average effective

number of species in a local site (a) and effective number of

species of the metacommunity (c) can be used to back

calculate the b-contribution.

DðbÞ ¼ DðcÞ �DðaÞ ¼ ð�fijÞ�1 � ð�fkkÞ�1 ð14Þ

Pairwise similarity

Similarity of two local communities i and j can be described

with the Morisita–Horn index of overlap (Horn 1966):

MHij ¼
2fij

ðfii þ fjjÞ
ð15Þ

A N A L Y S I S A N D R E S U L T S

The theory described in the previous section can be used

to investigate equilibrium diversity patterns generated by

neutral processes in complex habitat networks much more

quickly than simulation methods for large area of

parameter space. In the rest of this paper, we solve eqn

(3) under various conditions to explore how the basic

dimensions of the model, migration rate, network topol-

ogy, speciation rate and network size, drive a-, b- and

c-diversity patterns in spatially explicit metacommunities.

We focus on spatial structure on the scale of the

metacommunity, or more specifically divisions that break

the metacommunity into tens or hundreds of units, rather

than fine scale patchiness.

Both migration rate and network topology contribute to

connectivity, an important driver of dynamics in landscape

(Brooks 2003), metapopulation (Hanski 1999) and meta-

community ecology (Leibold et al. 2004). The exchange rates

among communities can have variable effects on commu-

nity diversity depending on the underlying model of

community dynamics assumed (Mouquet & Loreau 2002,

2003; Cadotte 2006).

Network connectivity can be a local property reflecting

how connected a given node is to other nodes, or a global

statistic characterizing the structure of a network. The

former corresponds to the biogeographic concept of patch

or island isolation while the latter refers to a landscape or

metacommunity level property. In this paper, we focus on

the latter, network-level connectivity, and how it determines
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diversity patterns as measured by standard a-,b- and

c-diversity concepts.

Migration rate

In the spatially implicit model, the diversity of a panmictic

metacommunity is controlled by the fundamental biodiver-

sity parameter h ¼ 2vNm, while the diversity of a local

community is controlled by h, the local community size, and

the migration rate into the local community (Etienne 2005).

A basic question about the spatially explicit model is how

structuring the metacommunity by restricting dispersal

affects overall metacommunity c-diversity. In addition,

we seek to establish what determines the partitioning of

that c-diversity into within a-community components and

among b-community components. For the purposes of this

analysis, we use additive partitioning methods (eqns 10, 12,

14).

We consider the effect of restricting migration rates

(mathematically represented by edge weights – values of the

M matrix) on diversity patterns in two test networks

representing topological extremes: a linear chain of com-

munities (Fig. 1a), and a network where every node is

connected to every other node. The latter network

corresponds to the island model of population genetics,

and we refer to it as the island graph (Fig. 1b).

Equilibrium diversity levels were calculated for networks of

20 local communities with a local community size of 20 000

individuals and a range of m values (1 · 10)7– 1 · 10)2).

All edges mij in the network were set to equal weight. Figure 2

plots the results for a range of theta values on the two

networks. The diversities are additively partitioned and

presented in terms of effective number of species (eqns 10,

12, 14).

We find c-diversity always decreases monotonically with

increasing migration rate (edge weight). The relative

magnitude of the decrease is also a function of the diversity

parameter h, with the spatial effect having a greater relative

impact on metacommunities with substantial dispersal

limitation (low mij values). This can be understood straight-

forwardly by examining the mathematics of diversity in a

well-mixed metacommunity. The Simpson’s index of a well-

mixed metacommunity is, to a very good approximation

(Kimura & Crow 1964; Hubbell 2001; He & Hu 2005):

c ¼ h
hþ 1

; ð16Þ

which can be converted to an effective number of species,

DðcÞ ¼ hþ 1 ¼ 2Nmv þ 1: ð17Þ
Now consider if this metacommunity were split into a set of

n smaller communities, each with size Nm/n and no

migration among them. The effective number of species of

such a system would be:

DðcÞ ¼ n 2
Nm

n
v þ 1

� �
: ð18Þ

Subtracting eqn (17) from eqn (18), we find the difference in

c-diversity in the limit of no migration is n ) 1 effective

species. As migration is increased and the metacommunity

Chain (a) (b)

(c) (d)

Island

Star Random
Figure 1 Network topologies appearing in

this paper, (a) chain graph, (b) island graph,

(c) star graph, (d) randomly assembled

network. The networks used in the analyses

have more nodes than those shown here, but

have the same basic structure. The random

graph is generated by arbitrarily connecting

nodes but limiting the number of edges in

the network.

56 E. P. Economo and T. H. Keitt Letter

� 2007 Blackwell Publishing Ltd/CNRS



becomes more and more panmictic, this effect reduces to

zero.

The implications are that for systems where the total

expected effective number of species is much higher than

the number of patches (h + 1 >> n ) 1), the degree of

spatial isolation of those patches will have little relative – but

a similar absolute – effect on c-diversity. If the effective

number of species in the metacommunity is small compared

with the number of patches (h + 1 << n ) 1), then spatial

division can have a relatively large effect.

Metacommunity c-diversity can be additively partitioned

into within a-community components and among b-com-

munity components, as is represented in Fig. 2. Intuitively,

higher migration rates among communities increases a-diver-

sity at the expense of b-diversity, which can result in a

profound increase in local diversity when migration is high.

This is consistent with previous results highlighting the role of

immigration in local diversity maintenance (MacArthur &

Wilson 1967; Loreau & Mouquet 1999; Hubbell 2001). In

terms of coalescence, as migration probabilities become larger,

the distribution of coalescence times between individuals

chosen from different communities becomes more similar to

the distribution of times chosen from the same community.

Network topology

Even when the strengths and number of connections are

held constant, the geometry of connections can have a

significant effect on the distance between nodes and the

spread of information on a network (Watts & Strogatz 1998;

Albert & Barabási 2002). To investigate this effect on

diversity patterns, we hold migration rates and number of

links constant while changing the architecture of the

network. We consider three graphs with markedly different

topologies, a linear chain graph, a randomly assembled

graph, and a star graph (Fig. 1). The point of interest here is

that for different topologies, node pairs are on average more

or less isolated from each other, even when the total

number and strengths of links are held constant. In other

words, more or fewer intermediate nodes/edges must be

traversed to travel between two randomly chosen nodes.

Longer path length between two communities implies

longer coalescence times between lineages chosen from

those two communities, as lineages must move to the same

patch before coalescing.

The chain and star graphs (Fig. 1) represent extremes in

topological connectivity, in that a chain has relatively long

path lengths and a star graph – where nodes are at most two

links away no matter the network size – has short paths. As an

intermediate case, we generate random graphs by haphazardly

connecting nodes, while constraining the network to have a

given number of edges (in this case n ) 1) and every node

reachable by some path from every other node. This generates

graphs with tree-like structure (Fig. 1d).

We considered networks with 100 local communities of

20 000 individuals, and 99 edges total. Larger networks are

Figure 2 c-diversity (black line), partitioned additively into a-diversity (red) and b-diversity (blue) in a network of 20 nodes plotted as a

function of migration rate. The plots represent the equilibrium solution calculated using eqns 10, 12, 14, over a range of migration values

(2 · 10)7– 5 · 10)2) and theta (8, 80 and 800). Individual node sizes were set to 20 000 individuals and not varied, theta was tuned by

varying speciation rate (v). Notice c-diversity converges to h + 1 as migration increases. Each edge in the network was set to the same

migration value for a given calculation. The top row is for a network with chain structure, and the bottom row island structure (see Fig. 1).

Notice c-diversity converges to h + 1 as migration increases.
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used than in Fig. 2, as topological differences of small

networks will have little variation in path lengths. In general,

we expect the larger the network, the more topological

variation will affect have consequences for diversity pattern.

Figure 3a demonstrates the effect of different network

topologies on diversity patterns in a metacommunity. The

plot is structurally similar to those in Fig. 2 but represents

several networks simultaneously. a-diversity (red) is highest

for a given migration rate in the networks with shorter path

lengths (star, random) and lowest in the chain graph. For

higher migration rates, the difference is pronounced. The

effect is not as dramatic as the migration parameter itself –

for networks of this size – but it underscores the importance

of metacommunity geometry in diversity patterns, some-

thing impossible to capture in a spatially implicit model.

These topological differences can be measured with

network statistics such as network diameter, which is

variably defined in the literature as either the minimum

distance between the furthest nodes, or the average

minimum distance between two nodes, averaged over all

node pairs (Albert & Barabási 2002; Amaral et al. 2005). We

used the latter definition and calculated diameter for the

networks considered in Fig. 3a, and find that networks with

longer diameters have a greater allocation of diversity into

the b-component (Fig. 3b). This appears a promising

direction and further work is needed to investigate the

quantitative relationship between diameter and other net-

work statistics with diversity patterns across a broader range

of network types. An open question is the extent to which

such statistics can substitute for direct modelling of neutral

dynamics.

Speciation rate (v )

In the spatially implicit metacommunity, c-diversity (in

effective numbers of species) scales approximately linearly

with speciation rate because of eqn (17). We investigate

whether that scaling holds for metacommunities with

internal dispersal limitation. Considering a chain graph

identical to the one considered in Fig. 2, we held migration

rates constant and varied speciation rate to examine its

scaling with overall c-diversity. The relationship between

speciation rate and c-diversity is found to deviate from the

spatially implicit model (again by as many as n ) 1 effective

species), with a strong interaction effect with migration rate.

Note we are using eqn (4) and not eqn (17), which is an

approximation, to generate predictions for the well-mixed

model. Considering migration and speciation together in

Fig. 4a, we find that the deviations vary between zero and

n ) 1 and are related to the ratio of migration to speciation

m/v. This result is qualitatively robust to different network

structures (island vs. chain, varying network size), but differ

in quantitative details such as the actual values of m/v that

lead to a deviation of a certain magnitude.

Aside from the strong effect on c-diversity, speciation

rates have consequences for the allocation of diversity into

among (b)- and within (a)-site components. Intuitively,

higher speciation rates can be expected to promote

geographic differentiation, with migration as an opposing,

homogenizing force. Figure 2 demonstrates the control of

migration rates on the tradeoff between a- and b-diversity,

with local diversity making up increasing fraction of the total

metacommunity diversity as migration rates are elevated.

(a)

(b)

Figure 3 (a) The effect of network topology on diversity patterns

is demonstrated by examining the diversity levels on networks with

otherwise similar parameter values (100 nodes, 99 links, v ¼
1 · 10)5, local pop. sizes ¼ 20 000). a-diversity (red) and

c-diversity (black) in metacommunities with star, chain, or random

topologies, are plotted for a range of migration rates. Values for the

random network line are averages of 10 different networks, and the

pink/grey shading reflects standard deviations. The difference

between the black and red lines is b-diversity using an additive

definition. (b) log(a/b), an index of geographic differentiation,

plotted as a function of network diameter (average minimum path

length between all pairs of nodes) for the networks and parameter

values considered in Fig. 3a, with log(migration) set to )2.5. The

curve is a quadratic fitted for visualization purposes.
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Comparing panels in Fig. 2, it is clear that the transition

from b- to a- diversity occurs at a higher migration rate

when speciation rates are higher.

The joint effect of migration and speciation rate on

differentiation can be considered on a chain graph (n ¼ 20,

local population sizes ¼ 20 000), shown in Fig. 4b. The

isoclines for a metric geographic differentiation log(a/b),

are parallel and with a slope of 1. This implies the ratio m/v

is the relevant quantity with respect to the tradeoff between

a- and b-diversity, when network size and topology are held

constant. When m/v is large, a-diversity dominates, and b
when m/v is small. Again, while m/v controls log(a/b) for a

given metacommunity structure (link structure and popula-

tion sizes), different networks with the same m/v may differ

in their allocation of diversity into a- and b-components.

Interestingly, we do not find the product of local

population size and migration rate (N.m) being greater or

less than one to have a strong effect on geographic

differentiation, per se, after holding m/v constant (Fig. S1).

This is in contrast to the commonly cited connection

between N.m and FST taken from analysis of the island

model, although clearly the relationship is more complex

when idealized assumptions are violated (Wilkinson-

Herbots 1998; Whitlock & McCauley 1999). We do note

that one of the assumptions from the N.m result is that

speciation (mutation) is weak compared with migration

rates. If N.m < 1, then N.v must be at least several orders of

magnitude below 1. As metacommunity diversity is generally

controlled by theta, and h ¼ 2nN.v, n must be in the

hundreds or thousands to recover a theta on the order of 1.

So for subcommunities that are a significant fraction of the

metacommunity (on the order of tens and hundreds), it is

unlikely that a metacommunity would support much

diversity to differentiate if N.m < 1 and m >> v. We limit

the scope of our conclusions to the population structures

and diversity statistics explored here, and emphasize the

need for further examination of the issue.

Metacommunity size (Nm )

The number of individuals in a metacommunity is expected

to directly control equilibrium diversity under neutrality. In

the spatially implicit model, this relationship is linear

because of the eqn (17). As we have demonstrated, diversity

in spatially explicit metacommunities has a more complex

relationship with migration and speciation rate than in the

spatially implicit model. This is apparently not the case for

network size. We grow metacommunities both by increasing

the number of individuals in each subcommunity, and by

increasing the number of nodes in the network, holding

migration and speciation rates constant. Fig. 5a shows a-,

b- and c-diversity in a chain graph of 20 nodes, as local

community size is varied between a range of 2000–60 000

individuals. a-, b- and c-diversity all grow linearly with

metacommunity size.

Figure 5b shows how diversity scales as local communi-

ties are added to a network. Interestingly, overall c-diversity

scales linearly while there is a nonlinear tradeoff between a-

and b-diversity. This occurs as the average distance between

pairs of nodes in the network is increased.

D I S C U S S I O N

Our results highlight the importance of spatial structure and

the biological parameters of the neutral model in determin-

ing species diversity of a local community, among spatially

(a) (b)

Figure 4 Contour plots showing diversity calculated in a range of migration and speciation rates on a chain graph with 20 nodes, and local

population sizes set to 20 000. (a) The deviation of the equilibrium c-diversity in a spatially explicit metacommunity from a well-mixed

metacommunity of the same size. The units are effective number of species, isoclines depicted in increments of two. The maximum is

expected to be 19 (n ) 1, see text). (b) log(a/b), an index of the allocation of diversity into within and between components, isoclines are in

increments of 0.35. Both plots have parallel, linear isoclines, indicating the ratio of m/v is the important driver of these patterns.
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separated communities, and on the scale of the entire

metacommunity. As the results presented in the previous

section are in terms of a rather abstract parameter space, it is

instructive to discuss how they may relate to natural

systems. We find spatially structured metacommunities to

have elevated c-diversity compared with a well-mixed

metacommunity if connectivity is low (Fig. 2,3) relative to

speciation rate (Fig. 4a). The magnitude of this effect is, at

most, n ) 1 effective species in a network of n patches and

the relative effect on metacommunity diversity is deter-

mined by the relative magnitude of the number of patches

to the fundamental diversity number, the latter a function of

speciation rate and metacommunity size. For metacommu-

nities with high diversity relative to the number of patches

(h + 1 >> n)1), because speciation rate is high or meta-

community size is large (because, for example, the areas

involved are large) or both, metacommunity structure has

little effect on overall diversity even if migration is highly

restricted. An example of this situation would be a set of

large but isolated mountain ranges distributed on a

continent. In these cases, a- and b-diversity, but not

c-diversity, would be highly dependent on the connectivity

of such patches.

If diversity is low compared with the number of patches

(h + 1 << n ) 1), the spatial effect can be of consequence

to overall diversity. Hypothetical examples of this situation

would be an isolated network of many small oceanic islands,

or other numerous but isolated habitat types such as caves or

mountain peaks. The total size of the metacommunity (Nm)

may be unable to support much diversity if it were one well-

mixed unit, but the isolation inhibits one or a few species

from numerically dominating and thus enables species

persistence. In this situation, the connectivity of the system

has important consequences for a-, b- and c-diversity.

These results demonstrate that under certain conditions,

fragmentation promotes c-diversity as subcommunities

maintain uniqueness. It should be noted that the zero-sum

assumption implies the indefinite persistence of subcom-

munities. In highly fragmented metacommunities with many

small subcommunities, one might expect occasional extinc-

tion of those subcommunities because of environmental

stochasticity, which may depress overall metacommunity

diversity. An interesting extension would be to examine

neutral community dynamics in a network with dynamic

structure.

Topological differences in metacommunity structure

reflect different spatial arrangements of habitat. Some

communities are arranged in long chains, such as riverine

or coastal systems. Other metacommunities may be hierar-

chically clustered reflecting patchy habitat distributions on

multiple scales, or characterized by asymmetric flows

because of wind or water currents. Given the diversity of

organisms in variables such as body size, life history and

habitat affinities, and the complexity of landscapes and

environmental gradients, the structures of real metacom-

munities can be expected to be highly variable in nature.

The transition from b- to a-dominated metacommunities

as m/v increases highlights the neutral hypothesis for global

patterns of provincialism (Hubbell 2001). When migration is

too weak to overcome the differentiating effects of

speciation, provinces with distinct biotas form in the

subcommunities. When migration is relatively strong,

communities embedded in large networks can have similar

compositions. We have shown how the geometry of such

networks also contributes to this transition. The linear

scaling of c-diversity with metacommunity size is consistent

with the linearity of interprovincial species–area curves

(Rosenzweig 1995), although it remains to be seen if species

number has the same behaviour as the effective richness

predicted by our model.

The main strength of the neutral theory is testability. The

model’s transparent parameters allow for empirical tests,

and quantitative tools for fitting the model to data have

blossomed (Etienne 2005, 2007; Etienne et al. 2007b). Aside

from several notable exceptions (Condit et al. 2002; Rosin-

dell & Cornell 2007), these efforts are based on fitting data

to the spatially implicit model, some going so far as to use a

spatially implicit model to generate predictions for commu-

nity similarity (Dornelas et al. 2006). Given that spatial

structure is a pervasive feature of real metacommunities, and

(a) (b)

Figure 5 Diversity as a function of meta-

community size. (a) diversity of a chain

graph of length 20, (m ¼ 1 · 10)3) as local

community sizes are increased such that

total metacommunity size varies between

40 000 and 1.2 million. (b) Diversity in a

chain graph as nodes are added, so length

varies between 1 and 30 local communities

of 40 000 individuals each.
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thus migration rates among pairs of communities are often

variable, neutral processes in nature could produce more

complex diversity and similarity patterns than can be

generated with spatially implicit models.

The challenges are formidable: a spatially explicit meta-

community requires more parameters to describe than a

spatially implicit version, when one considers the large

number of mij and local community sizes. Increasing the

complexity of that structure increases the number of

parameters to be fit to data. However, simplifying assump-

tions can be made about relations of distance with dispersal

rates, and area with community size. From this perspective,

the model presented here is not significantly more complex

than metapopulation models (Hanski 1999), which are

commonly fit to data by making such simplifying assump-

tions. An exploration of that potential is left for future work.

Our analytic method permits the exploration of regions

of parameter space that are inaccessible to simulation

because of computational limits. This is because long

transients are not an issue and speciation rates and numbers

of individuals (but not number of subcommunities) can take

on any finite values. However, a disadvantage of our method

is the focus on diversity indices as opposed to species

abundance curves, which contain information on richness

and all higher order diversity metrics. We expect this

limitation will prove to be temporary, as recursive tech-

niques similar to the Malécot equation can generate more

detailed information about the coalescent process than is

captured in probabilities of identity (Hudson 1991; Nagylaki

2000; Laporte & Charlesworth 2002; Etienne & Olff 2004).

In addition, our method follows many other neutral models

by assuming point speciation, the frequency of which in

nature is uncertain. Under allopatric or other speciation

mechanisms, it is possible diversity patterns will have a

different relationship with spatial structure, and initial steps

have been taken in this direction (Mouillot & Gaston 2007).

The questions addressed here mostly pertain to global

properties of the metacommunity, but there are many

questions outstanding regarding how the internal network

structure of a metacommunity determines neutral pattern.

The position of a node in a network has consequences for

both local diversity and uniqueness, and similarity with other

nodes at a given location in the network (Economo & Keitt,

unpublished results). A rich tradition of quantitative

methods developed to quantify the local and global structure

of networks (Albert & Barabási 2002) may prove useful for

these ends.

The possibility that relatively simple stochastic ecological

and evolutionary processes may underlie biodiversity pat-

terns is an idea that traces back at least to MacArthur–

Wilson island biogeography (MacArthur & Wilson 1967).

Neutral theory shows us again that spatial pattern can arise

in the absence of environmental species sorting, niche

partitioning, complex interactions, and historical contingen-

cies. As complexity continues to be added to the theory

highlighting different biological and geographical realities,

we will eventually gain the ability to produce ever more

specific and discriminating predictions. The future is

promising for a rigorous assessment of the importance of

stochastic processes in biodiversity dynamics in space and

time, and across the tree of life.

A C K N O W L E D G E M E N T S

The authors wish to thank R.S. Etienne, who suggested a

more transparent presentation of the theory among other

helpful comments, and two anonymous referees for

comments on the manuscript. EPE acknowledges the

support of an NSF IGERT Graduate Training Fellowship

(DGE-0114387), and an NSF Graduate Research Fellow-

ship. THK acknowledges the support of the David and

Lucile Packard Foundation and the Texas Space Grant

Consortium funded by NASA.

R E F E R E N C E S

Albert R. & Barabási A.-L. (2002). Statistical mechanics of complex

networks. Rev. Modern Phys., 74, 47.

Alonso D., Etienne R.S. & McKane A.J. (2006). The merits of

neutral theory. Trends Ecol. Evol., 21, 451–457.

Amaral L.A.N., Scala A., Barthélémy M. & Stanley H.E. (2005).
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