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Landscape connectivity: A conservation
application of graph theory

A. G. Bunn†§*, D. L. Urban† and T. H. Keitt‡

We use focal-species analysis to apply a graph-theoretic approach to landscape connectivity in the Coastal
Plain of North Carolina. In doing so we demonstrate the utility of a mathematical graph as an ecological
construct with respect to habitat connectivity. Graph theory is a well established mainstay of information
technology and is concerned with highly efficient network flow. It employs fast algorithms and compact
data structures that are easily adapted to landscape-level focal species analysis. American mink (Mustela
vison) and prothonotary warblers (Protonotaria citrea) share the same habitat but have different dispersal
capabilities, and therefore provide interesting comparisons on connections in the landscape. We built graphs
using GIS coverages to define habitat patches and determined the functional distance between the patches
with least-cost path modeling. Using graph operations concerned with edge and node removal we found
that the landscape is fundamentally connected for mink and fundamentally unconnected for prothonotary
warblers. The advantage of a graph-theoretic approach over other modeling techniques is that it is a heuristic
framework which can be applied with very little data and improved from the initial results. We demonstrate the
use of graph theory in a metapopulation context, and suggest that graph theory as applied to conservation
biology can provide leverage on applications concerned with landscape connectivity.
 2000 Academic Press
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Introduction

The current trend in ecological research and
land management is to focus on large biogeo-
graphic areas, which leaves the researcher
and manager searching for landscape-scale
data (Christensen et al., 1996; Noss, 1996).
Indeed, the interpretation of large spatial
data, conceptually and technologically, can
be the limiting factor in making conservation
biology and ecosystem management a tan-
gible goal. Because the internal heterogene-
ity of landscapes makes habitat-conservation
planning a formidable challenge, modeling
the spatial aspects of landscapes is a crit-
ical key to understanding. Until now, the
varied approaches to building these mod-
els have focused primarily on two types of
spatial data, coverages of vectors (polygons)
or raster grids. We demonstrate the utility
of a less familiar type of lattice, the graph
(Harary, 1969), in determining landscape
connectivity using focal-species analysis in
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an island model. A graph represents a binary
landscape of habitat and non-habitat, where
patches are described as nodes and the con-
nections between them as edges.

Graph theory is a widely applied frame-
work in geography, information technol-
ogy and computer science. It is primarily
concerned with maximally efficient flow
or connectivity in networks (Gross and
Yellen, 1999). To this end, graph-theoretic
approaches can provide powerful leverage
on ecological processes concerned with con-
nectivity as defined by dispersal. In partic-
ular, graph theory has great potential for
use in applications in a metapopulation con-
text. Urban and Keitt (2000) have introduced
landscape-level graph-theory to ecologists,
and here we build on that work by exam-
ining habitat connectivity for two species
that share the same habitat but have dif-
ferent dispersal capabilities. Specifically, we
ask how American mink (Mustela vison) and
prothonotary warblers (Protonotaria citrea)
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perceive the same landscape. We explore the
sensitivity of landscape connectivity through
graph operations concerned with edge defini-
tion. We also examine each habitat patch’s
role in maintaining landscape connectiv-
ity in terms of source strength (Pulliam,
1988) and long-distance traversability (den
Boer, 1968; Levins, 1969) using graph oper-
ations concerned with node removal. This
type of analysis is done very efficiently
with graph theory. We also present an
ecologically appealing way to calculate the
functional distance between habitat patches
using least-cost path modeling. Graph the-
ory as applied to landscapes represents an
important advance in spatially explicit mod-
eling techniques because it is an additive
framework: analysis of a simple, preliminary
graph can prioritize further data collection to
improve the graph model.

Study area and methods

Study area

Our study focuses on the Alligator River
National Wildlife Refuge (NWR) and sur-
rounding counties on the Coastal Plain of
North Carolina (35°500N; 75°550W). It is a
riverine and estuarine ecosystem with an
area of almost 580 000 ha and over 1400 km
of shoreline. The area is rich in wildlife habi-
tat, dominated by the Alligator River NWR,
the Pocosin Lakes NWR, Lake Mattamus-
keet NWR, Swanquarter NWR, and a variety
of other federal, state, and private wildlands
(Figure 1).

The vegetation is characterized by the
Southern Mixed Hardwoods forest commu-
nity. The area has many diverse vegetation
types, including fresh water swamps, pine
woods and coastal vegetation. In the upland
community, dominant species include many
types of oak (Quercus spp.), American Beech
(Fagus grandifolia), and evergreen magno-
lia (Magnolia grandiflora). Mature stands
may have five to nine codominants. The
wet lowlands are dominated by bald cypress
(Taxomodium distichum). The pine woods
are dominated by longleaf pine (Pinus palus-
tris), but loblolly pine (P. taeda) and slash
pine (P. elliottii) are also important (Vankat,
1979).

Focal species

Because connectivity occurs at multiple
scales and multiple functional levels (Noss,
1991), we have chosen two focal species to
apply a graph-theoretic approach to connec-
tivity. Focal species analysis is an essential
tool for examining connectivity in a real
landscape, as individual species have differ-
ent spatial perceptions (O’Neill et al., 1988).
The American mink and the prothonotary
warbler are appropriate candidates for focal
species analysis as they share very similar
habitat but have different ecological require-
ments, and fall into different categories as
focal species. Both species are wetland depen-
dent and indicators of wetland quality and
abundance in a landscape. Both are charis-
matic. Furthermore, as meso-predators mink
have small but important roles as a keystone
species (Miller et al., 1998/1999).

American mink are meso-level, semi-
aquatic carnivores that occur in riverine,
lacustrine and palustrine environments
(Gerell, 1970). In chief, they are nocturnal
and their behavior largely depends on prey
availability. They have a great deal of vari-
ation in their diet according to habitat type,
season and prey availability (Dunstone and
Birks, 1987). Muskrats (Odantra zibethicus)
are a preferred prey item (Hamilton, 1940;
Wilson, 1954), but mink diets in North Car-
olina are composed of aquatic and terrestrial
animals, as well as semiaquatic elements
(e.g. waterfowl; Wilson, 1954). In the south-
east they have home ranges on the order of
1 ha and a dispersal range of roughly 25 km
(Nowak, 1999).

Prothonotary warblers are neotropical mig-
rants that breed in flooded or swampy mature
woodlands. They have two very unusual
traits in common with wood warblers in that
they are cavity nesters and prefer nest sites
over water. They are forest interior birds
that experience heavy to severe parasitism
by brown-headed cowbirds (Molothrus ater);
(Petit, 1999). They are primarily insectivo-
rous, occasionally feeding on fruits or seed
(Curson et al., 1994). Preliminary data indi-
cate that natal dispersal ranges from less
than 1 km to greater than 12 km (Petit, 1999).
Although this is formulated from a small
sample, it is on the same order as other song
bird dispersal (e.g. Nice, 1933; Sutherland
et al., 2000). Here, we posit warbler dispersal
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Figure 1. Study area in North Carolina with major roads and streams shown along with bottomland
hardwood forest (focal species habitat) identified using GIS analysis.

to be 5 km and return to the uncertainty of
this statement later.

Geospatial data

To our knowledge there are no current
data on the spatial distribution of the focal
species in our study area. The decline in
trapping of the mink has perversely led to a
decline in good biological information on the
species. We are unaware of any work done
with mink in the study area since Wilson’s
(1954) study. The Breeding Bird Survey
indicates that this study area contains one
of the highest concentrations of prothonotary

warblers in the Southeast (Price et al., 1995).
Finer scale spatial information is not readily
available.

Mink and prothonotary warblers are habi-
tat specialists that use the same habitat.
To identify habitat patches in the land-
scape we combined data from the US Fish
and Wildlife Service’s National Wetlands
Inventory (http://wetlands.fws.gov) and a
1996 land-use coverage from the National
Center for Geographic Information and Anal-
ysis (http://www.negia.ucsb.edu). Both were
derived from Landsat 7 Thematic Map-
per imagery with 30-m cells. Cells that
were defined as being bottomland hardwood
swamp or oak gum cypress swamp, and
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riverine, lacustrine, or palustrine forested
wetland were selected as habitat. These cells
were then aggregated into regions using
an eight-neighbor rule, and the interven-
ing matrix was described as non-habitat. We
also used zonal averaging techniques in an
attempt to account for functional scaling in
the habitat and found that the patch defini-
tion was robust. Transportation and hydrog-
raphy digital line graphs were obtained
for the study area from the US Geologi-
cal Survey (http://www.usgs.gov) at 1:100 000
resolution.

Graph theory

Urban and Keitt (2000) give a general
description of ecological applications of graph
theory and readers should refer to any num-
ber of excellent texts on graphs as a primer
(e.g. Gross and Yellen, 1999). However, this
section describes the graph operations and
definitions used in this study. While there are
numerous excellent texts on the formalisms
of graph theory (e.g. Gross and Yellen, 1999),
the following largely conforms to Harary’s
(1969) classic text. A graph G is a set of nodes
or vertices V.G/ and edges E.G/ such that
each edge eijDvivj connects nodes vi and vj.
A path in a graph is a unique sequence of
nodes. The distance of a path from vl to vn is
measured by the length of the unique set of
edges implicitly defined by the path. A path
is closed if nlDvn. Three or more nodes in a
closed path is called a cycle. A path with no
cycles is a tree. A tree that includes all the
vertices in the graph is a spanning tree. The
minimum spanning tree is the spanning tree
in the graph with the shortest total length.
The minimum spanning tree in effect repre-
sents the parsimoniously connected backbone
of the graph.

A graph is connected if a path exists
between each pair of nodes. An unconnected
graph may include several connected com-
ponents or subgraphs. A graph’s diameter,
d.G/, is the longest path between any two
nodes in the graph, where the path length
between those nodes is itself the shortest pos-
sible length. If nodes i and j are not adjacent,
then the shortest path between them cannot
be the distance between them but must use
stepping-stones. Here, we use graph diam-
eter (or diameter of the largest component)

as an index to overall traversability of the
habitat mosaic.

A graph is defined by two data structures:
one that describes its nodes and one that
describes its edges. We defined the nodes
(habitat patches) by their spatial centroid
and size (x, y, s). We defined the edges by a
distance matrix D whose elements dij are the
functional distances between patches i and j.
For n patches D is n by n but because dijDdji
and diiDdjjD0, it is sufficient to compute the
lower triangle of the matrix.

Although the spatial array of nodes is sim-
ple to produce from a GIS, the other matrices
are not as easy to define. Distance between
patches can be measured in several differ-
ent ways: edge to edge, centroid to centroid,
centroid to edge, etc. However, measuring
these as Euclidean distance makes little
sense when the variance in mortality cost
associated with traversal of the intervening
habitats is large, and cost associated with
traversal of the intervening habitats is large
and spatially heterogeneous. Few organisms
or even ecosystem processes, such as ground-
water movement or wildfire spread, move in
this way. To differing extents they are all
constrained by the landscape. Good multi-
dimensional models exist to predict some
ecosystem processes (e.g. pollution plumes;
Bear and Verruit, 1987) but not others. Spa-
tially explicit models that simulate the dis-
persal of animals have been explored in some
depth but the process is still poorly under-
stood (Gaines and Bertness, 1993). Most are
complex parametric models which are data-
hungry. They require specific information
and are hard to parameterize (Gustafson and
Gardner, 1996).

For this reason, we have computed D not as
Euclidean distances but as a series of least-
cost paths on a cost surface appropriate to
the organisms in question. These paths are
designed to approximate the actual distance
the focal species (or any other landscape
agent, e.g. fire) covers moving from one patch
to the next. For instance, in this riverine
ecosystem, the path a mink might take from
one side of a river delta to the other would
likely involve traversing the shore for 10 km
under cover, rather than a 5-km swim across
open water. This allows the animal to use
stepping-stones of other habitat (low cost)
along the way rather than set off into an
unknown habitat matrix (high cost). The
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least-cost modeling combines habitat quality
and Euclidean distance in determining dij.

Cost was defined in 90-m cells (aggre-
gated up from 30-m cells to improve pro-
cessing time) by a surface comprised of x,
y and z, where z was a uniform impedance
that represented the cost of moving through
that cell, i.e. its resistance to dispersal.
Weights were approximated, based on per-
ceived traversability. Cells corresponding to
areas of habitat were given a weight of 0Ð5, all
other forest types were given a weight of one.
Cells classified as riverine/estuarine herba-
ceous were given a weight of two. Shrubland
was given a weight of three. Sparsely vege-
tated cells (cultivated, managed herbaceous)
were given a weight of four. Areas of devel-
opment and large water bodies were given
a weight of five. Streams were defined with a
weight of one. We used grid functions inside
a macro in ArcInfo 7.2.1 (ESRI, 1998) to iter-
atively loop through the array of patches and
compute dij for each unique pair of nodes in
the array. The macro uses area-weighted dis-
tance functions to calculate least-cost paths.
These functions are similar to Euclidean dis-
tance functions, but instead of working in
geographical units they work in cost units.

We explored alternative methods for con-
structing D, including Euclidean distance
and resistance-weighted distance between
nodes. We found that the topology of the
graph is robust and not sensitive to the
difference between least-cost path distance
and Euclidean distance except at the scale of
large obstacles in the landscape. For instance,
least-cost paths in our model did not cross the
5-km mouth of the Alligator river when mov-
ing from the eastern side of the study area but
chose a route through habitat instead. In this
case Euclidean distance and least-cost path
distance were quite different. The least-cost
path technique is useful to land managers as
the surface can be parameterized based on
best available data. Thus, the surface can be
tailored to features in the landscape for which
the manager has knowledge. The surface can
be refined as data becomes available, e.g. in
the form of radio tracking.

Gustafson and Gardner (1996) found that
dispersal routes are difficult to predict in even
slightly heterogeneous landscapes. We have
kept that in mind by building a simple cost
surface that avoids committing the animals
to movement patterns that are not readily

possible to predict at 90-m resolution. We are
not suggesting that the organisms modeled
move purely according to least-cost paths. We
use the framework because the distance of the
least-cost path is a better approximation of
the actual distance covered than a straight
line between patches. Our goal has been to
get a better estimate of distance traveled
using least-cost and not to predict corridors.
This modeling technique can be applied in
a GIS, with limited spatial data, making it
accessible to land managers and conservation
practitioners. Despite these advantages, cost-
surface analysis has been only occasionally
used by ecologists (Krist and Brown, 1994;
Walker and Craighead, 1997), but widely
used in computer science which is concerned
with optimal route planning (e.g. McGeoch,
1995; Bander and White, 1998). This type of
analysis is also common in applications of
artificial intelligence (e.g. Xia et al., 1997).

To focus on scaling between the two focal
species we chose to explicitly incorporate only
patches greater than 100 ha in our analyses,
as prothonotary warblers are not likely to
persist in forest patches less than 100 ha
(Petit, 1999). Using habitat patches greater
than 100 ha results in 83 patches, roughly
83% of the 53 392 ha of possible habitat.
Because all habitat patches, regardless of
size, are given the lowest value on the cost
surface, they are implicitly included in all
analyses in that the species can traverse
them easily as stepping-stones, accruing
minimal cost.

We further defined edges by a dispersal
probability matrix P that expresses the
probability that an individual in patch i will
disperse at least the distance between patch
i and j. We computed the elements of P as
negative exponential decay:

pijD�e.qÐdij/ .1/

where q is an extinction coefficient greater
than 0. This way dispersal functions can be
indexed by noting the tail distance corre-
sponding to PD0Ð05 is � ln.0Ð05/Ðq�1. The tail
distance for mink and prothonotary warbler
are indexed as 25 km and 5 km, respectively.
The tail distance is the distance to a selected
point on the flat tail of the dispersal-distance
function. Other curves are possible and Clark
et al. (1999) provide a discussion of alternate
dispersal kernels.
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The graphs are described most succinctly
by an adjacency matrix A in which aijD1 if
nodes i and j are connected and 0 if not. We
set aijD1 if dij�25 km for mink and dij�5 km
for prothonotary warbler.

We can also define the graph’s edges in
terms of dispersal fluxes. Combining P and s
allows us to compute dispersal flux from i to j:

fijD si

stot
Ðp0ij .2/

where si is relativized as the proportion of
the total habitat area stot in i and p0ij is pij
normalized by the row sum of i in P. Because
dispersal flux is asymmetrical .fij 6Dfji/ when
si 6D sj we average the directions between
nodes to give area-weighted dispersal flux
wij:

wijDwjiD1�
(

fijCfji

2

)
.3/

Subtracting from 1 allows the flux value
to have the smaller fluxes at greater dis-
tances. The area-weighted dispersal flux
matrix allows us to compute a version of a
minimum spanning tree with more dispersal
biology incorporated.

Graph operations

With graph construction complete we per-
formed two types of graph operations relat-
ing to connectivity: edge thresholding and
node removal. Edge thresholding allows us
to determine connectivity for mink and
prothonotary warblers based on their tail
dispersal distances. It also allows us to
gauge the importance of variation of the
tail distance. We removed edges from the
graph iteratively with a edge distance
thresholded at 100 m to 50 000 m in 100 m
increments. At each iteration the num-
ber of graph components, the number of
nodes in the largest component and the
diameter of the largest component were
recorded.

Node removal is a way to examine the
relative importance of habitat area and
connectivity in the landscape. We used node
removal to tell us about the dynamics of
the entire landscape under different habitat-
loss scenarios. Nodes were removed from the
graph iteratively. We began with the entire
graph and removed nodes randomly (with

100 repetitions), by minimum area, and by
endnodes with the smallest area (Urban and
Keitt, 2000). An endnode in a graph is a leaf
in the spanning tree (here based on area-
weighted flux) that is adjacent to only one
other node. All edges incident to the removed
node were also removed. At each iteration of
the removal process the graph was analyzed
to determine the importance of the patch
to the graph’s area-weighted dispersal flux
(F), and traversability (T). Area-weighted
dispersal flux was indexed as:

FD
n∑
i

n∑
j,i 6Dj

pijsi .4/

where si is the size of node i and pij is from
Equation (1) above.

Traversability was indexed as the diameter
of the largest component in the graph formed
by the removal of the node:

TDd.G0/ .5/

where G0 is the largest component of G. We
use F as an index of a patch’s source strength,
after Pulliam (1988). We use T in the sense of
spreading-of-risk or rescue from catastrophe,
after den Boer (1968) and Levins (1969).

Finally, we determined the importance of
individual nodes to the entire landscape by
assessing their individual contribution to
area-weighted dispersal and traversability
in the graph by computing F and T for
the entire landscape, and then recomputing
each with a single node removed from the
graph. That node’s impact is the difference
between the intact metric and the metric
that its removal elicited. Furthermore, we
sought to determine the landscape’s overall
sensitivity to scale by repeating this process
with edge definition thresholds from 2Ð5 km
to 25 km, increasing in 2Ð5-km increments.
We assessed the robustness of the patches’
sensitivity rankings on F and T with Spear-
man’s rank correlation, using the middle
edge distance of 12Ð5 km to as the reference
case.

Results

The mean distance between patches in the
83ð83 matrix is 62Ð7 km. The study area and
habitat patches are illustrated in Figure 1.
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Figure 2. Number of graph components ( )
and graph order ( ) as a function of effective
edge distance.

Edge thresholding

The graph begins to disconnect and frag-
ment into subgraphs at a 19 km edge dis-
tance, and quickly fragments into numerous
components containing only a few nodes
(Figure 2). The diameter of the largest
component increases quickly with threshold
distance, peaking at 20 km and declining

slightly at greater thresholding distances
(Figure 3). The edges are drawn as straight
lines between patch centroids with 5, 10, 15
and 20 km thresholding distances in Figure 4,
even though the actual paths are computed
by least-cost and are circuitous.

The distinct threshold at a 19-km func-
tional edge distance (Figures 2–4) implies
that the landscape as it stands now is per-
ceived as being connected for species with
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Figure 3. All graphs edges with increasing thresholded distances from 5 to 20 km.
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Figure 5. Minimum spanning tree for mink and prothonotary warbler based on distance.

a dispersal range of at least 20 km, and
unconnected for species with a dispersal
range of less than 20 km. Using this edge-
thresholding scenario, and the language of
percolation theory, the landscape percolates
for mink but not for prothonotary warblers
(Gardner et al., 1987, 1992). Another way to
envision this landscape is that prothonotary
warblers may have a tendency to act as many
discrete populations, while the robust con-
nectivity of the landscape indicates that mink
will act as one patchy population (Harrison,
1994).

For organisms with a 5-km dispersal dis-
tance, like the prothonotary warbler, the
landscape graph divides into subgraphs. The
implications from edge-thresholding opera-
tions are that some portions of the landscape
have natural units to partition for manage-
ment. Edge thresholding also indicates nodes
that are easily isolated. This can serve as an
early blueprint for decisions regarding habi-
tat acquisition or enhancement. For instance,
this analysis indicates useful areas for patch
creation via wetland restoration.

This preliminary exploration of edge thres-
holding can provide some idea of landscape
connectivity relative to the dispersal capa-
bilities (however uncertain) of mink and
warblers. Using this framework it is easy to
highlight important nodes and edges under
different dispersal distances.

For mink, the minimum spanning tree
on distance (Figure 5) is an excellent first
look at habitat-specific connectivity in the
landscape. The minimum spanning tree rep-
resents the backbone of the habitat in the
matrix. The minimum spanning tree based
on area-weighted dispersal flux (Figure 6)
is very different. Couched in the mainland-
island model of Harrison (1994), the tree
is now weighted by larger patches which
are expected to produce a larger number of
propagules. The largest patch now radiates
spokes which illustrates the spatial effect on
dispersal under these kernels.

Node removal

Node removal is habitat removal. We mea-
sured the effects of node removal in two ways
which can indicate a landscape’s potential
to provide conditions that foster metapopula-
tions. Flux (F), as governed by area and dis-
persal potential, measures a node’s influence
to a landscape-level metapopulation. Flux
can measure the patch’s potential to act as a
source in a source-sink metapopulation model
(Pulliam, 1988). Traversability (T) is a func-
tion of the graph’s diameter. In this light it
can be thought of as a proxy for spreading-of-
risk or long distance rescue (den Boer, 1968;
Levins, 1969). T has the possibility to point
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Figure 6. Area-weighted minimum spanning tree for mink with 25-km tail dispersal.
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Figure 7. Area-weighted dispersal flux (F) as a
function of three different node pruning scenarios.
( ), random; ( ), minnode; ( ), endnode.
Graph defined with 25 km adjancency threshold.

out important stepping-stone patches in the
landscape. Source strength and long-distance
rescue are well established in conservation
biology. F and T are codified versions of those
that fit into the graph context.

The different node removal scenarios give
different pictures of the landscape. The better
performance of endnode pruning over random
or minimum area pruning for F indicates the
tendency for endnodes to be less connected
to the landscape (Figure 7). The advantage
of endnode pruning is clear in its effect on T
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Figure 8. Traversability (T ) of the largest graph
component as a function of three different node
prunning scenarios. ( ), random; ( ), minnode;
( ), endnode. Graph defined with 5 km adjancency
threshold.

in the graph (Figure 8). Traversability of the
graph is maintained with a majority of the
graph nodes removed. The effect of endnode
pruning on this landscape may indicate that
this riverine ecosystem has a high degree of
natural connectivity that an ecosystem not
comprised of linearly connected features may
not posses.

Area-weighted dispersal flux relies on P
and s and is functionally similar for mink
and prothonotary warblers under random,
endnode, and minimum area pruning. The
three thinning procedures produce similar
results, although endnode pruning resulted
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in slightly higher flux values (Figure 7). The
effect of different types of patch removal
on traversability is markedly different for
mink and prothonotary warblers. For mink,
with a 25-km functional adjacency thresh-
old, the three removal methods produce very
similar results. For prothonotary warblers,
with 5 km functional adjacency threshold,
the random and minimum area pruning pro-
duce similar linear results but the effect
of endnode pruning is substantially dif-
ferent. Traversability of the graph is not
effected until ¾75% of the nodes are removed
(Figure 8).

Node sensitivity

The spatial arrangement of habitat patches
in a landscape in combination with scale
can influence measures of connectivity (Keitt
et al., 1997). Our two main metrics for con-
nectivity, F and T, show differing responses
to scale. Traversability, T, is indexed inde-
pendently of patch area and is quite scale-
dependent, showing little to no rank correla-
tion between scales (Figure 9). Conversely,
F is calculated explicitly with patch area
and is very robust across scales. This is
likely to be a function of patch area, and
illuminates interesting management and eco-
logical aspects of the landscape. In a Levins
metapopulation model, T is analogous to
spreading-of-risk and is sensitive to scale.
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Figure 9. Correlation length of the vectors for
area-weighted dispersal (F; -- --) and traversability
(T; ) at varying scales. Reference variables are
respective vectors at 12Ð5 km edge distance. Filled
symbols are significant at P<0Ð005.

In the more commonly used Pulliam model,
F is analogous to source-sink strength and is
not sensitive to scale because it is influenced
most by close patches (short distance).

We have chosen two focal species defined
by extremes in dispersal. In our model, mink
can disperse five times farther than warblers
through the landscape. Our results indicate
that the high degree of connectivity for the
mink and low connectivity for the warbler do
not cause meaningful interpretation of node
sensitivity at that scale. However, the great
flexibility of the graph approach is the ability
to instantly posit other degrees of dispersal
based on edge distance. Figures 2–4 illus-
trate that the landscape begins to fragment
seriously with a functional distance thresh-
old between 10 and 15 km. These distances
become important if we are concerned with
issues of connectivity, as this is the scale that
the landscape begins to meaningfully con-
nect. Figure 10 shows a false-color composite
of patch sensitivity at 12Ð5-km effective edge-
distance that displays each patch’s sensitivity
to flux and traversability. We separated the
metric F used above into recruitment poten-
tial (R) and dispersal flux .F0/. Here, F0 is
a dispersal flux coefficient not influenced by
area and computed only with P .FD∑pij/
so as to separate it from area. R is a neu-
tral model of connectivity that is computed
as a function of patch size alone .RD∑ sij/.
Each patch in the landscape was tested for
sensitivity, and scored for the three met-
rics. This allows us to send R, F0, and T
to the red, green and blue color guns respec-
tively. When the patches are displayed in
a false-color composite (Figure 10), some
interesting patterns emerge. In this image,
patches that register high on metrics R, F0,
and T, saturate on all the colors and show
up as white. Conversely, patches that show
up as a dark color have registered low on
every metric. Various other shades are read-
ily interpretable for each patch. Thus, node
sensitivity analysis can illuminate nodes that
have contextual importance. For instance,
the blue patch indicated by the arrow in
Figure 10 contributes to T but could be easily
dismissed by a land manager as being unim-
portant because it is small and somewhat
isolated. This type of view on the landscape
can indicate crucial linkages or bottlenecks
to connectivity.
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Figure 10. False-color composite of node sensitivity with 12Ð5 km functional edge distance. Red,
recruitment potential (R); green, dispersal flux .F 0/; and blue, Traversability (T ). For instance, the white
arrow points to a patch with a high score for T and low scores for R and F.

Discussion

We found that mink and warblers perceived
this landscape differently, as a function of
their dispersal capabilities. For instance,
Figures 2–4 show that the landscape has a
great variability in connectivity depending
on dispersal distance. According to the dis-
persal estimates used, we found that mink
perceive this landscape as connected, while
prothonotary warblers do not. Given a sin-
gle patchy environment for mink we are
able to exercise the graph and highlight the
minimum spanning trees based on distance
and area-weighted distance (Figures 5 and
6). These represent the parsimoniously con-
nected backbone of the landscape. For the
warbler, which experiences this landscape as
fragmented components, these graph struc-
tures are not as meaningful, but minimum
spanning trees based on connected subgraphs
can provide utility in examining connectiv-
ity on a finer scale (not shown). The edge-
thresholding operations serve as a continuous
picture of connectivity in the landscape, and
can be applied to other focal species.

In contrast to edge-thresholding proce-
dures, which highlight mink and warbler

spatial perceptions, the various habitat-
removal scenarios allow us to determine
patch function in reference to both species.
Specifically, they allow us to envision, and
then prioritize, habitat loss in the landscape.
Habitat fragmentation and loss is one of the
greatest threats to biodiversity and a great
deal of management decisions focus around
minimizing the impact of habitat reduction
(Burgess and Sharp, 1981; Harris, 1984).
In this landscape, like many others, habi-
tat is managed by many different agencies
and private landowners. Conflicting manage-
ment paradigms virtually guarantee habitat
alteration and loss. Given this, node removal
also allows us to quickly gauge the tendency
of a species to act like a metapopulation. For
instance, we found that individual patches
have different functions based on their size
and position in the landscape. In the node
removal graph perturbations, we found a ten-
dency for endnodes to be poorly connected
and therefore contribute weakly to dispersal
flux and traversability. These results held for
mink (Figure 7) and prothonotary warblers
(Figure 8).

The node-sensitivity results show that
patches also have contextual importance.
Figure 10 is a powerful depiction of each
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patch’s contribution to landscape connectiv-
ity, describing the landscape based on an edge
threshold of 12Ð5 km. Given our dispersal
estimates, this is an intermediate dispersal
threshold not of direct importance to mink
or warblers. However, this distance serves
two pertinent functions in this landscape.
First, it is approximately the distance at
which the landscape begins to meaningfully
connect. Second, it highlights the important
versatility of the graph-theoretic approach
and lets us instantly posit a gradient of
dispersal thresholds. Given the overwhelm-
ing complexity of dispersal biology, the node
sensitivity analysis provides an initial esti-
mate of the relative importance of individual
patches in the landscape. These preliminary
analyses can also marshall further study by
identifying those patches where field studies
should be concentrated. For example, the blue
patch highlighted in Figure 10, and surround-
ing green patches, offer themselves as likely
candidates to determine the effectiveness of
T and F.

Challenges persist in developing macro-
scopic landscape models. Although focal
species analysis can enrich macroscopic
approaches by producing a species-specific
perspective to the analyses (O’Neill et al.,
1988; Pearson et al., 1996), reliable habi-
tat definition from relatively coarse spatial
data (e.g. 30-m cells) is challenging for many
species, and limited to habitat specialists.
The use of the intervening non-habitat matrix
is especially important, as this affects the
functional scale at which patches are defined.
Edge definition in a graph calls for dispersal
biology that is often difficult to parameter-
ize. However, well chosen focal species in a
landscape can provide ecological and political
effectiveness in issues of connectivity.

When appropriate species such as mink
and warblers are available in a land-
scape, then focal species analysis is partic-
ularly well-suited to graphic representation,
because ecological flux is a primary concern.
The graph-theoretic approach differs from
most focal species analyses as it allows one
to use surrogates as a rapid assessment tool
without long-term population data, although
population data can (and should) be incorpo-
rated as knowledge of the system improves.
It is a heuristic framework which is a robust
way to represent connectivity in the land-
scape. The utility of applying graph theory

to landscapes is that it allows managers and
researchers to take an initial, but thorough,
look at the spatial configuration of a land-
scape. It is applicable at any scale.

Another benefit of a graph-theoretic appro-
ach is that dispersal biology does not need
to be fully understood for the graphs to be
interpretable. To give context to the graph
framework, we have postulated that disper-
sal for mink is 25 km and for prothonotary
warblers, 5 km. We used a conservative neg-
ative exponential decay curve for dispersal
probability, matrix P. An advantage of the
graph-theoretic approach is that gaming with
alternative kernels is easy, and will affect dis-
persal in the landscape based on the spatial
arrangement of patches. Dispersal biology is
incredibly complex, and precise distances are
virtually always unknown. Here our results
and their interpretation are largely inter-
pretable despite this uncertainty and can
be immediately tailored to different disper-
sal estimates. Edge thresholding and node
removal, as well as node sensitivity, are
graph descriptors that are useful macroscopic
metrics when dispersal can only be estimated
(see Keitt et al., 1997 for an additional exam-
ple). From a management perspective, the
graph can provide a powerful visualization of
connectivity when used in conjunction with
dispersal estimates such as those based on
allometric relationship to body mass (see
Sutherland et al., 2000).

Prospectus

Land and conservation management is incre-
asingly concerned with regional-scale habitat
analyses. The development of graph theory in
an ecological framework represents a promis-
ing step forward in that regard. Graph the-
ory rests on a foundation of intensive study
for computer networks which must be effi-
cient. Therefore, the theory and algorithms
are well developed; many are computation-
ally optimal. Like metapopulation theory,
the graph can merge landscape configuration
and focal species biology to arrive at process-
based measures of connection (Hanski, 1998;
Urban and Keitt, 2000). The advantage of
graph-theoretic approaches to conservation
planners and researchers is that, while rea-
sonable quality spatial data are required,
long-term population data are not.
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The conservation potential of graph theory
is far from realized. The existing body of eco-
logical work that considers landscape graphs
is slim (Cantwell and Forman, 1993; Keitt
et al., 1997; Urban and Keitt, 2000). The
most appealing feature of graph theory as
applied to ecology is that it is a heuristic
framework for management which is neces-
sarily perpetual. With very little data, one
can construct a graph of loosely-defined habi-
tat patches and then explore the structure of
the graph by considering a range of thresh-
old distances to define edges. It is important
that as more ecological information is col-
lected it can be infused into the graph and
consequently add more precision and con-
fidence to the analyses. Graph theory can
provide initial processing of landscape data
and can serve as a guide to help develop and
marshall landscape-scale plans, including the
identification of sensitive areas across scales.
This does not mean that graph theory should
displace alternative approaches. We suggest
graph theory as a computationally power-
ful adjunct to these other approaches. The
simplicity and flexibility of graph-theoretic
approaches to landscape connectivity offers
much to land practitioners and can increase
the scope and effectiveness of resource man-
agement.
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Noss, R, Soulé, M. et al. (1998/1999). Using focal
species in the design of nature reserve networks.
Wild Earth 8, 81–92.

Nice, M. M. (1933). Studies in the Life History of
the Song Sparrow. New York: Dover.

Noss, R. F. (1991). Landscape connectivity: differ-
ent functions and different scales. In Landscape
Linkages and Biodiversity (W. E. Hudson, ed.),
pp. 27–38. Washington DC: Island Press.

Noss, R. F. (1996). Ecosystems as conservation
targets. Trends In Ecology and Evolution 11,
351–351.

Nowak, R. M. (1999). Walker’s Mammals of
the World, 6th edn. Maryland: Johns Hopkins
University Press.

O’Neill, R. V., Milne, B. T., Turner, M. G. and
Gardner, R. H. (1988). Resource utilization scale
and landscape pattern. Landscape Ecology 2,
63–69.

Pearson, S. M., Turner, M. G., Gardner, R. H.
and O’Neill, R. V. (1996). An organism based

perspective of habitat fragmentation. In Bio-
diversity in Managed Landscapes: Theory and
Practice (R. C. Szaro, ed.). Oxford: Oxford Uni-
versity Press.

Petit, L. J. (1999). Prothonotary Warbler (Protono-
taria citrea). In The Birds of North America,
number 408 (A. Poole and F. Gill, eds). Pennsyl-
vania: The Birds of North America Inc.

Price, J. P., Droege, S. and Price, A. (1995). The
Summer Atlas of North American Birds. New
York: Academic Press.

Pulliam, H. R. (1988). Sources, sinks and pop-
ulation regulation. American Naturalist 132,
652–661.

Urban, D. L. and Keitt, T. H. (2000). Landscape
connectivity: a graph-theoretic approach. Ecol-
ogy. In press.

Sutherland, G. D., Harestad, A. S., Price, K.
and Lertzman, K. P. (2000). Scaling of natal
dispersal distances in terrestrial birds and
mammals. Conservation Ecology 4, 16. URL:
http://www.consecol.org/vol4/iss1/art16

Vankat, J. L. (1979). The Natural Vegetation of
North America. New York: John Wiley and Sons.

Walker, W. and Craighead, F. L. (1997). Analyz-
ing Wildlife Movement Corridors in Montana
Using GIS. Proceedings of the 1997 ESRI User
Conference.

Wilson, K. A. (1954). Mink and otter as muskrat
predators. Journal of Wildlife Management 18,
199–207.

Xia, Y., Iyengar, S. S. and Brener, N. E. (1997).
An event driven integration reasoning scheme
for handling dynamic threats in an unstruc-
tured environment. Artificial Intelligence 95,
169–186.


	Introduction
	Study area and methods
	Figure1

	Results
	Figure2
	Figure3
	Figure4
	Figure5
	Figure6
	Figure7
	Figure8
	Figure9
	Figure10

	Discussion
	Acknowledgements
	References

