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ABSTRACT: There is an increasing recognition that individual-level
spatial and temporal heterogeneity may play an important role in
metapopulation dynamics and persistence. In particular, the patterns
of contact within and between aggregates (e.g., demes) at different
spatial and temporal scales may reveal important mechanisms gov-
erning metapopulation dynamics. Using 7 years of data on the in-
teraction between the anther smut fungus (Microbotryum violaceum)
and fire pink (Silene virginica), we show how the application of
spatially explicit and implicit network models can be used to make
accurate predictions of infection dynamics in spatially structured
populations. Explicit consideration of both spatial and temporal or-
ganization reveals the role of each in spreading risk for both the host
and the pathogen. This work suggests that the application of spatially
explicit network models can yield important insights into how het-
erogeneous structure can promote the persistence of species in nat-
ural landscapes.

Keywords: network epidemiology, disease ecology, biocomplexity,
Microbotryum violaceum, Silene virginica.

Understanding the mechanisms by which ecological pro-
cesses at one spatial and/or temporal scale affect processes
at alternative scales remains one of the important chal-
lenges in ecology (Levin 1992). At any particular scale,
mean field models (e.g., Anderson and May 1992; Hanski
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1994, 1996) are often successful at predicting the outcome
of one or several ecological processes. But there is an in-
creasing recognition that explicit consideration of indi-
vidual-level heterogeneity, both within and between scales
of aggregation, may be fundamental to a mechanistic un-
derstanding of population persistence (Hanski 1996) and
the spread of infectious disease (Meyers et al. 2005b).
These individual-level heterogeneities may also suggest po-
tential targets for the management or control of spatial
spread by identifying individuals or populations within the
metapopulation that are disproportionately important to
overall connectivity (Hanski and Ovaskainen 2000; Brooks
2006).

One approach to the incorporation of heterogeneity is
through the application of network theory. The application
of these models in ecology provides a number of existing
tools for quantifying individual-level heterogeneities and
their effects at different spatial or temporal scales (e.g.,
Keitt et al. 1997; Bunn et al. 2000; Brooks 2006). Many
of the existing measures and approaches to analysis have
interpretations that are consistent with biological processes
such as dispersal, disease transmission, and the flow of
energy through trophic networks.

Construction of network models is based on discrete
mathematical structures called graphs. Graphs consist of
two components: vertices and edges (see recent reviews of
network models in Urban and Keitt 2001; Newman 2003)
that can be “decorated” with a suite of additional infor-
mation. In an ecological context, vertices are typically used
to represent discrete entities such as individuals or pop-
ulations, while edges represent some form of interaction
between them. Previous applications of network models
have focused on spatially implicit models of compart-
mentalization in trophic structure (Dunne et al. 2002; Pas-
cual and Dunne 2006) or the transmission of human dis-
ease based on theoretical social networks (Meyers et al.
2003, 20054, 2005b; Newman 2005). More recently, there
has been a growing interest in the characterization of the
spatial structure of populations in heterogeneous land-
scapes using network models (Keitt et al. 1997; Bunn et
al. 2000; Hanski and Ovaskainen 2000; Ferguson et al.
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2001; Keeling et al. 2001; Ovaskainen and Hanski 2001;
Brooks 2006; Parham and Ferguson 2006; Jeger et al.
2007).

Approaches to the construction of spatial network mod-
els in population ecology can be coarsely divided into those
that treat interaction as a continuous variable that decays
with increasing distance (e.g., Ovaskainen and Hanski
2001) and those in which spatial constraints are repre-
sented as a binary variable (e.g., Keitt et al. 1997; Bunn
et al. 2000; Brooks 2006). To date, there have been rela-
tively few attempts to apply spatially explicit network mod-
els to empirical systems in order to identify critical mech-
anisms or individuals for the flow of “information” across
the network. In many cases, this may be due to the dif-
ficulty in obtaining the data necessary to quantify both
the scale or scales at which interactions occur and the
sensitivity of model predictions to errors in network
construction.

Here we explore the utility of different approaches for
estimating the patterns of interaction in spatial network
models. We begin by outlining the existing approaches in
spatial network theory and their links with spatially re-
alistic metapopulation theory. The patterns of anther smut
(Microbotryum violaceum) infection within and between
years in a population of fire pink (Silene virginica) from
southwestern Virginia are then analyzed using spatially
explicit network models. We illustrate the correspondence
between different algorithms for estimating network struc-
ture and demonstrate the strengths of both continuous
and binary edge weighting in predicting the net repro-
ductive number (R,) and infection prevalence in the
population.

Spatial Network Theory

The underlying structure of a network model is a discrete
mathematical construct called a graph. A graph G can be
defined as a set of vertices v, € V and the set of edges
e, € & that are incident to V. Often G is represented as a
matrix M in which rows i and columns j identify vertices,
and matrix elements 1, contain the strength of interaction
defined by each edge. Given a set of vertices on the Eu-
clidean plane that represent the relative spatial location of
individual hosts or habitat patches, we would ideally define
the edge set by quantifying the exact pattern of interaction
between each pair of v, € G. In natural systems such in-
formation is rarely available, and thus we must estimate
& using our knowledge of the processes governing inter-
action at the individual level. The result is an estimated
edge set & for the graph.

There are a number of approaches that may be appro-
priate for generating £ without having explicit knowledge
of each potential pairwise interaction. In many cases there

exist spatial or topological constraints on interaction that
can be used to estimate pairwise patterns of interaction
using either binary distinctions (e.g., pairs are connected
or they are not) based on their spatial and/or topological
relationships or a continuous model that describes the
decay of interaction with distance.

Discrete-Edge Weights

There are a number of possible ways to use relative spatial
structure to estimate the flow of disease or dispersers be-
tween vertices in the model. In each case the goal is to
connect the vertices in a manner that reflects the scale at
which individuals interact in the system—the organism-
centric scale of organization (e.g., Wiens 1989; Brooks
2003). We adopted two such approaches, one based on a
distance threshold and another based on nearest-neighbor
topology. The former involves identification of a threshold
distance d_ that represents the mean (or maximal) distance
at which interaction might be expected to occur and con-
nect all pairs of vertices separated by no more than that
distance (fig. 1a). This has been the most commonly ap-
plied approach to estimating & for discrete binary (i.e.,
connections are either present or absent) spatial network
models (sensu Keitt et al. 1997; Bunn et al. 2000; Brooks
2006). The latter approach is to construct G so that every
vertex is connected only to its spatially nearest neighbors
(fig. 1b). In this context, & is constructed via a Delaunay
triangulation of the points. This graph is constructed by
considering only edges in which a circumscribing circle
around cycles of three vertices do not include any other
vertices. In both approaches, the graphs are then repre-
sented by an adjacency matrix M so that each edge is given
an equivalent weight m,; = 1, and nonexistent edges are
given a weight m; = 0. The assumption implicit in the
binary weighting of these edges is that all edges across
which interaction can occur are equivalent.

Once G was constructed, we explored the importance
of host connectivity to transmission across the network
by calculating measures of vertex centrality. Three mea-
sures are of particular note here (though others may also
be informative): vertex degree (k), betweenness centrality
(b), and closeness centrality (c). Vertex degree is simply
the number of edges that are incident to a particular vertex.
When the graph is directional (a digraph), we can further
distinguish between the indegree and outdegree for any
vertex in G. The distribution of k (called the degree dis-
tribution) is often used to describe the overall structure
of G. Betweenness centrality is a second measure of vertex
importance and measures the number of pairwise shortest
paths in G that pass through the focal vertex. Thus, vertices
with a high value of b are those through which there is a
large flow across the network. Closeness centrality is de-
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Figure 1: Examples of networks based on (a) a distance threshold of 0.92m, (b) nearest-neighbor topology, or (¢) distance-weighted edges for all
possible pairings (metapopulation model) for the spatial arrangement of Silene virginica at the Morrisette Winery in southwestern Virginia in 1990.
Open circles represent individuals that were infected in a particular year, filled circles represent healthy individuals, and lines represent edges that
connect potentially interacting flowers in the population. Strength of interaction (c) is denoted by the degree of shading, with lighter colors indicating
stronger interactions.
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fined as the mean number of edges (calculated through
shortest paths) that have to be traversed to move between
the focal vertex and every other vertex in the graph. This
means that the value of closeness is inverted relative to
what one might logically interpret from the name; high
values indicate a low centrality for a particular vertex. Here
we construct & by considering topological or spatial con-
straints on the transmission of Microbotryum violaceum
between hosts. If transmission occurs at a particular spatial
scale, then the patterns of centrality in the network con-
structed using that critical distance should provide an ac-
curate prediction of transmission (e.g., Brooks 2006).

Continuous-Edge Weights

When the strength of interaction between any pair of ver-
tices is critical to our understanding of flow across the
network, we can weight edges with a continuous function
that describes the decay of interaction with distance (fig.
1¢). Although we can construct graphs in which we con-
sider both the topology of actual interactions in the system
and the decay function (Urban and Keitt 2001; Keitt 2003),
most continuous-network models ignore the topological
heterogeneity in the network and simply model the in-
teraction for allv e G. This is, very generally, the approach
used in constructing spatially realistic metapopulation
models (sensu Hanski and Ovaskainen 2000; Ovaskainen
and Hanski 2001). The decay of interaction strength with
distance can be described by any function, but for meta-
population models it is generally described as

m; = AiAjexp (—Old,'j); (1)

where A, is the area of patch x, d; is the distance between
the vertices defined by column 7 and row j in an adjacency
matrix M, and « is the inverse of the mean dispersal dis-
tance for the species whose movement is being modeled
(Hanski 1994). The dominant eigenvalue of this matrix of
edge weights N, then provides an estimate of the available
habitat for the metapopulation or the metapopulation ca-
pacity (Hanski and Ovaskainen 2000; Ovaskainen and
Hanski 2001). Because \,, is a measure of the available
habitat, we can predict the proportion of available habitat
occupied at equilibrium as

P* =1- ¢)\_lr (2)

where ¢ is the ratio of extinction to colonization rates
(Hanski and Ovaskainen 2000).

The Empirical Model System

In order to assess the power and robustness of spatial
network approaches in predicting population dynamics,
we constructed a series of empirically derived networks to
describe the transmission dynamics of the anther smut
fungus (Microbotryum violaceum) in a population of fire
pink (Silene virginica) between 1989 and 1995. These data
describe the location and disease status of each S. virginica
individual within a 30 x 35-m study plot in southwestern
Virginia (Morrisette Winery site) during the flowering sea-
son (Antonovics et al. 1996). Vertex sets were constructed
using both the relative spatial location and infection status
of each scored individual. Vegetative plants were excluded
from the analysis because they are unlikely to affect the
behavior of pollinators that transmit the disease from plant
to plant (Antonovics et al. 1996). Given the location and
disease status of all individuals in the plot, we estimated
& using all of the approaches described in the previous
section in an effort to evaluate how well each predicts the
spatial and temporal patterns in prevalence and trans-
mission of the fungal pathogen.

The Study System

Silene virginica is a short-lived perennial plant that is
among the most conspicuous wildflowers from May to
June in the central and southeastern United States. Infec-
tion results in the development of anthers that contain
fungal spores instead of pollen grains, in a manner that
is similar to its invasive congener Silene latifolia (Baker
1947). Unlike infection in S. latifolia, however, dark an-
thers and the deep red of the flowers in S. virginica make
infection far less conspicuous (Antonovics et al. 2003).
Pollination of fire pink is mediated largely by ruby-
throated hummingbirds, with some contribution from sol-
itary bees (Fenster and Dudash 2001). As in other mem-
bers of the genus, infection is assumed to spread between
individuals via two primary routes. Visits by pollinators
to an infected flower result in the acquisition of teliospores
that are transferred to healthy flowers as the pollinator
moves through the population (Baker 1947; Alexander
1990; Antonovics and Alexander 1992; Roche et al. 1996;
Altizer et al. 1998). Seedlings and vegetative individuals
may also become infected through aerial transmission of
spores from nearby infected flowers (Alexander 1990). Be-
cause pollinators are likely to deposit most of their spores
on the first few visits after acquiring teliospores, we expect
that infection should be highly localized (sensu Giraud
2004). There are also strong temporal constraints: because
transmission is restricted to the flowering phenology, there
is a distinct 3—4-week transmission period each year. We
calculated the growth rate of infection as the net repro-

This content downloaded from 128.83.205.78 on Thu, 18 Jun 2015 14:33:49 PM
All use subject to JISTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

ductive number R,, defined as the number of new infec-
tions per infection in each year,

1)

RO =5y

©)

Because we were able to identify individuals between years,
it was also possible to determine the number of newly
established individuals (where establishment indicates sur-
vival to first flowering), the survivorship of diseased and
healthy individuals, and which hosts were newly infected
during each flowering season.

Graph Construction Algorithms

To measure the influence of spatial structure on the spread
of the fungal pathogen in the system, we constructed a
series of graphs using the relative location of individual
plants as vertices. Here vertices possess (x, y) coordinates
in the plane as well as a disease status (susceptible S or
infectious I). Because data describing the exact paths of
movement and spore deposition for pollinating insects are
not available, we adopted three approaches for estimating
&, two discrete and one continuous. The continuous-edge
weight graph was based on existing metapopulation mod-
els (e.g., Hanski and Ovaskainen 2000; Ovaskainen and
Hanski 2001) in which interaction between hosts is a de-
caying function of distance. Because we lack information
on the size of individual flowers or plants, we assume
A; = A; = 1 and calculate the entries of M as in equation
(1). It was also necessary to estimate the critical distance
beyond which transmission is unlikely to occur. As with
S. latifolia insect pollinators, we expect that most telio-
spores will be deposited on the first few flowers visited by
a pollinator (Altizer et al. 1998). So, despite the differences
in the community of pollinators between S. virginica and
S. latifolia, we expect that infection will be similarly dis-
tributed. Thus we construct edges based on the assumption
that transmission occurs within a critical distance of
d. = 0.92m (fig. 1a). This is based on the scale of spatial
autocorrelation in the clustering of paired infections
(sensu Real and MacFlhaney 1996; Brooks 2006), a mea-
sure that may be especially important in tracking epidem-
ics on spatially explicit networks (Bauch and Galvani
2003). Assuming an exponential decay of interaction
(sensu eq. [1]), this implies a rate parameter for equation
(1) and the continuously weighted graphs of o = 3.25.
Two graphs were also constructed where host-host in-
teraction was considered as a binary variable. In one, we
considered all of the topological nearest neighbors of any
living flower to be interconnected irrespective of interhost
distances (fig. 1b). This was constructed as the Delaunay
triangulation of the vertices that results in a connected
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graph (all vertices are part of a single connected com-
ponent) of the plant locations on a two-dimensional plane.
The Delaunay triangulation for a set of points requires
that for every cycle with only three edges, there is a cir-
cumcircle (circle that includes each vertex along its edge)
that has no other vertices inside it. The result is a graph
that includes connections between topologically nearest
neighbors. A third graph was based on the assumption
that all vertices within some critical threshold distance of
one another are interconnected (e.g., Keitt et al. 1997;
Brooks 2006; fig. 1¢). As with the critical distance used in
calculating o, we use d. = 0.92m as the threshold for con-
structing this final class of graphs. These approaches were
chosen to represent three of the potential algorithms
among many that are possible (Urban and Keitt 2001; Keitt
2003).

We also constructed a spatiotemporal graph in an effort
to evaluate the importance of year-to-year variation in
spatial structure on the transmission of Microbotryum vio-
laceum. This spatiotemporal network is based on the
distance-threshold graphs with d. = 0.92m. For each pair
of adjacent years, we identified individuals that were alive
in year t and in year ¢+ 1. Because we did not have in-
formation on the disease status of vegetative individuals,
we restricted our analysis to those individuals that were
flowering in both year ¢ and year ¢ + 1. We then accounted
for the year-to-year survival of individuals and considered
all spatial edges for each individual in each of the years
that it was alive (and flowering). This generates a structure
in which the network accounts for the spatial arrangement
of individuals both within and between years.

Network Analysis

For each of the discrete spatial graphs, we calculated three
measures of vertex centrality: vertex degree, betweenness
centrality, and closeness centrality for all plants and sep-
arately for infected and healthy plants. Each of these mea-
sures captures different elements about the biology of the
system that may be important to the transmission of M.
violaceum. The degree distribution (distribution of the
number of edges incident to each vertex or the neigh-
borhood size of each vertex) was calculated for nearest-
neighbor graphs as a measure of the overall structure of
the spatial network. This measure was calculated across
the network as a whole (diseased and healthy individuals)
and separated by disease class for any particular year (e.g.,
the number of healthy and infected hosts connected to
each diseased host, the number of diseased or healthy hosts
connected to each susceptible host, etc.). This allows for
the calculation of the number of healthy neighbors for
each infected host—a measure that is likely to be impor-
tant if infection occurs via stepping-stone-type movement.
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For each of the other measures of centrality, we cal-
culated a mean value for each disease class. This value is
the mean centrality of vertices of class c relative to all other
vertices in the network. Betweenness centrality measures
the number of pairwise shortest paths between vertices in
the graph that pass through any particular vertex. If in-
fection “flows” across the network along the most efficient
paths in space (something we might expect of pollinator
behavior), then we might expect betweenness centrality to
predict the pattern of disease spread. Closeness centrality
should reveal the degree to which there is localization of
transmission in space. It provides a measure that is some-
what similar to vertex degree, but it can reveal the effects
of clustering within neighborhoods of more than one step.

The ability of these models to predict spatiotemporal
patterns of infection and transmission in the system was
evaluated across years using general linear modeling in the
R statistical package (R Development Core Team 2006).
Analysis of the continuously weighted graphs was re-
stricted to an exploration of spatially realistic metapop-
ulation theory, using standard exponential decay of inter-
action with increasing distance (Hanski and Ovaskainen
2000; Ovaskainen and Hanski 2001) and an assessment of
the potential of metapopulation capacity (\,,) to predict
the prevalence and dynamics of infection in the system.

Results

Over the study period the number of plants in the study
plot ranged from 125 in 1989 to 257 in 1991. The patterns
of fluctuation and the number of new infections suggest
a generally low transmission rate (Antonovics et al. 1996)
punctuated by two outbreaks (R, > 1) of the fungal path-
ogen, in 1990 and 1993. The second outbreak followed a
severe decline in the host population (>30% mortality in
the population between 1991 and 1992) and a subse-
quently high recruitment of susceptible flowers at the start
of the transmission season in 1993. Initially we tested a
simple discrete-time susceptible-infected-type model that
overpredicted the amount of infection in the system
(o) = BSI, — pl; P>.7).

Discrete-Network Models

Results from the two discrete-network models were qual-
itatively similar, though those based on the threshold dis-
tance were slightly better predictors of R, than the nearest-
neighbor graphs. Examples of the distance-threshold,
nearest-neighbor, and metapopulation graphs are shown
in figure 1. We focus on the results from distance-threshold
graphs here and highlight results for the nearest-neighbor
graphs that are of note.

The number of neighbors for each of the plants in the

system (both healthy and infected) was highly variable
both within and across years (fig. 2). When there were
infected hosts that were highly connected (k> 10), R, >
1, the threshold for epidemic growth. However, the num-
ber of susceptible hosts that were directly connected to
infected hosts was not predictive of R,. Topology was a
better predictor of infection rate in the distance-threshold
graphs. Betweenness centrality (the number of shortest
paths that include a particular host [vertex]) of infected
hosts was also highly predictive of Ry and the prevalence
of infection. The mean betweenness centrality of infected
vertices b, in year f explained 73.3% of the variation ob-
served in R, in the following year (fig. 3a). Mean closeness
centrality of infected vertices ¢, in the threshold graphs
during year t were also good predictors of R,. The mean
number of “steps” between all hosts and at least one in-
fected host explained 78.4% of the variation in R, in year
t (fig. 3b). Unlike b,, closeness was not able to forecast the
dynamics of infection in the system a season in advance.

It is important to note here that the distance-threshold
networks are highly disconnected at d. = 0.92m in each
year of the study period. Typically, network metrics are
used on connected structures (a network in which all ver-
tices are a part of a single connected component). If the
disconnected nature of these threshold graphs were an
accurate reflection of the spatial spread of infection, we
might expect to see a correspondence between the clus-
tering of infection in the spatial network and the topology
of the more connected structure (e.g., the centrality of
infection in the nearest-neighbor graph). Using networks
constructed for the 0.92m threshold, we found that the
mean betweenness centrality, b, for the nearest-neighbor
graphs was highly predictive of the number of edges con-
necting pairs of infected hosts in the distance-based graph
(r* = 0.98; P<.0001).

We can measure the degree of connectedness in the
distance-threshold network by plotting the mean size of
clusters that are connected at a given critical distance, d..
This edge-thinning technique provides a visual represen-
tation of the overall spatial connectivity in the network.
We also explored the degree to which the survival of and
flowering by both infected and healthy individuals across
multiple years affected the spatiotemporal patterns of con-
nectivity in the system. Comparison of the changes in
connectivity for the spatiotemporal network versus the
spatial networks constructed for each year (fig. 4) shows
that temporal changes in spatial structure have a large
effect on connectivity.

Continuous-Network Model

The continuous-network model provided an excellent pre-
diction of infection prevalence in each year. The propor-
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Figure 2: Distribution of neighbors for each vertex based on the distance-threshold graphs with critical distance d. = 0.92m. Black sections of the
histogram indicate infected individuals; gray sections indicate healthy individuals.

tion of hosts infected (i.e., proportion of patches occupied)
at equilibrium, as predicted by equation 2, explained
96.2% of the variance in observed infection prevalence.
The least squares estimate of the ratio of extinction : col-
onization rate ¢ = 3.84 from this model suggests a decline
in the pathogen population over time.

This metapopulation network model also predicts the
net reproductive number for the pathogen, though not as
well as the models with discrete-edge weights. Capacity
(N, is a measure of host availability for existing infec-
tions (Hanski and Ovaskainen 2000; Ovaskainen and Han-

ski 2001). As a result, the ratio of capacities reflects the
change in the availability of susceptible hosts between
years. The ratio of metapopulation capacities between
years N, (£)/N\,(t — 1) explained >60% of the variation in
Ry (P = .05).

Discussion

Together the predictive patterns in both the continuous
and discrete binary graphs suggest that the interactions
between host and pathogen (as mediated by the pollinator)
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Figure 3: Temporal trends in mean (a) betweenness and (b) closeness centrality of infected vertices (gray line) and Ry (black line) for each year.

Vertical lines are 1 SE from the mean.

occur via a consistent spatial pattern across years. Most
of the variation in infection between years is a direct result
of birth, death, and infection altering the spatial distri-
bution of susceptible flowering hosts. The effect of re-
moving individuals due to immunity, infection, or death
from a heterogeneous contact network may ultimately alter
the pattern and rate of transmission during the course of
an outbreak (Ferrari et al. 2006). Here there is little re-
covery, and there is no apparent mortality cost of infection
(Antonovics et al. 1996). Infection alters only the location
of susceptible individuals and the spatial pattern of future
births and deaths through the parasitic castration of in-
fected flowers. The remaining spatial pattern in susceptible
hosts is a result of natural birth-death processes operating
in the system. As a result, infection becomes highly ag-

gregated relative to the overall spatial distribution of hosts
(Antonovics et al. 1996). The scale at which hosts are
aggregated in a patch relative to the spatial spread of Mi-
crobotryum violaceum implies that only hosts that are in
locally connected clusters that contain infected plants are
likely to be infected. Thus, in any particular year, the risk
of infection is isolated in a subset of the clusters in the
population, thereby preventing widespread transmission
in any one year (e.g., den Boer 1968). The result is that
some susceptible individuals will always have a much lower
probability of infection than others (e.g., the contact het-
erogeneity) within a season.

The patterns of M. violaceum transmission in this pop-
ulation of Silene virginica are best explained through ex-
plicit consideration of this contact heterogeneity in the

This content downloaded from 128.83.205.78 on Thu, 18 Jun 2015 14:33:49 PM
All use subject to JISTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

Disease Dynamics in a Network Model 157

1.0

0.8 -
S i
in :‘ ; [ 1]
§ 000 0000000-0000000000000
7] d / : [/ .{: ‘
6:1 0.6 | | | .f /| .‘
5 0 opo-ooﬁ-éo 00000000000
] [ /
Eu 0.4 - 00 /
-E o] _06-60006 ooo-d

d glod

i o O,Qvg' o 0-0-0-0-0-0-000

0.2 - o 8,3 d o

/ a’g o0 3’op
P BralS s
553505657
0.0 { 0080000TVT '
0.0 1.0 2.0 3.0 4.0 5.0
Distance (m)

Figure 4: Edge-thinning plot showing the change in the mean size of connected clusters as a function of threshold distance (d,) for each year
independently (gray) and for the spatiotemporal network model that also considers survival between years (black).

system. Network models based on binary weighting of
edges were especially good at explaining variation in Ry
up to one season in advance. The metapopulation network
model was also capable of explaining variation in R, but
it was especially good at predicting infection prevalence
in the flowering population. The accuracy of this equilib-
rium prediction of prevalence (eq. [2]) from metapopu-
lation theory suggests that infection is constrained by the
spatial topology of hosts in the population, probably due
to behavioral tendencies in the pollinators. Thus, the paths
along which infection spreads are likely to be traversed
many times throughout the transmission season. This re-
sults in numerous opportunities throughout the season
for pathogen transmission to highly connected individuals.

The measures of vertex centrality suggest a progression
of events by which the risk of hosts is spread in the net-
work. The initial increase in the betweenness centrality of
infected hosts that signals a coming epidemic reflects an
initial stage in which infection is distributed in clusters
that lie along many of the shortest paths between hosts.
In this case, the importance of shortest paths is not sur-
prising given that hummingbirds are generally likely to
follow the shortest paths between neighboring flowers
when feeding (e.g., Wolf and Hainsworth 1990). Once the
pollinators acquire teliospores from an infected host and
spread them along these paths, infection becomes more
widespread in the network, thereby colonizing clusters of

hosts that might have previously escaped infection. The
result is that the parasite then lies only a few steps from
all of the other individuals in the population at the start
of the next transmission season.

It seems clear that the risk of infection varies across
space as a function of who your neighbors are and what
their disease status is in any season. Temporal variation
in host spatial structure slows the spatial spread of the
pathogen in any single season, reducing the pathogen’s
risk of extinction due to overexploitation of the local pool
of susceptible hosts in a single season while allowing for
efficient transmission within localized clumps in suscep-
tible hosts. We observed infection spreading rapidly
through small, isolated aggregations of susceptible hosts
during individual seasons, with the spatial extent of the
spread being mediated by the degree of connectivity across
the network in any particular year. Survival of individuals,
and their infections between years, imparts a “memory”
in the system that interacts with the new structure resulting
from births and deaths between the end of one transmis-
sion season and the beginning of the next. It is the tem-
poral connection mediated by a few individuals that allows
the parasite to infect hosts across previously separate ag-
gregates and to “scale-up” the infection to explain the
transmission between these clusters.

Our study illustrates the ability of spatial network mod-
els to accurately predict transmission rate when interaction
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among hosts is highly heterogeneous. We expect that the
construction of species-specific network models based on
movement ability will be particularly useful in designing
habitat reserves as well as in controlling the spread of

invasive species such as the cactus moth (Cactoblastis cac -,

torum) in North America. This analysis is based on a model

system, and the degree to which the results in this systen —

might apply to other natural systems remains an open

question. These spatially explicit network models may b=

useful in conservation ecology as well as in forestry, but
their application will require careful analysis of the possible
methods of edge construction and of the assumptions

about the ecology of the system represented by eack_,

approach.
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Healthy and infected individuals of fire pink (Silene virginica). Infection is spread between flowers by pollinators. (Photographs by J. Antonovics.)
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